1
|
Clarke L, Arnett S, Bukhari W, Khalilidehkordi E, Jimenez Sanchez S, O'Gorman C, Sun J, Prain KM, Woodhall M, Silvestrini R, Bundell CS, Abernethy DA, Bhuta S, Blum S, Boggild M, Boundy K, Brew BJ, Brownlee W, Butzkueven H, Carroll WM, Chen C, Coulthard A, Dale RC, Das C, Fabis-Pedrini MJ, Gillis D, Hawke S, Heard R, Henderson APD, Heshmat S, Hodgkinson S, Kilpatrick TJ, King J, Kneebone C, Kornberg AJ, Lechner-Scott J, Lin MW, Lynch C, Macdonell RAL, Mason DF, McCombe PA, Pereira J, Pollard JD, Ramanathan S, Reddel SW, Shaw CP, Spies JM, Stankovich J, Sutton I, Vucic S, Walsh M, Wong RC, Yiu EM, Barnett MH, Kermode AGK, Marriott MP, Parratt JDE, Slee M, Taylor BV, Willoughby E, Brilot F, Vincent A, Waters P, Broadley SA. MRI Patterns Distinguish AQP4 Antibody Positive Neuromyelitis Optica Spectrum Disorder From Multiple Sclerosis. Front Neurol 2021; 12:722237. [PMID: 34566866 PMCID: PMC8458658 DOI: 10.3389/fneur.2021.722237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) and multiple sclerosis (MS) are inflammatory diseases of the CNS. Overlap in the clinical and MRI features of NMOSD and MS means that distinguishing these conditions can be difficult. With the aim of evaluating the diagnostic utility of MRI features in distinguishing NMOSD from MS, we have conducted a cross-sectional analysis of imaging data and developed predictive models to distinguish the two conditions. NMOSD and MS MRI lesions were identified and defined through a literature search. Aquaporin-4 (AQP4) antibody positive NMOSD cases and age- and sex-matched MS cases were collected. MRI of orbits, brain and spine were reported by at least two blinded reviewers. MRI brain or spine was available for 166/168 (99%) of cases. Longitudinally extensive (OR = 203), "bright spotty" (OR = 93.8), whole (axial; OR = 57.8) or gadolinium (Gd) enhancing (OR = 28.6) spinal cord lesions, bilateral (OR = 31.3) or Gd-enhancing (OR = 15.4) optic nerve lesions, and nucleus tractus solitarius (OR = 19.2), periaqueductal (OR = 16.8) or hypothalamic (OR = 7.2) brain lesions were associated with NMOSD. Ovoid (OR = 0.029), Dawson's fingers (OR = 0.031), pyramidal corpus callosum (OR = 0.058), periventricular (OR = 0.136), temporal lobe (OR = 0.137) and T1 black holes (OR = 0.154) brain lesions were associated with MS. A score-based algorithm and a decision tree determined by machine learning accurately predicted more than 85% of both diagnoses using first available imaging alone. We have confirmed NMOSD and MS specific MRI features and combined these in predictive models that can accurately identify more than 85% of cases as either AQP4 seropositive NMOSD or MS.
Collapse
Affiliation(s)
- Laura Clarke
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Simon Arnett
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Wajih Bukhari
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Elham Khalilidehkordi
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Sofia Jimenez Sanchez
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Cullen O'Gorman
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Jing Sun
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Kerri M. Prain
- Department of Immunology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Mark Woodhall
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Roger Silvestrini
- Department of Immunopathology, Westmead Hospital, Westmead, NSW, Australia
| | - Christine S. Bundell
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA, Australia
| | | | - Sandeep Bhuta
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Stefan Blum
- Department of Neurology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Mike Boggild
- Department of Neurology, Townsville Hospital, Douglas, QLD, Australia
| | - Karyn Boundy
- Department of Neurology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Bruce J. Brew
- Centre for Applied Medical Research, St. Vincent's Hospital, University of New South Wales, Darlinghurst, NSW, Australia
| | - Wallace Brownlee
- Department of Neurology, Auckland City Hospital, Grafton, New Zealand
| | - Helmut Butzkueven
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - William M. Carroll
- Centre for Neuromuscular and Neurological Disorders, Queen Elizabeth II Medical Centre, Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, WA, Australia
| | - Cella Chen
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, Bedford Park, SA, Australia
| | - Alan Coulthard
- School of Medicine, Royal Brisbane and Women's Hospital, University of Queensland, Herston, QLD, Australia
| | - Russell C. Dale
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Chandi Das
- Department of Neurology, Canberra Hospital, Garran, ACT, Australia
| | - Marzena J. Fabis-Pedrini
- Centre for Neuromuscular and Neurological Disorders, Queen Elizabeth II Medical Centre, Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, WA, Australia
| | - David Gillis
- School of Medicine, Royal Brisbane and Women's Hospital, University of Queensland, Herston, QLD, Australia
| | - Simon Hawke
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | - Robert Heard
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | | | - Saman Heshmat
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Suzanne Hodgkinson
- South Western Sydney Medical School, Liverpool Hospital, University of New South Wales, Liverpool, NSW, Australia
| | - Trevor J. Kilpatrick
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - John King
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | | | - Andrew J. Kornberg
- School of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Ming-Wei Lin
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | | | | | - Deborah F. Mason
- Department of Neurology, Christchurch Hospital, Christchurch, New Zealand
| | - Pamela A. McCombe
- Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Herston, QLD, Australia
| | - Jennifer Pereira
- School of Medicine, University of Auckland, Grafton, New Zealand
| | - John D. Pollard
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | - Sudarshini Ramanathan
- Neuroimmunology Group, Kids Neurosciences Centre, Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia
- Department of Neurology, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Stephen W. Reddel
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Cameron P. Shaw
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Judith M. Spies
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | - James Stankovich
- Menzies Research Institute, University of Tasmania, Hobart, TAS, Australia
| | - Ian Sutton
- Department of Neurology, St. Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Steve Vucic
- Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
| | - Michael Walsh
- Department of Neurology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Richard C. Wong
- School of Medicine, Royal Brisbane and Women's Hospital, University of Queensland, Herston, QLD, Australia
| | - Eppie M. Yiu
- School of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | | | - Allan G. K. Kermode
- Centre for Neuromuscular and Neurological Disorders, Queen Elizabeth II Medical Centre, Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, WA, Australia
| | - Mark P. Marriott
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - John D. E. Parratt
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | - Mark Slee
- Department of Neurology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Bruce V. Taylor
- Menzies Research Institute, University of Tasmania, Hobart, TAS, Australia
| | - Ernest Willoughby
- Department of Neurology, Auckland City Hospital, Grafton, New Zealand
| | - Fabienne Brilot
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
- Neuroimmunology Group, Kids Neurosciences Centre, Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Simon A. Broadley
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
- Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| |
Collapse
|
2
|
Clarke L, Arnett S, Lilley K, Liao J, Bhuta S, Broadley SA. Magnetic resonance imaging in neuromyelitis optica spectrum disorder. Clin Exp Immunol 2021; 206:251-265. [PMID: 34080180 DOI: 10.1111/cei.13630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disease of the central nervous system (CNS) associated with antibodies to aquaporin-4 (AQP4), which has distinct clinical, radiological and pathological features, but also has some overlap with multiple sclerosis and myelin oligodendrocyte glycoprotein (MOG) antibody associated disease. Early recognition of NMOSD is important because of differing responses to both acute and preventive therapy. Magnetic resonance (MR) imaging has proved essential in this process. Key MR imaging clues to the diagnosis of NMOSD are longitudinally extensive lesions of the optic nerve (more than half the length) and spinal cord (three or more vertebral segments), bilateral optic nerve lesions and lesions of the optic chiasm, area postrema, floor of the IV ventricle, periaqueductal grey matter, hypothalamus and walls of the III ventricle. Other NMOSD-specific lesions are denoted by their unique morphology: heterogeneous lesions of the corpus callosum, 'cloud-like' gadolinium (Gd)-enhancing white matter lesions and 'bright spotty' lesions of the spinal cord. Other lesions described in NMOSD, including linear periventricular peri-ependymal lesions and patch subcortical white matter lesions, may be less specific. The use of advanced MR imaging techniques is yielding further useful information regarding focal degeneration of the thalamus and optic radiation in NMOSD and suggests that paramagnetic rim patterns and changes in normal appearing white matter are specific to MS. MR imaging is crucial in the early recognition of NMOSD and in directing testing for AQP4 antibodies and guiding immediate acute treatment decisions. Increasingly, MR imaging is playing a role in diagnosing seronegative cases of NMOSD.
Collapse
Affiliation(s)
- Laura Clarke
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Simon Arnett
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Kate Lilley
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Jacky Liao
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia
| | - Sandeep Bhuta
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Radiology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Simon A Broadley
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| |
Collapse
|
3
|
Wang Y, Kwapong WR, Tu Y, Xia Y, Tang J, Miao H, Liu X, Lu Y, Yan Z. Altered resting-state functional connectivity density in patients with neuromyelitis optica-spectrum disorders. Mult Scler Relat Disord 2020; 43:102187. [PMID: 32480345 DOI: 10.1016/j.msard.2020.102187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune, demyelinating disorder, accompanied by abnormal spontaneous activity of the brain and impairment of the retina and optic nerve. Functional connectivity density (FCD) map, a graph theory method, was applied to explore the functional connectivity alterations of brian in NMOSD patients and investigate the alterations of FCD to the structural and microvascular changes around the optic nerve head (ONH). METHODS Nineteen NMOSD patients and 22 healthy controls (HCs) were included in our study. All participants underwent resting-state functional magnetic resonance imaging (fMRI) scans of the brain, and ophthalmological examinations included optical coherence tomographic angiography (OCT-A) imaging, visual acuity (VA), and intraocular pressure (IOP). The long- and short-range FCD was calculated by the fMRI graph theory method and two-sample t-tests were performed to compare the discrepancy of FCD between NMOSD and HCs. OCT-A imaging was used to obtain the structure (peripapillary retinal nerve fiber layer, pRNFL) and microvessels (radial peripapillary capillary, RPC) details around the ONH. The association between the long- and short-range FCD values with the structural and microvascular variation around the ONH were evaluated using Spearman's correlation. RESULTS Significantly decreased (corrected p < 0.05) long-range FCD was seen in the right superior parietal gyrus (SPG) in patients with NMOSD when compared to HCs. Increased long-range FCD was seen in the right fusiform gyrus (FFG), left orbital part of superior frontal orbital gyrus (ORBsup) and left anterior cingulum and paracingulate gyri (ACG) in NMOSD patients (corrected p < 0.05). The regions with reduced short-range FCD in NMOSD were the left angular gyrus (ANG) and right SPG (corrected p < 0.05). Increased short-range FCD was shown (corrected p < 0.05) in the right FFG of NMOSD. The pRNFL thickness and RPC density in all participants were negatively correlated with the long-range FCD values in the right FFG, left ORBsup, and left ACG as well as short-range FCD values in the right FFG, besides, both were positively correlated with the long-range FCD values in the right SPG and short-range FCD values in the left ANG and right SPG (p < 0.05). CONCLUSION Our study demonstrates that patients with NMOSD have widespread brain dysfunction after optic neuritis attacks which shows as impairment of widespread spatial distribution in long- and short-range FCD. Structural and microvascular changes around the ONH are associated with neural changes in the brain.
Collapse
Affiliation(s)
- Yu Wang
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | | | - Yunhai Tu
- The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yikai Xia
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jing Tang
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hanpei Miao
- The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaozheng Liu
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; China-USA Neuroimaging Research Institute, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yi Lu
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Zhihan Yan
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
4
|
Yan J, Wang Y, Miao H, Kwapong WR, Lu Y, Ma Q, Chen W, Tu Y, Liu X. Alterations in the Brain Structure and Functional Connectivity in Aquaporin-4 Antibody-Positive Neuromyelitis Optica Spectrum Disorder. Front Neurosci 2020; 13:1362. [PMID: 32009872 PMCID: PMC6971221 DOI: 10.3389/fnins.2019.01362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
Purpose To investigate the mechanisms underlying the gray matter volume (GMV) and functional connectivity (FC) changes in aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (NMOSD) patients. Methods This cross-sectional study consisted of 21 patients with aquaporin-4 antibody-positive NMOSD and 22 age- and sex-matched healthy controls. All participants underwent cerebral magnetic resonance imaging and testing each individual’s visual acuity was done. Results Neuromyelitis optica spectrum disorder patients showed significantly reduced GMV in the left calcarine, left thalamus and right lingual gyrus of the NMOSD patients when compared to HC (P < 0.05). NMOSD patients showed significantly decreased FC values (P < 0.05) in both the left and right calcarine, right lingual gyrus and left thalamus, respectively, when compared to HC. We also observed a positive correlation between the FC values of the left thalamus, bilateral calcarine gyrus and the visual acuity, respectively (P < 0.05). Furthermore, a negative association was seen between the duration of the disease, frequency of optic neuritis, and the FC values in the lingual gyrus, bilateral calcarine gyrus, and right lingual gyrus, respectively (P < 0.05). Conclusion Reduced visual acuity and frequency of optic neuritis are associated with alterations in the GMV and FC in NMOSD. Our current study, which provides imaging evidence on the impairment involved in NMOSD, sheds light on pathophysiological responses of optic neuritis attack on the brain especially on the visual network.
Collapse
Affiliation(s)
- Jueyue Yan
- Department of Neurology, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yu Wang
- China-USA Neuroimaging Research Institute, Department of Radiology, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hanpei Miao
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | | | - Yi Lu
- China-USA Neuroimaging Research Institute, Department of Radiology, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qingkai Ma
- Department of Opthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunhai Tu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Xiaozheng Liu
- China-USA Neuroimaging Research Institute, Department of Radiology, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Carnero Contentti E, Daccach Marques V, Soto de Castillo I, Tkachuk V, Antunes Barreira A, Armas E, Chiganer E, de Aquino Cruz C, Di Pace JL, Hryb JP, Lavigne Moreira C, Lessa C, Molina O, Perassolo M, Soto A, Caride A. Frequency of brain MRI abnormalities in neuromyelitis optica spectrum disorder at presentation: A cohort of Latin American patients. Mult Scler Relat Disord 2017; 19:73-78. [PMID: 29156226 DOI: 10.1016/j.msard.2017.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Brain magnetic resonance imaging (BMRI) lesions were classically not reported in neuromyelitis optica (NMO). However, BMRI lesions are not uncommon in NMO spectrum disorder (NMOSD) patients. OBJECTIVE To report BMRI characteristic abnormalities (location and configuration) in NMOSD patients at presentation. METHODS Medical records and BMRI characteristics of 79 patients with NMOSD (during the first documented attack) in Argentina, Brazil and Venezuela were reviewed retrospectively. RESULTS BMRI abnormalities were observed in 81.02% of NMOSD patients at presentation. Forty-two patients (53.1%) showed typical-NMOSD abnormalities. We found BMRI abnormalities at presentation in the brainstem/cerebellum (n = 26; 32.9%), optic chiasm (n = 16; 20.2%), area postrema (n = 13; 16.4%), thalamus/hypothalamus (n = 11; 13.9%), corpus callosum (n = 11; 13.9%), periependymal-third ventricle (n = 9; 11.3%), corticospinal tract (n = 7; 8.8%), hemispheric white matter (n = 1; 1.2%) and nonspecific areas (n = 49; 62.03%). Asymptomatic BMRI lesions were more common. The frequency of brain MRI abnormalities did not differ between patients who were positive and negative for aquaporin 4 antibodies at presentation. CONCLUSION Typical brain MRI abnormalities are frequent in NMOSD at disease onset.
Collapse
Affiliation(s)
| | - Vanessa Daccach Marques
- Department of Neurosciences and Behavioral Sciences, Hospital das Clínicas, Ribeirão Preto Medical School, University of de São Paulo, São Paulo, Brazil
| | | | - Veronica Tkachuk
- Neurology Department, Hospital José de San Martin, Buenos Aires, Argentina
| | - Amilton Antunes Barreira
- Department of Neurosciences and Behavioral Sciences, Hospital das Clínicas, Ribeirão Preto Medical School, University of de São Paulo, São Paulo, Brazil
| | - Elizabeth Armas
- Neurology Department, Hospital Universitario de Caracas, Caracas, Venezuela
| | - Edson Chiganer
- Neurology Department, Hospital Carlos G. Durand, Buenos Aires, Argentina
| | - Camila de Aquino Cruz
- Department of Neurosciences and Behavioral Sciences, Hospital das Clínicas, Ribeirão Preto Medical School, University of de São Paulo, São Paulo, Brazil
| | - José Luis Di Pace
- Neurology Department, Hospital Carlos G. Durand, Buenos Aires, Argentina
| | - Javier Pablo Hryb
- Neurology Department, Hospital Carlos G. Durand, Buenos Aires, Argentina
| | - Carolina Lavigne Moreira
- Department of Neurosciences and Behavioral Sciences, Hospital das Clínicas, Ribeirão Preto Medical School, University of de São Paulo, São Paulo, Brazil
| | - Carmen Lessa
- Neurology Department, Hospital Carlos G. Durand, Buenos Aires, Argentina
| | - Omaira Molina
- Neurology Department, Hospital Universitario de Maracaibo, Maracaibo, Venezuela
| | - Monica Perassolo
- Neurology Department, Hospital Carlos G. Durand, Buenos Aires, Argentina
| | - Arnoldo Soto
- Neurology Department, Hospital Universitario de Caracas, Caracas, Venezuela
| | - Alejandro Caride
- Neuroimmunology Unit, Department of Neuroscience, Hospital Alemán, Buenos Aires, Argentina
| |
Collapse
|
6
|
Kremer S, Renard F, Achard S, Lana-Peixoto MA, Palace J, Asgari N, Klawiter EC, Tenembaum SN, Banwell B, Greenberg BM, Bennett JL, Levy M, Villoslada P, Saiz A, Fujihara K, Chan KH, Schippling S, Paul F, Kim HJ, de Seze J, Wuerfel JT, Cabre P, Marignier R, Tedder T, van Pelt D, Broadley S, Chitnis T, Wingerchuk D, Pandit L, Leite MI, Apiwattanakul M, Kleiter I, Prayoonwiwat N, Han M, Hellwig K, van Herle K, John G, Hooper DC, Nakashima I, Sato D, Yeaman MR, Waubant E, Zamvil S, Stüve O, Aktas O, Smith TJ, Jacob A, O'Connor K. Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder. JAMA Neurol 2015; 72:815-22. [PMID: 26010909 DOI: 10.1001/jamaneurol.2015.0248] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other disorders have not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR volumetry, and ultrahigh-field strength MRI. It was undertaken to consider the advanced MRI techniques used for patients with NMO by different specialists in the field. Although quantitative measures such as proton MR spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain injury, preliminary data from diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MRI techniques may further our understanding of the pathogenic processes in NMO spectrum disorders and may help us identify the distinct radiographic features corresponding to specific phenotypic manifestations of this disease.
Collapse
Affiliation(s)
- Stephane Kremer
- ICube (UMR 7357, UdS, Centre National de la Recherche Scientifique), Fédération de médecine translationelle de Strasbourg, Université de Strasbourg, Strasbourg, France2Department of Radiology, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Felix Renard
- Centre National de la Recherche Scientifique, Grenoble Image Parole Signal Automatique, Grenoble, France
| | - Sophie Achard
- Centre National de la Recherche Scientifique, Grenoble Image Parole Signal Automatique, Grenoble, France
| | | | - Jacqueline Palace
- Department of Neurology, Oxford University Hospital Trust, Oxford, England
| | - Nasrin Asgari
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense7Department of Neurology, Vejle Hospital, Vejle, Denmark
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Silvia N Tenembaum
- Department of Neurology and Neurophysiology, National Pediatric Hospital Dr Juan P. Garrahan, Buenos Aires, Argentina
| | - Brenda Banwell
- Department of Neurology, University of Pennsylvania, Philadelphia11Division of Child Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Benjamin M Greenberg
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas13Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas
| | - Jeffrey L Bennett
- Department of Neurology, University of Colorado Denver, Aurora15Department of Ophthalmology, University of Colorado Denver, Aurora
| | - Michael Levy
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland
| | - Pablo Villoslada
- Institute of Biomedical Research August Pi Sunyer-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Albert Saiz
- Institute of Biomedical Research August Pi Sunyer-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koon Ho Chan
- University Department of Medicine, Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, People's Republic of China
| | - Sven Schippling
- Neuroimmunology and Multiple Sclerosis Research Section, University Hospital Zurich, Zurich, Switzerland21Department of Neurology, University Hospital Zurich, Zurich, Switzerland22Neuroscience Center Zurich, Federal Technical High School Zurich, Zurich, S
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité University Medicine, Berlin, Germany25Clinical and Experimental Multiple Sclerosis Research Center, Charité University Medicine, Berlin, Germany26Department of Neurology, Charité University Medicine, Berlin, Ger
| | - Ho Jin Kim
- Department of Neurology, Research Institute, Goyang, Korea28Hospital of National Cancer Center, Goyang, Korea
| | - Jerome de Seze
- Neurology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France30Clinical Investigation Center (INSERM 1434), Hôpitaux Universitaires de Strasbourg, Strasbourg, France31UMR INSERM 1119 and Fédération de médecine translationelle, Strasbourg
| | - Jens T Wuerfel
- NeuroCure Clinical Research Center, Charité University Medicine, Berlin, Germany25Clinical and Experimental Multiple Sclerosis Research Center, Charité University Medicine, Berlin, Germany26Department of Neurology, Charité University Medicine, Berlin, Ger
| | | | | | | | - Thomas Tedder
- Duke University School of Medicine, Durham, North Carolina
| | | | | | - Tanuja Chitnis
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | | | | | - Maria Isabel Leite
- Department of Neurology, Oxford University Hospital Trust, Oxford, England
| | | | | | | | - May Han
- Stanford University School of Medicine, Palo Alto, California
| | | | | | | | | | - Ichiro Nakashima
- Department of Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Douglas Sato
- Department of Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas13Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas
| | - Orhan Aktas
- University of Düsseldorf, Düsseldorf, Germany
| | | | | | - Kevin O'Connor
- Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
7
|
Pekcevik Y, Mitchell CH, Mealy MA, Orman G, Lee IH, Newsome SD, Thompson CB, Pardo CA, Calabresi PA, Levy M, Izbudak I. Differentiating neuromyelitis optica from other causes of longitudinally extensive transverse myelitis on spinal magnetic resonance imaging. Mult Scler 2015. [PMID: 26209588 DOI: 10.1177/1352458515591069] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although spinal magnetic resonance imaging (MRI) findings of neuromyelitis optica (NMO) have been described, there is limited data available that help differentiate NMO from other causes of longitudinally extensive transverse myelitis (LETM). OBJECTIVE To investigate the spinal MRI findings of LETM that help differentiate NMO at the acute stage from multiple sclerosis (MS) and other causes of LETM. METHODS We enrolled 94 patients with LETM into our study. Bright spotty lesions (BSL), the lesion distribution and location were evaluated on axial T2-weighted images. Brainstem extension, cord expansion, T1 darkness and lesion enhancement were noted. We also reviewed the brain MRI of the patients during LETM. RESULTS Patients with NMO had a greater amount of BSL and T1 dark lesions (p < 0.001 and 0.003, respectively). The lesions in NMO patients were more likely to involve greater than one-half of the spinal cord's cross-sectional area; to enhance and be centrally-located, or both centrally- and peripherally-located in the cord. Of the 62 available brain MRIs, 14 of the 27 whom were NMO patients had findings that may be specific to NMO. CONCLUSIONS Certain spinal cord MRI features are more commonly seen in NMO patients and so obtaining brain MRI during LETM may support diagnosis.
Collapse
Affiliation(s)
- Yeliz Pekcevik
- Russell H Morgan Department of Radiology and Radiological Science, Division of Neuroradiology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Charles H Mitchell
- Russell H Morgan Department of Radiology and Radiological Science, Division of Neuroradiology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Maureen A Mealy
- Johns Hopkins Transverse Myelitis and Multiple Sclerosis Centers, Baltimore, MD, USA
| | - Gunes Orman
- Russell H Morgan Department of Radiology and Radiological Science, Division of Neuroradiology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - In H Lee
- Russell H Morgan Department of Radiology and Radiological Science, Division of Neuroradiology, Johns Hopkins Hospital, Baltimore, MD, USA/Department of Radiology, Chungnam National University Hospital, Daejeon, Korea
| | - Scott D Newsome
- Division of Neuroimmunology and Neuroinfectious Diseases, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Carol B Thompson
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins, Baltimore, MD, USA
| | - Carlos A Pardo
- Division of Neuroimmunology and Neuroinfectious Diseases, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | - Michael Levy
- Department of Neurology, Johns Hopkins Hospital, Neuromyelitis Optica Clinic Baltimore, MD, USA
| | - Izlem Izbudak
- Russell H Morgan Department of Radiology and Radiological Science, Division of Neuroradiology, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
8
|
Diagnostic value of aquaporin 4 antibody in assessing idiopathic inflammatory demyelinating central nervous system diseases in Egyptian patients. J Clin Neurosci 2015; 22:670-5. [DOI: 10.1016/j.jocn.2014.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/31/2014] [Accepted: 09/14/2014] [Indexed: 11/19/2022]
|
9
|
Kim SH, Huh SY, Hyun JW, Jeong IH, Lee SH, Joung A, Kim HJ. A longitudinal brain magnetic resonance imaging study of neuromyelitis optica spectrum disorder. PLoS One 2014; 9:e108320. [PMID: 25259647 PMCID: PMC4178152 DOI: 10.1371/journal.pone.0108320] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/19/2014] [Indexed: 01/10/2023] Open
Abstract
Brain involvement is commonly seen in patients with neuromyelitis optica spectrum disorder (NMOSD). However, little is known about the chronic changes of acute brain lesions on MRI over time. Here, our objective was to evaluate how acute brain MRI lesions in NMOSD changed on follow-up MRI. We reviewed the MRIs of 63 patients with NMOSD who had acute brain lesions and follow-up MRI over an interval of at least 3 months. Of the 211 acute brain lesions, 24% of lesions disappeared completely on T2-weighed images (WI) and a decrease in size ≥50% on T2-WI was observed in 58% of lesions on follow-up MRI. However, 47% of lesions revealed focal T1-hypointensity and, in particular, 18% showed focal cystic changes. Cystic changes were observed most commonly in corticospinal tract and corpus callosal lesions whereas the vast majority of lesions in the cerebellum, basal ganglia and temporal white matter resolved completely. MRI remission on T2-WI occurred in 82% of lesions, while approximately half of the lesions presented foci of T1-hypointensity, which may be considered a severe tissue injury over time. The extent of brain injury following an acute brain lesion in NMOSD may depend on the location of the lesion.
Collapse
Affiliation(s)
- Su-Hyun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - So-Young Huh
- Department of Neurology, Kosin University School of Medicine, Busan, Korea
| | - Jae-Won Hyun
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - In Hye Jeong
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Sang Hyun Lee
- Department of Radiology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - AeRan Joung
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
- * E-mail:
| |
Collapse
|
10
|
Kimura MCG, Doring TM, Rueda FC, Tukamoto G, Gasparetto EL. In vivo assessment of white matter damage in neuromyelitis optica: a diffusion tensor and diffusion kurtosis MR imaging study. J Neurol Sci 2014; 345:172-5. [PMID: 25091453 DOI: 10.1016/j.jns.2014.07.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND PURPOSE In patients with neuromyelitis optica (NMO), damage to extensive regions of normal-appearing WM has been observed. To investigate the possibility that microstructural alterations are present in these WM tracts, DTI and diffusion kurtosis imaging (DKI) techniques were applied and compared. MATERIAL AND METHODS Thirteen patients with NMO and 13 demographically and gender-matched controls underwent MRI using a 3T MR scanner, with DTI/DKI sequence acquired jointly fitted. Parametric fractional anisotropy maps were derived from diffusion tensor (FADTI) values using b-values of 0s/mm(2) and 1000s/mm(2). Parametric fractional anisotropy maps derived from diffusion kurtosis tensor (FADKI) values were also acquired using b-values of 0, 1000, and 2000s/mm(2). Mean FADTI and FADKI values were also calculated. A ROI analysis of the genu and splenium of the corpus callosum (CC), cerebral peduncle (CP), and optic radiation (OR) was also performed. Student's t-test and corrections for multiple comparisons were used to evaluate the data obtained. RESULTS A significant decrease in the FADTI values obtained for NMO patients versus controls was observed for the splenium of the CC and the left OR (p<0.05). However, just a positive trend was observed for the FADKI values associated with the same WM tracts. CONCLUSIONS To our knowledge, this is the first study to analyze WM tracts of NMO patients using DTI and DKI. These data indicate that DKI could have limitations in evaluating the WM integrity in NMO patients. Furthermore, the results obtained are consistent with the hypothesis that diffuse brain involvement characterizes NMO.
Collapse
Affiliation(s)
| | - Thomas Martin Doring
- Radiology Department of Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil; Clínica de Diagnóstico por Imagem (CDPI), Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fernanda Cristina Rueda
- MRI Department of Clínica de Diagnóstico por Imagem (CDPI), Rio de Janeiro, Rio de Janeiro, Brazil; Radiology Department of Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Gustavo Tukamoto
- Radiology Department of Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil; Clínica de Diagnóstico por Imagem (CDPI), Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Emerson Leandro Gasparetto
- MRI Department of Clínica de Diagnóstico por Imagem (CDPI), Rio de Janeiro, Rio de Janeiro, Brazil; Radiology Department of Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Matthews LA, Palace JA. The role of imaging in diagnosing neuromyelitis optica spectrum disorder. Mult Scler Relat Disord 2014; 3:284-93. [DOI: 10.1016/j.msard.2013.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 10/31/2013] [Accepted: 11/14/2013] [Indexed: 12/16/2022]
|
12
|
|
13
|
Matthews L, Marasco R, Jenkinson M, Küker W, Luppe S, Leite MI, Giorgio A, De Stefano N, Robertson N, Johansen-Berg H, Evangelou N, Palace J. Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution. Neurology 2013; 80:1330-7. [PMID: 23486868 DOI: 10.1212/wnl.0b013e3182887957] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Neuromyelitis optica and its spectrum disorder (NMOSD) can present similarly to relapsing-remitting multiple sclerosis (RRMS). Using a quantitative lesion mapping approach, this research aimed to identify differences in MRI brain lesion distribution between aquaporin-4 antibody-positive NMOSD and RRMS, and to test their diagnostic potential. METHODS Clinical brain MRI sequences for 44 patients with aquaporin-4 antibody-positive NMOSD and 50 patients with RRMS were examined for the distribution and morphology of brain lesions. T2 lesion maps were created for each subject allowing the quantitative comparison of the 2 conditions with lesion probability and voxel-wise analysis. RESULTS Sixty-three percent of patients with NMOSD had brain lesions and of these 27% were diagnostic of multiple sclerosis. Patients with RRMS were significantly more likely to have lesions adjacent to the body of the lateral ventricle than patients with NMOSD. Direct comparison of the probability distributions and the morphologic attributes of the lesions in each group identified criteria of "at least 1 lesion adjacent to the body of the lateral ventricle and in the inferior temporal lobe; or the presence of a subcortical U-fiber lesion; or a Dawson's finger-type lesion," which could distinguish patients with multiple sclerosis from those with NMOSD with 92% sensitivity, 96% specificity, 98% positive predictive value, and 86% negative predictive value. CONCLUSION Careful inspection of the distribution and morphology of MRI brain lesions can distinguish RRMS and NMOSD.
Collapse
Affiliation(s)
- Lucy Matthews
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Inflammatory, vascular, and infectious myelopathies in children. HANDBOOK OF CLINICAL NEUROLOGY 2013; 112:999-1017. [PMID: 23622308 DOI: 10.1016/b978-0-444-52910-7.00020-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Acute nontraumatic myelopathies of childhood include inflammatory, infectious, and vascular etiologies. Inflammatory immune-mediated disorders of the spinal cord can be categorized as idiopathic isolated transverse myelitis, neuromyelitis optica, and multiple sclerosis. In recent years, human T-cell lymphotropic virus type 1, West Nile virus, enterovirus-71, and Lyme disease have been increasingly recognized as infectious etiologies of myelopathy, and poliomyelitis remains an important etiology in world regions where vaccination programs have not been universally available. Vascular etiologies include vasculopathies (systemic lupus erythematosus, small vessel primary angiitis of the central nervous system), arteriovenous malformations, and spinal cord infarction (fibrocartilaginous embolism, diffuse hypoxic ischemia-mediated infarction). Vascular myelopathies are less common than inflammatory and infectious myelopathies, but are more likely to lead to devastating clinical deficits. Current therapeutic strategies include acute anti-inflammatory treatment and rehabilitation. Stem cell transplantation, nerve graft implantation, and stimulation of endogenous repair mechanisms represent promising strategies for spinal cord repair.
Collapse
|
16
|
Brain abnormalities in neuromyelitis optica spectrum disorder. Mult Scler Int 2012; 2012:735486. [PMID: 23259063 PMCID: PMC3518965 DOI: 10.1155/2012/735486] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 11/02/2012] [Indexed: 12/17/2022] Open
Abstract
Neuromyelitis optica (NMO) is an idiopathic inflammatory syndrome of the central nervous system that is characterized by severe attacks of optic neuritis (ON) and myelitis. Until recently, NMO was considered a disease without brain involvement. However, since the discovery of NMO-IgG/antiaqaporin-4 antibody, the concept of NMO was broadened to NMO spectrum disorder (NMOSD), and brain lesions are commonly recognized. Furthermore, some patients present with brain symptoms as their first manifestation and develop recurrent brain symptoms without ON or myelitis. Brain lesions with characteristic locations and configurations can be helpful in the diagnosis of NMOSD. Due to the growing recognition of brain abnormalities in NMOSD, these have been included in the NMO and NMOSD diagnostic criteria or guidelines. Recent technical developments such as diffusion tensor imaging, MR spectroscopy, and voxel-based morphometry reveal new findings related to brain abnormalities in NMOSD that were not identified using conventional MRI. This paper focuses on the incidence and characteristics of the brain lesions found in NMOSD and the symptoms that they cause. Recent studies using advanced imaging techniques are also introduced.
Collapse
|
17
|
|
18
|
Kim W, Kim SH, Kim HJ. New insights into neuromyelitis optica. J Clin Neurol 2011; 7:115-27. [PMID: 22087205 PMCID: PMC3212597 DOI: 10.3988/jcn.2011.7.3.115] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/13/2011] [Accepted: 06/13/2011] [Indexed: 01/15/2023] Open
Abstract
Neuromyelitis optica (NMO) is an idiopathic inflammatory disorder of the central nervous system (CNS) that preferentially affects the optic nerves and spinal cord. In Asia, NMO has long been considered a subtype of multiple sclerosis (MS). However, recent clinical, pathological, immunological, and imaging studies have suggested that NMO is distinct from MS. This reconsideration of NMO was initially prompted by the discovery of a specific antibody for NMO (NMO-IgG) in 2004. NMO-IgG is an autoantibody that targets aquaporin-4 (AQP4), the most abundant water channel in the CNS; hence, it was named anti-AQP4 antibody. Since it demonstrated reasonable sensitivity and high specificity, anti-AQP4 antibody was incorporated into new diagnostic criteria for NMO.The spectrum of NMO is now known to be wider than was previously recognized and includes a proportion of patients with recurrent, isolated, longitudinally extensive myelitis or optic neuritis, and longitudinally extensive myelitis or optic neuritis associated with systemic autoimmune disease or with brain lesions typical of NMO. In this context, a new concept of "NMO spectrum disorders" was recently introduced. Furthermore, seropositivity for NMO-IgG predicts future relapses and is recognized as a prognostic marker for NMO spectrum disorders. Humoral immune mechanisms, including the activation of B-cells and the complement pathway, are considered to play important roles in NMO pathogenesis. This notion is supported by recent studies showing the potential pathogenic role of NMO-IgG as an initiator of NMO lesions. However, a demonstration of the involvement of NMO-IgG by the development of active immunization and passive transfer in animal models is still needed. This review focuses on the new concepts of NMO based on its pathophysiology and clinical characteristics. Potential management strategies for NMO in light of its pathomechanism are also discussed.
Collapse
Affiliation(s)
- Woojun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | | | | |
Collapse
|
19
|
Kitley JL, Leite MI, George JS, Palace JA. The differential diagnosis of longitudinally extensive transverse myelitis. Mult Scler 2011; 18:271-85. [PMID: 21669935 DOI: 10.1177/1352458511406165] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Longitudinally extensive transverse myelitis refers to florid and widespread inflammation of the spinal cord causing T2 hyperintensity on spinal magnetic resonance imaging that is seen to extend over three or more vertebral segments. Whilst rare, longitudinally extensive transverse myelitis is clinically important as it can lead to catastrophic morbidity, and a group of these patients are at risk of further attacks. Early identification and establishment of the underlying aetiology is vital in order to initiate appropriate therapy and optimize outcomes. Whilst longitudinally extensive transverse myelitis is classically associated with neuromyelitis optica, there are many other causes. These include other inflammatory aetiologies, infection, malignancy and metabolic disturbance. Some of these are readily treatable. Laboratory and radiological investigations can help to differentiate these causes. Treatment of longitudinally extensive transverse myelitis hinges on distinguishing inflammatory and non-inflammatory aetiologies and identifying patients who are at high risk of a recurrent course.
Collapse
|
20
|
Sellner J, Boggild M, Clanet M, Hintzen RQ, Illes Z, Montalban X, Du Pasquier RA, Polman CH, Sorensen PS, Hemmer B. EFNS guidelines on diagnosis and management of neuromyelitis optica. Eur J Neurol 2010; 17:1019-32. [PMID: 20528913 DOI: 10.1111/j.1468-1331.2010.03066.x] [Citation(s) in RCA: 306] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE Neuromyelitis optica (NMO) or Devic's disease is a rare inflammatory and demyelinating autoimmune disorder of the central nervous system (CNS) characterized by recurrent attacks of optic neuritis (ON) and longitudinally extensive transverse myelitis (LETM), which is distinct from multiple sclerosis (MS). The guidelines are designed to provide guidance for best clinical practice based on the current state of clinical and scientific knowledge. SEARCH STRATEGY Evidence for this guideline was collected by searches for original articles, case reports and meta-analyses in the MEDLINE and Cochrane databases. In addition, clinical practice guidelines of professional neurological and rheumatological organizations were studied. RESULTS Different diagnostic criteria for NMO diagnosis [Wingerchuk et al. Revised NMO criteria, 2006 and Miller et al. National Multiple Sclerosis Society (NMSS) task force criteria, 2008] and features potentially indicative of NMO facilitate the diagnosis. In addition, guidance for the work-up and diagnosis of spatially limited NMO spectrum disorders is provided by the task force. Due to lack of studies fulfilling requirement for the highest levels of evidence, the task force suggests concepts for treatment of acute exacerbations and attack prevention based on expert opinion. CONCLUSIONS Studies on diagnosis and management of NMO fulfilling requirements for the highest levels of evidence (class I-III rating) are limited, and diagnostic and therapeutic concepts based on expert opinion and consensus of the task force members were assembled for this guideline.
Collapse
Affiliation(s)
- J Sellner
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Illes Z. Pathogenesis, diagnosis and treatment of neuromyelitis optica: Changing concept of an old disease. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1759-1961.2010.00011.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Cabrera-Gómez JA, Kurtzke JF, González-Quevedo A, Lara-Rodríguez R. An epidemiological study of neuromyelitis optica in Cuba. J Neurol 2009; 256:35-44. [PMID: 19224310 DOI: 10.1007/s00415-009-0009-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 05/09/2008] [Accepted: 05/15/2008] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Two population-based studies of neuromyelitis optica (NMO) in non-white populations provided prevalence rates of 0.32 and 3.1 per 100,000 population. OBJECTIVE To estimate NMO prevalence in the multiethnic Cuban population by nation-wide case ascertainment. METHODS The study was conducted from October 1, 2003 to November 30, 2004. Ninety percent of general practitioners and all neurologists responded positively to the request for information on cases suspected of optic neuritis (ON), transverse myelitis (TM), multiple sclerosis, or NMO. Among the population of 11,177,743 there were 798 suspected cases, including 89 with possible NMO, relapsing ON (RON) and TM. Of the 89, 87 were examined by two of us (Cabrera JA, Lara R) who selected the NMO cases according to the 1999 Mayo Clinic criteria as well as those with relapsing TM and RON. RESULTS 58 cases provided a prevalence rate of 0.52 per 100,000 (95% CI 0.39-0.67). The 7 males and 51 females gave rates of 0.13 (CI 0.05-0.26) and 0.91 (CI 0.68-1.20). The estimated average annual incidence rate was 0.053 per 100,000 (CI 0.040-0.068). Prevalence rates did not differ significantly among the three ethnic groups. Black NMO cases were significantly older, with more relapses and motor deficit, as well as more abnormalities in brainstem evoked potentials and in brain MRI (not meeting MS criteria). The predominant clinical form was relapsing over monophasic. CONCLUSIONS This Cuban multiethnic population had a prevalence of NMO of 0.52 per 100,000 and an estimated average annual incidence rate of 0.053 per 100,000 with no differences by ethnicity. Black patients were older, with more relapses and motor impairment.
Collapse
Affiliation(s)
- Jose A Cabrera-Gómez
- International Center of Neurological Restoration, Avenida 25 #15805, Cubanacán, Playa, La Habana, Cuba.
| | | | | | | |
Collapse
|
23
|
Abstract
Although the co-occurrence of myelitis and optic neuritis that characterizes neuromyelitis optica (NMO) was recognized over a century ago, distinguishing NMO from multiple sclerosis relied solely on clinical criteria until recently. The identification of a biomarker that has high specificity for NMO is clinically useful for distinguishing NMO from multiple sclerosis and identifying patients at high risk for recurrent myelitis and optic neuritis. That fact that the biomarker is an autoantibody that recognizes aquaporin 4 (AQP4), a water channel expressed on astrocyte podocytes, has substantially contributed to the hypothesis that NMO is a humorally mediated autoimmune disease. This review discusses the discovery of the NMO-IgG biomarker, the identification of AQP4 as its target, the clinical applications of these advances, the pathologic implications for the anti-AQP4 antibody, and advances in NMO treatment.
Collapse
Affiliation(s)
- Bruce Cree
- Multiple Sclerosis Center, University of California San Francisco, 350 Parnassus Avenue, Suite 908, San Francisco, CA 94117, USA.
| |
Collapse
|