1
|
Baris RO, Sahin N, Bilgic AD, Ozdemir C, Edgunlu TG. Molecular and in silico analyses of SYN III gene variants in autism spectrum disorder. Ir J Med Sci 2023; 192:2887-2895. [PMID: 37166614 DOI: 10.1007/s11845-023-03402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Defects in neurotransmission and synaptogenesis are noteworthy in the pathogenesis of ASD. Synapsin III (SYN III) is defined as a synaptic vesicle protein that plays an important role in synaptogenesis and regulation of neurotransmitter release and neurite outgrowth. Therefore, SYN III may associate with many neurodevelopmental diseases, including ASD. AIM The aim of this study was to investigate whether the SYN III gene -631 C > G (rs133946) and -196 G > A (rs133945) polymorphisms are associated with susceptibility to ASD. METHODS SYN III variants and the risk of ASD were investigated in 26 healthy children and 24 ASD children. SYN III gene variants were genotyped by PCR-RFLP methods. The differences in genotype and allele frequencies between the ASD and control groups were calculated using the chi-square (χ2). We analysed the SYN III gene using web-based tools. RESULTS Our results suggest that the presence of the AA genotype of the SYN III -196 G > A (rs133945) polymorphism affects the characteristics and development of ASD in children (p = 0.012). SYN III -631 C > G (rs133946) polymorphism was not associated with ASD (p = 0.524). We have shown the prediction of gene-gene interaction that SYN III is co-expressed with 17 genes, physical interaction with 3 genes, and co-localization with 12 genes. The importance of different genes (SYN I, II, III, GABRD, NOS1AP, GNAO1) for ASD pathogenesis was revealed by GO analysis. CONCLUSION Considering the role of SYN III and related genes, especially in the synaptic vesicle pathway and neurotransmission, its effect on ASD can be further investigated.
Collapse
Affiliation(s)
- Remzi Oguz Baris
- Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | - Nilfer Sahin
- Department of Child and Adolescent Mental Health Diseases School of Medicine, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Ayşegül Demirtas Bilgic
- Department of Medical Biology, Health Sciences Institution, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Cilem Ozdemir
- Department of Medical Biology, Health Sciences Institution, Muğla Sıtkı Koçman University, Mugla, Turkey.
| | - Tuba Gokdogan Edgunlu
- Department of Medical Biology, School of Medicine, Muğla Sıtkı Koçman University, Mugla, 48000, Turkey
| |
Collapse
|
2
|
Longhena F, Faustini G, Brembati V, Pizzi M, Benfenati F, Bellucci A. An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neurosci Biobehav Rev 2021; 130:33-60. [PMID: 34407457 DOI: 10.1016/j.neubiorev.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Fabio Benfenati
- Italian Institute of Technology, Via Morego 30, Genova, Italy; IRCSS Policlinico San Martino Hospital, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy; Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
3
|
Yalın OÖ, Gökdoğan Edgünlü T, Karakaş Çelik S, Emre U, Güneş T, Erdal Y, Eroğlu Ünal A. Novel SNARE Complex Polymorphisms Associated with Multiple Sclerosis: Signs of Synaptopathy in Multiple Sclerosis. Balkan Med J 2018; 36:174-178. [PMID: 30582321 PMCID: PMC6528533 DOI: 10.4274/balkanmedj.galenos.2018.2017.1034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: It is well known that axonal degeneration plays a role in disability in patients with multiple sclerosis, and synaptopathy has recently become an important issue. Aims: To investigate the possible roles of selected synaptic and presynaptic membrane protein genetic polymorphisms (VAMP2, SNAP-25, synaptotagmin, and syntaxin 1A) in patients with multiple sclerosis. Study Design: Case-control study. Methods: A total of 123 patients with multiple sclerosis and 192 healthy controls were included. The functional polymorphisms of specific SNARE complex proteins (VAMP2, synaptotagmin XI, syntaxin 1A, and SNAP-25) were analyzed by polymerase chain reaction. Results: Significant differences were detected in the genotype and allele distribution of 26-bp Ins/Del polymorphisms of VAMP2 between patients with multiple sclerosis and control subjects; Del/Del genotype and Del allele of VAMP2 were more frequent in patients with multiple sclerosis (p=0.011 and p=0.004, respectively). Similarly, Ddel polymorphism of SNAP-25 gene C/C genotype (p=0.059), syntaxin 1A T/C and C/C genotypes (p=0.005), and synaptotagmin XI gene C allele (p=0.001) were observed more frequently in patients with multiple sclerosis. CC, syntaxin rs1569061 1A gene for 33-bp promoter region TC haplotypes, and synaptotagmin XI gene were found to be associated with an increased risk for multiple sclerosis (p=0.012). Similarly, GC haplotype for rs3746544 of SNAP-25 gene and rs1051312 of SNAP-25 gene were associated with an increased risk for multiple sclerosis (p=0.022). Conclusion: Genetic polymorphisms of SNARE complex proteins, which have critical roles in synaptic structure and communication, may play a role in the development of multiple sclerosis.
Collapse
Affiliation(s)
- Osman Özgür Yalın
- Clinic of Neurology, İstanbul Training and Research Hospital, İstanbul, Turkey
| | - Tuba Gökdoğan Edgünlü
- Department of Medical Biology, Muğla Sıtkı Koçman University School of Medicine, Muğla, Turkey
| | - Sevim Karakaş Çelik
- Department of Molecular Biology and Genetic, Zonguldak Bülent Ecevit University Faculty of Science, Zonguldak, Turkey
| | - Ufuk Emre
- Clinic of Neurology, İstanbul Training and Research Hospital, İstanbul, Turkey
| | - Taşkın Güneş
- Clinic of Neurology, İstanbul Bahçelievler State Hospital, İstanbul, Turkey
| | - Yüksel Erdal
- Clinic of Neurology, İstanbul Training and Research Hospital, İstanbul, Turkey
| | - Aysun Eroğlu Ünal
- Department of Neurology, Tekirdağ Namık Kemal University School of Medicine, İstanbul, Turkey
| |
Collapse
|
4
|
Scelsi MA, Khan RR, Lorenzi M, Christopher L, Greicius MD, Schott JM, Ourselin S, Altmann A. Genetic study of multimodal imaging Alzheimer's disease progression score implicates novel loci. Brain 2018; 141:2167-2180. [PMID: 29860282 PMCID: PMC6022660 DOI: 10.1093/brain/awy141] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023] Open
Abstract
Identifying genetic risk factors underpinning different aspects of Alzheimer's disease has the potential to provide important insights into pathogenesis. Moving away from simple case-control definitions, there is considerable interest in using quantitative endophenotypes, such as those derived from imaging as outcome measures. Previous genome-wide association studies of imaging-derived biomarkers in sporadic late-onset Alzheimer's disease focused only on phenotypes derived from single imaging modalities. In contrast, we computed a novel multi-modal neuroimaging phenotype comprising cortical amyloid burden and bilateral hippocampal volume. Both imaging biomarkers were used as input to a disease progression modelling algorithm, which estimates the biomarkers' long-term evolution curves from population-based longitudinal data. Among other parameters, the algorithm computes the shift in time required to optimally align a subjects' biomarker trajectories with these population curves. This time shift serves as a disease progression score and it was used as a quantitative trait in a discovery genome-wide association study with n = 944 subjects from the Alzheimer's Disease Neuroimaging Initiative database diagnosed as Alzheimer's disease, mild cognitive impairment or healthy at the time of imaging. We identified a genome-wide significant locus implicating LCORL (rs6850306, chromosome 4; P = 1.03 × 10-8). The top variant rs6850306 was found to act as an expression quantitative trait locus for LCORL in brain tissue. The clinical role of rs6850306 in conversion from healthy ageing to mild cognitive impairment or Alzheimer's disease was further validated in an independent cohort comprising healthy, older subjects from the National Alzheimer's Coordinating Center database. Specifically, possession of a minor allele at rs6850306 was protective against conversion from mild cognitive impairment to Alzheimer's disease in the National Alzheimer's Coordinating Center cohort (hazard ratio = 0.593, 95% confidence interval = 0.387-0.907, n = 911, PBonf = 0.032), in keeping with the negative direction of effect reported in the genome-wide association study (βdisease progression score = -0.07 ± 0.01). The implicated locus is linked to genes with known connections to Alzheimer's disease pathophysiology and other neurodegenerative diseases. Using multimodal imaging phenotypes in association studies may assist in unveiling the genetic drivers of the onset and progression of complex diseases.
Collapse
Affiliation(s)
- Marzia A Scelsi
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, Gower Street NW1 2HE, London, UK
| | - Raiyan R Khan
- Functional Imaging in Neuropsychiatric Disorders (FIND) Lab, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304-5777, USA
| | - Marco Lorenzi
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, Gower Street NW1 2HE, London, UK
- Epione Research Project, Université Côte d'Azur, BP 93 06 902, Inria Sophia Antipolis, France
| | - Leigh Christopher
- Functional Imaging in Neuropsychiatric Disorders (FIND) Lab, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304-5777, USA
| | - Michael D Greicius
- Functional Imaging in Neuropsychiatric Disorders (FIND) Lab, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304-5777, USA
| | - Jonathan M Schott
- Functional Imaging in Neuropsychiatric Disorders (FIND) Lab, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304-5777, USA
| | - Sebastien Ourselin
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, Gower Street NW1 2HE, London, UK
- UCL Institute of Neurology, Queen Square WC1N 3BG, London, UK
| | - Andre Altmann
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, Gower Street NW1 2HE, London, UK
| |
Collapse
|
5
|
Longhena F, Faustini G, Varanita T, Zaltieri M, Porrini V, Tessari I, Poliani PL, Missale C, Borroni B, Padovani A, Bubacco L, Pizzi M, Spano P, Bellucci A. Synapsin III is a key component of α-synuclein fibrils in Lewy bodies of PD brains. Brain Pathol 2018; 28:875-888. [PMID: 29330884 DOI: 10.1111/bpa.12587] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
Lewy bodies (LB) and Lewy neurites (LN), which are primarily composed of α-synuclein (α-syn), are neuropathological hallmarks of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). We recently found that the neuronal phosphoprotein synapsin III (syn III) controls dopamine release via cooperation with α-syn and modulates α-syn aggregation. Here, we observed that LB and LN, in the substantia nigra of PD patients and hippocampus of one subject with DLB, displayed a marked immunopositivity for syn III. The in situ proximity ligation assay revealed the accumulation of numerous proteinase K-resistant neuropathological inclusions that contained both α-syn and syn III in tight association in the brain of affected subjects. Most strikingly, syn III was identified as a component of α-syn-positive fibrils in LB-enriched protein extracts from PD brains. Finally, a positive correlation between syn III and α-syn levels was detected in the caudate putamen of PD subjects. Collectively, these findings indicate that syn III is a crucial α-syn interactant and a key component of LB fibrils in the brain of patients affected by PD.
Collapse
Affiliation(s)
- Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gaia Faustini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Michela Zaltieri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vanessa Porrini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Missale
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - PierFranco Spano
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,IRCCS San Camillo Hospital for Neurorehabilitation (NHS-Italy), Venice Lido, Italy
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Laboratory of Personalized and Preventive Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
6
|
Massó JFM, Zarranz JJ, Otaegui D, López de Munain A. Neurogenetic Disorders in the Basque Population. Ann Hum Genet 2014; 79:57-75. [DOI: 10.1111/ahg.12088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022]
Affiliation(s)
- José Félix Martí Massó
- Department of Neurology at Hospital Universitario Donostia (San Sebastián, Guipúzcoa); Basque Health Service (Osakidetza); Basque Country Spain
- Department of Neurosciences; University of Basque Country (UPV-EHU)
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED); Carlos III Health Institute, Ministry of Economy and Competitiveness; Spain
- BioDonostia Institute, San Sebastián, Guipúzcoa
- JAKIUNDE, Academia de las Ciencias, de las Artes y de las Letras
| | - Juan José Zarranz
- Department of Neurology at Hospital Universitario Cruces (Baracaldo, Vizcaya); Basque Health Service (Osakidetza); Basque Country Spain
- Department of Neurosciences; University of Basque Country (UPV-EHU)
- BioCruces Institute, Baracaldo; Vizcaya
- JAKIUNDE, Academia de las Ciencias, de las Artes y de las Letras
| | | | - Adolfo López de Munain
- Department of Neurology at Hospital Universitario Donostia (San Sebastián, Guipúzcoa); Basque Health Service (Osakidetza); Basque Country Spain
- Department of Neurosciences; University of Basque Country (UPV-EHU)
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED); Carlos III Health Institute, Ministry of Economy and Competitiveness; Spain
- BioDonostia Institute, San Sebastián, Guipúzcoa
| |
Collapse
|
7
|
Garbarino G, Costa S, Pestarino M, Candiani S. Differential expression of synapsin genes during early zebrafish development. Neuroscience 2014; 280:351-67. [DOI: 10.1016/j.neuroscience.2014.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 11/27/2022]
|
8
|
Yu WJ, Li NN, Tan EK, Cheng L, Zhang JH, Mao XY, Chang XL, Zhao DM, Liao Q, Peng R. No association of four candidate genetic variants in MnSOD and SYNIII with Parkinson's disease in two Chinese populations. PLoS One 2014; 9:e88050. [PMID: 24586301 PMCID: PMC3935830 DOI: 10.1371/journal.pone.0088050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/02/2014] [Indexed: 02/05/2023] Open
Abstract
Background The manganese superoxide dismutase (MnSOD) gene, which encodes a chief reactive oxygen species (ROS) scavenging enzyme, has been reported to be associated with the risk of developing sporadic Parkinson's disease (PD) in some Asian races and the synapsin III (SYN3) gene with some neuropsychiatric diseases. Objective: To explore the associations between the MnSOD and SYN III variations and PD in two Chinese populations from mainland China and Singapore. Methods We recruited 2342 subjects including 1200 sporadic PD patients and 1142 healthy controls from two independent Asian countries. Using a case-control methodology, we genotyped the single nucleotide polymorphisms (SNP) in MnSOD (rs4880) and SYN III (rs3788470, rs3827336, rs5998557) to explore the associations with risk of PD. Results The results showed the genotype distributions and minor allele frequencies (MAF) of MnSOD (rs4880) and SYN III (rs3788470, rs3827336, rs5998557) were not significantly different between PD patients and healthy controls in mainland China and Singapore, as well as in merged populations. Conclusions The variations of MnSOD (rs4880) and SYN III (rs3788470, rs3827336, rs5998557) were not major risk factors for PD among Chinese, at least in our study populations.
Collapse
Affiliation(s)
- Wen Juan Yu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Nan Nan Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Eng King Tan
- Duke–NUS Graduate Medical School, Singapore, Singapore
- Department of Neurology, Singapore General Hospital, National Neuroscience Institute, Singapore, Singapore
| | - Lan Cheng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Jin Hong Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
- Department of Internal Medicine, Wangjiang Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Xue Ye Mao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Xue Li Chang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Dong Mei Zhao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Qiao Liao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Rong Peng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
- * E-mail:
| |
Collapse
|
9
|
Porton B, Wetsel WC, Kao HT. Synapsin III: role in neuronal plasticity and disease. Semin Cell Dev Biol 2011; 22:416-24. [PMID: 21827867 DOI: 10.1016/j.semcdb.2011.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 07/13/2011] [Indexed: 12/31/2022]
Abstract
Synapsin III was discovered in 1998, more than two decades after the first two synapsins (synapsins I and II) were identified. Although the biology of synapsin III is not as well understood as synapsins I and II, this gene is emerging as an important factor in the regulation of the early stages of neurodevelopment and dopaminergic neurotransmission, and in certain neuropsychiatric illnesses. Molecular genetic and clinical studies of synapsin III have determined that its neurodevelopmental effects are exerted at the levels of neurogenesis and axonogenesis. In vitro voltammetry studies have shown that synapsin III can control dopamine release in the striatum. Since dopaminergic dysfunction is implicated in many neuropsychiatric conditions, one may anticipate that polymorphisms in synapsin III can exert pervasive effects, especially since it is localized to extrasynaptic sites. Indeed, mutations in this gene have been identified in individuals diagnosed with schizophrenia, bipolar disorder and multiple sclerosis. These and other findings indicate that the roles of synapsin III differ significantly from those of synapsins I and II. Here, we focus on the unique roles of the newest synapsin, and where relevant, compare and contrast these with the actions of synapsins I and II.
Collapse
Affiliation(s)
- Barbara Porton
- Department of Psychiatry and Human Behavior, Brown University, BioMedical Center, 171 Meeting Street, Room 187, Providence, RI 02912, USA
| | | | | |
Collapse
|