1
|
Hitchcock CL, Chapman GJ, Mojzisik CM, Mueller JK, Martin EW. A Concept for Preoperative and Intraoperative Molecular Imaging and Detection for Assessing Extent of Disease of Solid Tumors. Oncol Rev 2024; 18:1409410. [PMID: 39119243 PMCID: PMC11306801 DOI: 10.3389/or.2024.1409410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/28/2024] [Indexed: 08/10/2024] Open
Abstract
The authors propose a concept of "systems engineering," the approach to assessing the extent of diseased tissue (EODT) in solid tumors. We modeled the proof of this concept based on our clinical experience with colorectal carcinoma (CRC) and gastrinoma that included short and long-term survival data of CRC patients. This concept, applicable to various solid tumors, combines resources from surgery, nuclear medicine, radiology, pathology, and oncology needed for preoperative and intraoperative assessments of a patient's EODT. The concept begins with a patient presenting with biopsy-proven cancer. An appropriate preferential locator (PL) is a molecule that preferentially binds to a cancer-related molecular target (i.e., tumor marker) lacking in non-malignant tissue and is the essential element. Detecting the PL after an intravenous injection requires the PL labeling with an appropriate tracer radionuclide, a fluoroprobe, or both. Preoperative imaging of the tracer's signal requires molecular imaging modalities alone or in combination with computerized tomography (CT). These include positron emission tomography (PET), PET/CT, single-photon emission computed tomography (SPECT), SPECT/CT for preoperative imaging, gamma cameras for intraoperative imaging, and gamma-detecting probes for precise localization. Similarly, fluorescent-labeled PLs require appropriate cameras and probes. This approach provides the surgeon with real-time information needed for R0 resection.
Collapse
Affiliation(s)
- Charles L. Hitchcock
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Actis Medical, LLC, Powell, OH, United States
| | - Gregg J. Chapman
- Actis Medical, LLC, Powell, OH, United States
- Department of Electrical and Computer Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | | | | | - Edward W. Martin
- Actis Medical, LLC, Powell, OH, United States
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
2
|
Xuan Y, Gao Q, Wang C, Cai D. Positive peritoneal lavage fluid cytology based on isolation by size of epithelial tumor cells indicates a high risk of peritoneal metastasis. PeerJ 2024; 12:e17602. [PMID: 38952968 PMCID: PMC11216200 DOI: 10.7717/peerj.17602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Background Peritoneal metastasis (PM) is the most prevalent type of metastasis in patients with gastric cancer (GC) and has an extremely poor prognosis. The detection of free cancer cells (FCCs) in the peritoneal cavity has been demonstrated to be one of the worst prognostic factors for GC. However, there is a lack of sensitive detection methods for FCCs in the peritoneal cavity. This study aimed to use a new peritoneal lavage fluid cytology examination to detect FCCs in patients with GC, and to explore its clinical significance on diagnosing of occult peritoneal metastasis (OPM) and prognosis. Methods Peritoneal lavage fluid from 50 patients with GC was obtained and processed via the isolation by size of epithelial tumor cells (ISET) method. Immunofluorescence and fluorescence in situ hybridization (FISH) were used to identify FCCs expressing chromosome 8 (CEP8), chromosome 17 (CEP17), and epithelial cell adhesion molecule (EpCAM). Results Using a combination of the ISET platform and immunofluorescence-FISH, the detection of FCCs was higher than that by light microscopy (24.0% vs. 2.0%). Samples were categorized into positive and negative groups, based on the expressions of CEP8, CEP17, and EpCAM. Statistically significant relationships were demonstrated between age (P = 0.029), sex (P = 0.002), lymphatic invasion (P = 0.001), pTNM stage (P = 0.001), and positivity for FCCs. After adjusting for covariates, patients with positive FCCs had lower progression-free survival than patients with negative FCCs. Conclusion The ISET platform highly enriched nucleated cells from peritoneal lavage fluid, and indicators comprising EpCAM, CEP8, and CEP17 confirmed the diagnosis of FCCs. As a potential detection method, it offers an opportunity for early intervention of OPM and an extension of patient survival.
Collapse
Affiliation(s)
- Ying Xuan
- Jiangnan University, Wuxi School of Medicine, Wuxi, China
- Affiliated Hospital of Jiangnan University, Department of Oncology, Wuxi, China
| | - Qizhong Gao
- Affiliated Hospital of Jiangnan University, Department of Oncology, Wuxi, China
| | - Chenhu Wang
- Affiliated Hospital of Jiangnan University, Department of Oncology, Wuxi, China
| | - Dongyan Cai
- Affiliated Hospital of Jiangnan University, Department of Oncology, Wuxi, China
| |
Collapse
|
3
|
Tummers FHMP, Bazelmans MK, Jansen FW, Blikkendaal MD, Vahrmeijer AL, Kuppen PJK. Biomarker identification for endometriosis as a target for real-time intraoperative fluorescent imaging: A new approach using transcriptomic analysis to broaden the search for potential biomarkers. Eur J Obstet Gynecol Reprod Biol 2023; 288:114-123. [PMID: 37506597 DOI: 10.1016/j.ejogrb.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Intra-operative fluorescent imaging of endometriosis could help to optimize surgical treatment. Potential biomarkers to use as target for endometriosis-binding fluorescent probes were identified using a new five-phase transcriptomics-based approach to broaden the search for biomarkers. Using publicly available datasets, a differentially expressed gene (DEG) analysis was performed for endometriosis versus surgically relevant surrounding tissue (peritoneum, bladder, sigmoid, rectum, transverse colon, small intestine, vagina, and fallopian tubes) for which data was available. The remaining relevant surrounding tissues were analyzed for low expression levels. DEGs with a predicted membranous or extracellular location and with low expression levels in surrounding tissue were identified as candidate targets. Modified Target Selection Criteria were used to rank candidate targets based on the highest potential for use in fluorescent imaging. 29 potential biomarkers were ranked, resulting in Folate receptor 1 as the most potential biomarker. This is a first step towards finding a fluorescent tracer for intra-operative visualization of endometriosis. Additionally, this approach, using transcriptomics analysis to identifying candidate targets for a specific type of tissue for use in fluorescence-guided surgery could be translated to other surgical fields. TWEETABLE ABSTRACT: A new approach using transcriptomics analysis is shown to identify candidate targets for intra-operative fluorescent imaging for endometriosis, resulting in 29 potential candidates.
Collapse
Affiliation(s)
- Fokkedien H M P Tummers
- Department of Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Maria K Bazelmans
- Department of Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Frank Willem Jansen
- Department of Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Mathijs D Blikkendaal
- Nederlandse Endometriose Kliniek, Reinier de Graaf Hospital, 2625 AD Delft, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
4
|
Baart VM, van Manen L, Bhairosingh SS, Vuijk FA, Iamele L, de Jonge H, Scotti C, Resnati M, Cordfunke RA, Kuppen PJK, Mazar AP, Burggraaf J, Vahrmeijer AL, Sier CFM. Side-by-Side Comparison of uPAR-Targeting Optical Imaging Antibodies and Antibody Fragments for Fluorescence-Guided Surgery of Solid Tumors. Mol Imaging Biol 2023; 25:122-132. [PMID: 34642899 PMCID: PMC9970952 DOI: 10.1007/s11307-021-01657-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/27/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Radical resection is paramount for curative oncological surgery. Fluorescence-guided surgery (FGS) aids in intraoperative identification of tumor-positive resection margins. This study aims to assess the feasibility of urokinase plasminogen activator receptor (uPAR) targeting antibody fragments for FGS in a direct comparison with their parent IgG in various relevant in vivo models. PROCEDURES Humanized anti-uPAR monoclonal antibody MNPR-101 (uIgG) was proteolytically digested into F(ab')2 and Fab fragments named uFab2 and uFab. Surface plasmon resonance (SPR) and cell assays were used to determine in vitro binding before and after fluorescent labeling with IRDye800CW. Mice bearing subcutaneous HT-29 human colonic cancer cells were imaged serially for up to 120 h after fluorescent tracer administration. Imaging characteristics and ex vivo organ biodistribution were further compared in orthotopic pancreatic ductal adenocarcinoma (BxPc-3-luc2), head-and-neck squamous cell carcinoma (OSC-19-luc2-GFP), and peritoneal carcinomatosis (HT29-luc2) models using the clinical Artemis fluorescence imaging system. RESULTS Unconjugated and conjugated uIgG, uFab2, and uFab specifically recognized uPAR in the nanomolar range as determined by SPR and cell assays. Subcutaneous tumors were clearly identifiable with tumor-to-background ratios (TBRs) > 2 after 72 h for uIgG-800F and 24 h for uFab2-800F and uFab-800F. For the latter two, mean fluorescence intensities (MFIs) dipped below predetermined threshold after 72 h and 36 h, respectively. Tumors were easily identified in the orthotopic models with uIgG-800F consistently having the highest MFIs and uFab2-800F and uFab-800F having similar values. In biodistribution studies, kidney and liver fluorescence approached tumor fluorescence after uIgG-800F administration and surpassed tumor fluorescence after uFab2-800F or uFab-800F administration, resulting in interference in the abdominal orthotopic mouse models. CONCLUSIONS In a side-by-side comparison, FGS with uPAR-targeting antibody fragments compared with the parent IgG resulted in earlier tumor visualization at the expense of peak fluorescence intensity.
Collapse
Affiliation(s)
- Victor M Baart
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| | - Labrinus van Manen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Floris A Vuijk
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Luisa Iamele
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Ardis Srl, Pavia, Italy
| | - Hugo de Jonge
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Ardis Srl, Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Ardis Srl, Pavia, Italy
| | - Massimo Resnati
- Age Related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Robert A Cordfunke
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.,Centre for Human Drug Research, Leiden, The Netherlands
| | | | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.,Percuros BV, Leiden, The Netherlands
| |
Collapse
|
5
|
Multimodal CEA-targeted fluorescence and radioguided cytoreductive surgery for peritoneal metastases of colorectal origin. Nat Commun 2022; 13:2621. [PMID: 35551444 PMCID: PMC9098887 DOI: 10.1038/s41467-022-29630-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/16/2022] [Indexed: 11/09/2022] Open
Abstract
In patients with colorectal peritoneal metastases scheduled for cytoreductive surgery, accurate preoperative estimation of tumor burden and subsequent intraoperative detection of all tumor deposits remains challenging. In this study (ClinicalTrials.gov NCT03699332) we describe the results of a phase I clinical trial evaluating [111In]In-DOTA-labetuzumab-IRDye800CW, a dual-labeled anti-carcinoembryonic antigen (anti-CEA) antibody conjugate that enables both preoperative imaging and intraoperative radioguidance and fluorescence imaging. Primary study outcomes are safety and feasibility of this multimodal imaging approach. Secondary outcomes are determination of the optimal dose, correlation between tracer uptake and histopathology and effects on clinical strategy. Administration of [111In]In-DOTA-labetuzumab-IRDye800CW is well-tolerated and enables sensitive pre- and intraoperative imaging in patients who receive 10 or 50 mg of the tracer. Preoperative imaging revealed previously undetected lymph node metastases in one patient, and intraoperative fluorescence imaging revealed four previously undetected metastases in two patients. Alteration of clinical strategy based on multimodal imaging occurred in three patients. Thus, multimodal image-guided surgery after administration of this dual-labeled tracer is a promising approach that may aid in decision making before and during cytoreductive surgical procedures.
Collapse
|
6
|
Huisman BW, Cankat M, Bosse T, Vahrmeijer AL, Rissmann R, Burggraaf J, Sier CFM, van Poelgeest MIE. Integrin αvβ6 as a Target for Tumor-Specific Imaging of Vulvar Squamous Cell Carcinoma and Adjacent Premalignant Lesions. Cancers (Basel) 2021; 13:6006. [PMID: 34885116 PMCID: PMC8656970 DOI: 10.3390/cancers13236006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Surgical removal of vulvar squamous cell carcinoma (VSCC) is associated with significant morbidity and high recurrence rates. This is at least partially related to the limited visual ability to distinguish (pre)malignant from normal vulvar tissue. Illumination of neoplastic tissue based on fluorescent tracers, known as fluorescence-guided surgery (FGS), could help resect involved tissue and decrease ancillary mutilation. To evaluate potential targets for FGS in VSCC, immunohistochemistry was performed on paraffin-embedded premalignant (high grade squamous intraepithelial lesion and differentiated vulvar intraepithelial neoplasia) and VSCC (human papillomavirus (HPV)-dependent and -independent) tissue sections with healthy vulvar skin as controls. Sections were stained for integrin αvβ6, CAIX, CD44v6, EGFR, EpCAM, FRα, MRP1, MUC1 and uPAR. The expression of each marker was quantified using digital image analysis. H-scores were calculated and percentages positive cells, expression pattern, and biomarker localization were assessed. In addition, tumor-to-background ratios were established, which were highest for (pre)malignant vulvar tissues stained for integrin αvβ6. In conclusion, integrin αvβ6 allowed for the most robust discrimination of VSCCs and adjacent premalignant lesions compared to surrounding healthy tissue in immunohistochemically stained tissue sections. The use of an αvβ6 targeted near-infrared fluorescent probe for FGS of vulvar (pre)malignancies should be evaluated in future studies.
Collapse
Affiliation(s)
- Bertine W. Huisman
- Center for Human Drug Research, 2333 CL Leiden, The Netherlands; (B.W.H.); (M.C.); (R.R.); (J.B.); (M.I.E.v.P.)
- Department of Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Merve Cankat
- Center for Human Drug Research, 2333 CL Leiden, The Netherlands; (B.W.H.); (M.C.); (R.R.); (J.B.); (M.I.E.v.P.)
- Department of Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | - Robert Rissmann
- Center for Human Drug Research, 2333 CL Leiden, The Netherlands; (B.W.H.); (M.C.); (R.R.); (J.B.); (M.I.E.v.P.)
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jacobus Burggraaf
- Center for Human Drug Research, 2333 CL Leiden, The Netherlands; (B.W.H.); (M.C.); (R.R.); (J.B.); (M.I.E.v.P.)
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Percuros BV, 2333 CL Leiden, The Netherlands
| | - Mariette I. E. van Poelgeest
- Center for Human Drug Research, 2333 CL Leiden, The Netherlands; (B.W.H.); (M.C.); (R.R.); (J.B.); (M.I.E.v.P.)
- Department of Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
7
|
Gires O, Pan M, Schinke H, Canis M, Baeuerle PA. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? Cancer Metastasis Rev 2020; 39:969-987. [PMID: 32507912 PMCID: PMC7497325 DOI: 10.1007/s10555-020-09898-3] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
EpCAM (epithelial cell adhesion molecule) was discovered four decades ago as a tumor antigen on colorectal carcinomas. Owing to its frequent and high expression on carcinomas and their metastases, EpCAM serves as a prognostic marker, a therapeutic target, and an anchor molecule on circulating and disseminated tumor cells (CTCs/DTCs), which are considered the major source for metastatic cancer cells. Today, EpCAM is reckoned as a multi-functional transmembrane protein involved in the regulation of cell adhesion, proliferation, migration, stemness, and epithelial-to-mesenchymal transition (EMT) of carcinoma cells. To fulfill these functions, EpCAM is instrumental in intra- and intercellular signaling as a full-length molecule and following regulated intramembrane proteolysis, generating functionally active extra- and intracellular fragments. Intact EpCAM and its proteolytic fragments interact with claudins, CD44, E-cadherin, epidermal growth factor receptor (EGFR), and intracellular signaling components of the WNT and Ras/Raf pathways, respectively. This plethora of functions contributes to shaping intratumor heterogeneity and partial EMT, which are major determinants of the clinical outcome of carcinoma patients. EpCAM represents a marker for the epithelial status of primary and systemic tumor cells and emerges as a measure for the metastatic capacity of CTCs. Consequentially, EpCAM has reclaimed potential as a prognostic marker and target on primary and systemic tumor cells.
Collapse
Affiliation(s)
- Olivier Gires
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum, Neuherberg, Germany.
| | - Min Pan
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Henrik Schinke
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Patrick A Baeuerle
- Institute for Immunology, LMU Munich, Grosshadernerstr. 9, 82152 Planegg, Martinsried, Germany
- MPM Capital, Cambridge MA, 450 Kendall Street, Cambridge, MA, 02142, USA
| |
Collapse
|
8
|
Schubert J, Khosrawipour T, Pigazzi A, Kulas J, Bania J, Migdal P, Arafkas M, Khosrawipour V. Evaluation of Cell-detaching Effect of EDTA in Combination with Oxaliplatin for a Possible Application in HIPEC After Cytoreductive Surgery: A Preliminary in-vitro Study. Curr Pharm Des 2020; 25:4813-4819. [PMID: 31692422 DOI: 10.2174/1381612825666191106153623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/04/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Ethylenediaminetetraacetic acid (EDTA), a commonly used compound in laboratory medicine, is known for its membrane-destabilization capacity and cell-detaching effect. This preliminary study aims to assess the potential of EDTA in removing residual tumor cell clusters. Using an in-vitro model, this effect is then compared to the cytotoxic effect of oxaliplatin which is routinely administered during HIPEC procedures. The overall cell toxicity and cell detaching effects of EDTA are compared to those of Oxaliplatin and the additive effect is quantified. METHODS HT-29 (ATCC® HTB-38™) cells were treated with A) EDTA only B) Oxaliplatin only and C) both agents using an in-vitro model. Cytotoxicity and cell detachment following EDTA application were measured via colorimetric MTS assay. Additionally, detached cell groups were visualized using light microscopy and further analyzed by means of electron microscopy. RESULTS When solely applied, EDTA does not exhibit any cell toxicity nor does it add any toxicity to oxaliplatin. However, EDTA enhances the detachment of adherent colon carcinoma cells by removing up to 65% (p<0.05) of the total initial cell amount. In comparison, the sole application of highly concentrated oxaliplatin induced cell mortality by up to 66% (p<0.05). While detached cells showed no mortality after EDTA treatment, cell clusters exhibited a decreased amount of extracellular and adhesive matrix in-between cells. When combined, Oxaliplatin and EDTA display a significant additive effect with only 30% (mean p <0.01) of residual vitality detected in the initial well. EDTA and Oxaliplatin remove up to 81% (p <0.01) of adhesive HT-29 cells from the surface either by cytotoxic effects or cell detachment. CONCLUSION Our data support EDTA's potential to remove microscopical tumor cell clusters from the peritoneum and possibly act as a supplementary agent in HIPEC procedures with chemotherapy. While adding EDTA to HIPEC procedures may significantly decrease the risk of PM recurrence, further in-vivo and clinical trials are required to evaluate this effect.
Collapse
Affiliation(s)
- Justyna Schubert
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Tanja Khosrawipour
- Department of Surgery (A), University-Hospital Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.,Division of Colorectal Surgery, Department of Surgery, University of California Irvine (UCI), 333 City Blvd West Suite 850, Orange, CA 92868, United States
| | - Alessio Pigazzi
- Division of Colorectal Surgery, Department of Surgery, University of California Irvine (UCI), 333 City Blvd West Suite 850, Orange, CA 92868, United States
| | - Joanna Kulas
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, ul. C.K. Norwida 31, 50-375 Wroclaw, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Pawel Migdal
- Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, ul. Chelmonskiego 38C, 51-631 Wroclaw, Poland
| | - Mohamed Arafkas
- Department of Plastic Surgery, Ortho-Klinik Dortmund, Virchowstrasse 4, 44263 Dortmund, Germany
| | - Veria Khosrawipour
- Division of Colorectal Surgery, Department of Surgery, University of California Irvine (UCI), 333 City Blvd West Suite 850, Orange, CA 92868, United States.,Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, ul. C.K. Norwida 31, 50-375 Wroclaw, Poland
| |
Collapse
|
9
|
de Gooyer JM, Versleijen-Jonkers YMH, Hillebrandt-Roeffen MHS, Frielink C, Desar IME, de Wilt JHW, Flucke U, Rijpkema M. Immunohistochemical selection of biomarkers for tumor-targeted image-guided surgery of myxofibrosarcoma. Sci Rep 2020; 10:2915. [PMID: 32076024 PMCID: PMC7031512 DOI: 10.1038/s41598-020-59735-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/30/2020] [Indexed: 01/04/2023] Open
Abstract
Myxofibrosarcoma(MFS) is the most common soft tissue sarcoma(STS) in elderly patients. Surgical resection remains the main treatment modality but tumor borders can be difficult to delineate with conventional clinical methods. Incomplete resections are a common problem and local recurrence remains a clinical issue. A technique that has shown great potential in improving surgical treatment of solid tumors is tumor targeted imaging and image-guided surgery with near-infrared fluorescence. To facilitate this technique, it is essential to identify a biomarker that is highly and homogenously expressed on tumor cells, while being absent on healthy non-malignant tissue. The purpose of this study was to identify suitable molecular targets for tumor-targeted imaging of myxofibrosarcoma. Ten potential molecular targets for tumor targeted imaging were investigated with immunohistochemical analysis in myxofibrosarcoma tissue (n = 34). Results were quantified according to the immunoreactive score(IRS). Moderate expression rates were found for uPAR, PDGFRa and EMA/MUC1. High expression rates of VEGF and TEM1 were seen. Strong expression was most common for TEM1 (88.2%). These results confirms that TEM1 is a suitable target for tumor-targeted imaging of myxofibrosarcoma. Keywords Image-guided surgery; Immunohistochemistry; Molecular imaging; Myxofibrosarcoma; Soft tissue sarcoma; Tumor endothelial marker 1(TEM1), Vascular endothelial growth factor (VEGF).
Collapse
Affiliation(s)
- Jan Marie de Gooyer
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, the Netherlands. .,Department of Surgery, Radboud university medical center, Nijmegen, the Netherlands.
| | | | | | - Cathelijne Frielink
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Ingrid M E Desar
- Department of Medical Oncology, Radboud university medical center, Nijmegen, the Netherlands
| | - Johannes H W de Wilt
- Department of Surgery, Radboud university medical center, Nijmegen, the Netherlands
| | - Uta Flucke
- Department of Pathology, Radboud university medical center, Nijmegen, the Netherlands
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, the Netherlands
| |
Collapse
|
10
|
Elekonawo FMK, Lütje S, Franssen GM, Bos DL, Goldenberg DM, Boerman OC, Rijpkema M. A pretargeted multimodal approach for image-guided resection in a xenograft model of colorectal cancer. EJNMMI Res 2019; 9:86. [PMID: 31485790 PMCID: PMC6726731 DOI: 10.1186/s13550-019-0551-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
Background Image-guided surgery may improve surgical outcome for colorectal cancer patients. Here, we evaluated the feasibility of a pretargeting strategy for multimodal imaging in colorectal cancer using an anti-carcinoembryonic antigen (CEA) x anti-histamine-succinyl-glycine (HSG) bispecific antibody (TF2) in conjunction with the dual-labeled diHSG peptide (RDC018), using both a fluorophore for near-infrared fluorescence imaging and a chelator for radiolabeling. Methods Nude mice with subcutaneous (s.c) CEA-expressing LS174T human colonic tumors and CEA-negative control tumors were injected with TF2. After 16 h, different doses of 111In-labeled IMP-288 (non-fluorescent) or its fluorescent derivative RDC018 were administered to compare biodistributions. MicroSPECT/CT and near-infrared fluorescence imaging were performed 2 and 24 h after injection. Next, the biodistribution of the dual-labeled humanized anti-CEA IgG antibody [111In]In-DTPA-hMN-14-IRDye800CW (direct targeting) was compared with the biodistribution of 111In-RDC018 in mice with TF2-pretargeted tumors, using fluorescence imaging and gamma counting. Lastly, mice with intraperitoneal LS174T tumors underwent near-infrared fluorescence image-guided resection combined with pre- and post-resection microSPECT/CT imaging. Results 111In-RDC018 showed specific tumor targeting in pretargeted CEA-positive tumors (21.9 ± 4.5 and 10.0 ± 4.7% injected activity per gram (mean ± SD %IA/g), at 2 and 24 hours post-injection (p.i.), respectively) and a biodistribution similar to 111In-IMP288. Both fluorescence and microSPECT/CT images confirmed preferential tumor accumulation. At post mortem dissection, intraperitoneal tumors were successfully identified and removed using pretargeting with TF2 and 111In-RDC018. Conclusion A pretargeted approach for multimodal image-guided resection of colorectal cancer in a preclinical xenograft model is feasible, enables preoperative SPECT/CT, and might facilitate intraoperative fluorescence imaging. Electronic supplementary material The online version of this article (10.1186/s13550-019-0551-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fortuné M K Elekonawo
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Susanne Lütje
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Gerben M Franssen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Desirée L Bos
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - David M Goldenberg
- Garden State Cancer Center, Center for Molecular Medicine and Immunology, Morris Plains, NJ, USA
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Framery B, Gutowski M, Dumas K, Evrard A, Muller N, Dubois V, Quinonero J, Scherninski F, Pèlegrin A, Cailler F. Toxicity and pharmacokinetic profile of SGM-101, a fluorescent anti-CEA chimeric antibody for fluorescence imaging of tumors in patients. Toxicol Rep 2019; 6:409-415. [PMID: 31080749 PMCID: PMC6506861 DOI: 10.1016/j.toxrep.2019.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/18/2019] [Accepted: 04/28/2019] [Indexed: 12/26/2022] Open
Abstract
Fluorescence guided surgery represents a considerable advance for oncology surgeons. SGM-101 is an innovative antibody-dye conjugate targeting carcinoembryonic antigen on digestive tumors. Pre-clinical toxicology, pharmacology and pharmacokinetic results are in favor of clinical use of SGM-101.
The real-time improvement of the intraoperative discrimination between different tissue types (particularly between tumor and adjacent normal tissue) using intraoperative imaging represents a considerable advance for oncology surgeons. However, the development of imaging agents is much slower than that of drug therapies, although surgery represents one of the few curative treatments for many solid tumors. SGM-101 is a recently described, innovative antibody conjugate in which the near-infrared fluorochrome BM-104 is covalently linked to a chimeric monoclonal antibody against carcinoembryonic antigen (CEA). SGM-101 was developed with the goal of providing oncology surgeons with an intraoperative imaging tool that allows the visualization of CEA-overexpressing tumors. This antigen is overexpressed in a wide range of human carcinomas, such as colorectal, gastric, pancreatic, non-small cell lung and breast carcinomas. Here we characterized SGM-101 safety prior to its clinical testing for real-time cancer mapping by oncology surgeons. Safety pharmacology and toxicology studies were performed after intravenous injection of SGM-101 in Wistar rats and in Beagle dogs. SGM-101 metabolism and pharmacokinetics were analyzed in rats and mice. Finally, the potential toxicity of the BM-104 dye and SGM-101 cross-reactivity were assessed in a panel of 42 human tissues. Our pre-clinical toxicology, pharmacology and pharmacokinetic results demonstrated the absence of significant adverse effects of both SGM-101 and BM-104 at doses well above the anticipated maximal human exposure. Taken together, the results of the pharmacology, pharmacokinetic and toxicology studies support the development of SGM-101 as a potentially useful and safe tumor-specific imaging tool that might improve the complete tumor resection rate.
Collapse
Key Words
- AUC, Area Under the Curve
- CEA, carcinoembryonic antigen
- Cancer
- Carcinoembryonic antigen
- FGS, fluorescence guided surgery
- Fluorescence guided surgery
- GLP, Good Laboratory Practices
- ICG, indocyanine green
- MRT, Mean Residence Time
- MTD, maximum tolerated dose
- NIR, near infra-red
- NOAEL, no observable adverse effect level (NOAEL)
- Near-infrared fluorochrome
- PK, pharmacokinetics
- Pharmacokinetics
- TMDD, target-mediated drug disposition
- Toxicity
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Bérénice Framery
- SurgiMAb, 10 Parc Club du Millénaire, 1025 Avenue Henri Becquerel, 34000, Montpellier, France
| | - Marian Gutowski
- Institut régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | - Karen Dumas
- SurgiMAb, 10 Parc Club du Millénaire, 1025 Avenue Henri Becquerel, 34000, Montpellier, France
| | - Alexandre Evrard
- Institut régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France.,IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U1194, Montpellier, F-34298, France.,Université de Montpellier, Montpellier, F-34298, France
| | - Nathalie Muller
- Leads to Development, 3-5 Impasse Reille, 75014, Paris, France
| | - Vincent Dubois
- Leads to Development, 3-5 Impasse Reille, 75014, Paris, France
| | | | | | - André Pèlegrin
- Institut régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France.,IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U1194, Montpellier, F-34298, France.,Université de Montpellier, Montpellier, F-34298, France
| | - Françoise Cailler
- SurgiMAb, 10 Parc Club du Millénaire, 1025 Avenue Henri Becquerel, 34000, Montpellier, France
| |
Collapse
|
12
|
Olson MT, Ly QP, Mohs AM. Fluorescence Guidance in Surgical Oncology: Challenges, Opportunities, and Translation. Mol Imaging Biol 2019; 21:200-218. [PMID: 29942988 PMCID: PMC6724738 DOI: 10.1007/s11307-018-1239-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surgical resection continues to function as the primary treatment option for most solid tumors. However, the detection of cancerous tissue remains predominantly subjective and reliant on the expertise of the surgeon. Surgery that is guided by fluorescence imaging has shown clinical relevance as a new approach to detecting the primary tumor, tumor margins, and metastatic lymph nodes. It is a technique to reduce recurrence and increase the possibility of a curative resection. While significant progress has been made in developing this emerging technology as a tool to assist the surgeon, further improvements are still necessary. Refining imaging agents and tumor targeting strategies to be a precise and reliable surgical strategy is essential in order to translate this technology into patient care settings. This review seeks to provide a comprehensive update on the most recent progress of fluorescence-guided surgery and its translation into the clinic. By highlighting the current status and recent developments of fluorescence image-guided surgery in the field of surgical oncology, we aim to offer insight into the challenges and opportunities that require further investigation.
Collapse
Affiliation(s)
- Madeline T Olson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Quan P Ly
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Aaron M Mohs
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 5-12315 Scott Research Tower, Omaha, NE, 68198, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
13
|
Debie P, Vanhoeij M, Poortmans N, Puttemans J, Gillis K, Devoogdt N, Lahoutte T, Hernot S. Improved Debulking of Peritoneal Tumor Implants by Near-Infrared Fluorescent Nanobody Image Guidance in an Experimental Mouse Model. Mol Imaging Biol 2019; 20:361-367. [PMID: 29090412 DOI: 10.1007/s11307-017-1134-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Debulking followed by combination chemotherapy is currently regarded as the most effective treatment for advanced ovarian cancer. Prognosis depends drastically on the degree of debulking. Accordingly, near-infrared (NIR) fluorescence imaging has been proposed to revolutionize cancer surgery by acting as a sensitive, specific, and real-time tool enabling visualization of cancer lesions. We have previously developed a NIR-labeled nanobody that allows fast, specific, and high-contrast imaging of HER2-positive tumors. In this study, we applied this tracer during fluorescence-guided surgery in a mouse model and investigated the effect on surgical efficiency. PROCEDURES 0.5 × 106 SKOV3.IP1-Luc+ cells were inoculated intraperitoneally in athymic mice and were allowed to grow for 30 days. Two nanomoles of IRDye800CW-anti-HER2 nanobody was injected intravenously. After 1h30, mice were killed, randomized in two groups, and subjected to surgery. In the first animal group (n = 7), lesions were removed by a conventional surgical protocol, followed by excision of remaining fluorescent tissue using a NIR camera. The second group of mice (n = 6) underwent directly fluorescence-guided surgery. Bioluminescence imaging was performed before and after surgery. Resected tissue was categorized as visualized during conventional surgery or not, fluorescent or not, and bioluminescent positive or negative. RESULTS Fluorescence imaging allowed clear visualization of tumor nodules within the abdomen, up to submillimeter-sized lesions. Fluorescence guidance resulted in significantly reduced residual tumor as compared to conventional surgery. Moreover, sensitivity increased from 59.3 to 99.0 %, and the percentage of false positive lesions detected decreased from 19.6 to 7.1 %. CONCLUSIONS This study demonstrates the advantage of intraoperative fluorescence imaging using nanobody-based tracers on the efficiency of debulking surgery.
Collapse
Affiliation(s)
- Pieterjan Debie
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laabeeklaan 103, 1090, Jette, Brussels, Belgium.
| | - Marian Vanhoeij
- Department of Oncological Surgery, UZ Brussel, Brussels, Belgium
| | | | - Janik Puttemans
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laabeeklaan 103, 1090, Jette, Brussels, Belgium
| | - Kris Gillis
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laabeeklaan 103, 1090, Jette, Brussels, Belgium.,Department of Cardiology, UZ Brussel, Brussels, Belgium
| | - Nick Devoogdt
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laabeeklaan 103, 1090, Jette, Brussels, Belgium
| | - Tony Lahoutte
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laabeeklaan 103, 1090, Jette, Brussels, Belgium.,Department of Nuclear Medicine, UZBrussel, Brussels, Belgium
| | - Sophie Hernot
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laabeeklaan 103, 1090, Jette, Brussels, Belgium
| |
Collapse
|
14
|
Tong GJ, Zhang GY, Liu J, Zheng ZZ, Chen Y, Niu PP, Xu XT. Comparison of the eighth version of the American Joint Committee on Cancer manual to the seventh version for colorectal cancer: A retrospective review of our data. World J Clin Oncol 2018; 9:148-161. [PMID: 30425940 PMCID: PMC6230917 DOI: 10.5306/wjco.v9.i7.148] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/30/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To analyze the survival trends in colorectal cancer (CRC) based on the different classifications recommended by the seventh and eighth editions of the American Joint Committee on Cancer staging system (AJCC-7th and AJCC-8th).
METHODS The database from our institution was queried to identify patients with pathologically confirmed stage 0-IV CRC diagnosed between 2006 and 2012. Data from 2080 cases were collected and 1090 cases were evaluated through standardized inclusion and exclusion criteria. CRC was staged by AJCC-7th and then restaged by AJCC-8th. Five-year disease-free survival (DFS) and overall survival (OS) were compared. SPSS 21.0 software was used for all data. DFS and OS were compared and analyzed by Kaplan-Meier and Log-rank test.
RESULTS Linear regression and automatic linear regression showed lymph node positive functional equations by tumor-node-metastasis staging from AJCC-7th and tumor-node-metastasis staging from AJCC-8th. Neurological invasion, venous infiltration, lymphatic infiltration, and tumor deposition put forward stricter requirements for pathological examination in AJCC-8th compared to AJCC-7th. After re-analyzing our cohort with AJCC-8th, the percentage of stage IVB cases decreased from 2.8% to 0.8%. As a result 2% of the cases were classified under the new IVC staging. DFS and OS was significantly shorter (P = 0.012) in stage IVC patients compared to stage IVB patients.
CONCLUSION The addition of stage IVC in AJCC-8th has shown that peritoneal metastasis has a worse prognosis than distant organ metastasis in our institution’s CRC cohort. Additional datasets should be analyzed to confirm these findings.
Collapse
Affiliation(s)
- Guo-Jun Tong
- General Surgery Department, Huzhou Central Hospital, Huzhou 313000, Zhejiang Province, China
- Central Laboratory, Huzhou Central Hospital, Huzhou 313000, Zhejiang Province, China
| | - Gui-Yang Zhang
- General Surgery Department, Huzhou Central Hospital, Huzhou 313000, Zhejiang Province, China
| | - Jian Liu
- General Surgery Department, Huzhou Central Hospital, Huzhou 313000, Zhejiang Province, China
| | - Zhao-Zheng Zheng
- General Surgery Department, Huzhou Central Hospital, Huzhou 313000, Zhejiang Province, China
| | - Yan Chen
- General Surgery Department, Huzhou Central Hospital, Huzhou 313000, Zhejiang Province, China
| | - Ping-Ping Niu
- Central Laboratory, Huzhou Central Hospital, Huzhou 313000, Zhejiang Province, China
| | - Xu-Ting Xu
- Central Laboratory, Huzhou Central Hospital, Huzhou 313000, Zhejiang Province, China
| |
Collapse
|