1
|
Udawatta M, Matiello M. Urgent Issues in Multiple Sclerosis: A Practical Guide for Non-Neurologists. Med Clin North Am 2025; 109:401-423. [PMID: 39893020 DOI: 10.1016/j.mcna.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
This review provides essential knowledge for internists regarding multiple sclerosis (MS). It begins with an overview of the different types of MS, guidance on recognizing early symptoms, and criteria for referral to a neurologist based on commonly used diagnostic standards and epidemiologic data. The authors then summarize the most used disease-modifying therapies, including their side effects, monitoring requirements, and guidelines for inpatient and pre-procedural management. Finally, the authors address the management of common MS-related symptoms that may require the attention of an internist.
Collapse
Affiliation(s)
- Methma Udawatta
- Department of Neurology, Massachusetts General Brigham, Harvard Medical School, Boston, MA, USA
| | - Marcelo Matiello
- Department of Neurology, Massachusetts General Brigham, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Hongo S, Shimizu H, Saji E, Nakajima A, Okamoto K, Kawachi I, Onodera O, Kakita A. Acute respiratory failure caused by brainstem demyelinating lesions in an older patient with an atypical relapsing autoimmune disorder. Neuropathology 2025; 45:3-12. [PMID: 38583489 DOI: 10.1111/neup.12976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
An 84-year-old man presented with somnolence, dysphagia, and right hemiplegia, all occurring within a month, approximately one year after initial admission due to subacute, transient cognitive decline suggestive of acute disseminated encephalomyelitis involving the cerebral white matter. Serial magnetic resonance imaging (MRI) studies over that period revealed three high-intensity signal lesions on fluid-attenuated inversion recovery images, appearing in chronological order in the left upper and left lower medulla oblongata and left pontine base. Despite some clinical improvement following methylprednisolone pulse therapy, the patient died of respiratory failure. Autopsy revealed four fresh, well-defined lesions in the brainstem, three of which corresponded to the lesions detected radiologically. The remaining lesion was located in the dorsal medulla oblongata and involved the right solitary nucleus. This might have appeared at a later disease stage, eventually causing respiratory failure. Histologically, all four lesions showed loss of myelin, preservation of axons, and infiltration of lymphocytes, predominantly CD8-positive T cells, consistent with the histological features of autoimmune demyelinating diseases, particularly the confluent demyelination observed in the early and acute phases of multiple sclerosis (MS). In the cerebral white matter, autoimmune demyelination appeared superimposed on ischemic changes, consistent with the cerebrospinal fluid (CSF) and MRI findings on initial admission. No anti-AQP4 or MOG antibodies or those potentially causing autoimmune encephalitis/demyelination were detected in either the serum or CSF. Despite several similarities to MS, such as the relapsing-remitting disease course and lesion histology, the entire clinicopathological picture in the present patient, especially the advanced age at onset and development of brainstem lesions in close proximity within a short time frame, did not fit those of MS or other autoimmune diseases that are currently established. The present results suggest that exceptionally older individuals can be affected by an as yet unknown inflammatory demyelinating disease of the CNS.
Collapse
Affiliation(s)
- Shoko Hongo
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Etsuji Saji
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihiro Nakajima
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kouichirou Okamoto
- Department of Translational Research, Brain Research Institute, Niigata University, Niigata, Japan
| | - Izumi Kawachi
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
- Medical Education Center, Niigata University School of Medicine, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Şahin F, Kaya ZZ, Serteser M, Öztürk HÜ, Baykal AT. Glycan profiling of multiple sclerosis oligoclonal bands with MALDI-TOF. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:850-858. [PMID: 39744984 DOI: 10.1039/d4ay01639d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Multiple sclerosis (MS) is a common autoimmune disease that primarily affects young adults. In this condition, the immune system attacks the myelin sheath of nerve cells, leading to a variety of neurological symptoms. MS diagnosis often relies on the analysis of oligoclonal bands (OCBs), which involves detecting oligoclonal immunoglobulin G (IgG) bands in cerebrospinal fluid (CSF) and serum. The objective of this study was to investigate the glycosylation profiles of IgG in patients suspected of having MS, using glycan analysis with MALDI-TOF mass spectrometry. Serum samples were analysed, and the IgG glycosylation patterns were compared across different OCB types. Our findings suggest that alterations in IgG glycans may serve as potential biomarkers for MS, providing insights into the disease's molecular mechanisms and aiding in early diagnosis. This study highlights the importance of glycomics in understanding the pathogenesis of MS and in the development of novel diagnostic techniques.
Collapse
Affiliation(s)
- Furkan Şahin
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34450, Turkey.
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydınlar University, Istanbul 34450, Turkey
- TUBITAK Marmara Research Center, Kocaeli, 41470, Turkey
| | - Zelal Zuhal Kaya
- Department of Medical Biochemistry, Faculty of Medicine, Nisantasi University, Istanbul 34398, Turkey
| | - Mustafa Serteser
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34450, Turkey.
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydınlar University, Istanbul 34450, Turkey
| | | | - Ahmet Tarık Baykal
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34450, Turkey.
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydınlar University, Istanbul 34450, Turkey
| |
Collapse
|
4
|
Bjørklund G, Wallace DR, Hangan T, Butnariu M, Gurgas L, Peana M. Cerebral iron accumulation in multiple sclerosis: Pathophysiology and therapeutic implications. Autoimmun Rev 2025; 24:103741. [PMID: 39756528 DOI: 10.1016/j.autrev.2025.103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system characterized by demyelination, neuroinflammation, and neurodegeneration. Recent studies highlight the role of cerebral iron (Fe) accumulation in exacerbating MS pathophysiology. Fe, essential for neural function, contributes to oxidative stress and inflammation when dysregulated, particularly in the brain's gray matter and demyelinated lesions. Advanced imaging techniques, including susceptibility-weighted and quantitative susceptibility mapping, have revealed abnormal Fe deposition patterns in MS patients, suggesting its involvement in disease progression. Iron's interaction with immune cells, such as microglia, releases pro-inflammatory cytokines, further amplifying neuroinflammation and neuronal damage. These findings implicate Fe dysregulation as a significant factor in MS progression, contributing to clinical manifestations like cognitive impairment. Therapeutic strategies targeting Fe metabolism, including Fe chelation therapies, show promise in reducing Fe-related damage, instilling optimism about the future of MS treatment. However, challenges such as crossing the blood-brain barrier and maintaining Fe homeostasis remain. Emerging approaches, such as Fe-targeted nanotherapeutics and biologics, offer new possibilities for personalized treatments. However, the journey is far from over. Continued research into the molecular mechanisms of Fe-induced neuroinflammation and oxidative damage is essential. Through this research, we can develop effective interventions that could slow MS progression and improve patient outcomes.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| | - David R Wallace
- Department of Pharmacology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" from Timisoara, Timis, Romania; CONEM Romania Biotechnology and Environmental Sciences Group, University of Life Sciences "King Mihai I" from Timisoara, Timis, Romania
| | - Leonard Gurgas
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Italy
| |
Collapse
|
5
|
Lindland ES, Røvang MS, Solheim AM, Andreassen S, Skarstein I, Dareez N, MacIntosh BJ, Eikeland R, Ljøstad U, Mygland Å, Bos SD, Ulvestad E, Reiso H, Lorentzen ÅR, Harbo HF, Bjørnerud A, Beyer MK. Are white matter hyperintensities associated with neuroborreliosis? The answer is twofold. Neuroradiology 2025; 67:37-48. [PMID: 39422730 DOI: 10.1007/s00234-024-03482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Many consider white matter hyperintensities (WMHs) to be important imaging findings in neuroborreliosis. However, evidence regarding association with WMHs is of low quality. The objective was to investigate WMHs in neuroborreliosis visually and quantitatively. MATERIALS AND METHODS Patients underwent brain MRI within one month of diagnosis and six months after treatment. Healthy controls were recruited. WMHs were counted by visual rating and the volume was calculated from automatic segmentation. Biochemical markers and scores for clinical symptoms and findings were used to explore association with longitudinal volume change of WMHs. RESULTS The study included 74 patients (37 males) with early neuroborreliosis and 65 controls (30 males). Mean age (standard deviation) was 57.4 (13.5) and 57.7 (12.9) years, respectively. Baseline WMH lesion count was zero in 14 patients/16 controls, < 10 in 36/31, 10-20 in 9/7 and > 20 in 13/11, with no difference between groups (p = 0.90). However, from baseline to follow-up the patients had a small reduction in WMH volume and the controls a small increase, median difference 0.136 (95% confidence interval 0.051-0.251) ml. In patients, volume change was not associated with biochemical or clinical markers, but with degree of WMHs (p values 0.002-0.01). CONCLUSION WMH lesions were not more numerous in patients with neuroborreliosis compared to healthy controls. However, there was a small reduction of WMH volume from baseline to follow-up among patients, which was associated with higher baseline WMH severity, but not with disease burden or outcome. Overall, non-specific WMHs should not be considered suggestive of neuroborreliosis.
Collapse
Affiliation(s)
- Elisabeth S Lindland
- Department of Radiology, Sorlandet Hospital, Sykehusveien 1, 4838, Arendal, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Martin S Røvang
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Anne Marit Solheim
- Department of Neurology, Sorlandet Hospital, Kristiansand, Norway
- Institute of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Silje Andreassen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pediatrics, Sorlandet Hospital, Arendal, Norway
| | - Ingerid Skarstein
- Institute of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Nazeer Dareez
- Department of Radiology, Sorlandet Hospital, Sykehusveien 1, 4838, Arendal, Norway
| | - Bradley J MacIntosh
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Randi Eikeland
- The Norwegian National Advisory Unit on Tick-Borne Diseases, Sorlandet Hospital, Kristiansand, Norway
- Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - Unn Ljøstad
- Department of Neurology, Sorlandet Hospital, Kristiansand, Norway
- Institute of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Åse Mygland
- Department of Neurology, Sorlandet Hospital, Kristiansand, Norway
- Institute of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Steffan D Bos
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
- Cancer Registry of Norway, The Norwegian Institute of Public Health, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Elling Ulvestad
- Institute of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Harald Reiso
- The Norwegian National Advisory Unit on Tick-Borne Diseases, Sorlandet Hospital, Kristiansand, Norway
| | - Åslaug R Lorentzen
- Department of Neurology, Sorlandet Hospital, Kristiansand, Norway
- The Norwegian National Advisory Unit on Tick-Borne Diseases, Sorlandet Hospital, Kristiansand, Norway
| | - Hanne F Harbo
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | | - Mona K Beyer
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Szekely-Kohn AC, Castellani M, Espino DM, Baronti L, Ahmed Z, Manifold WGK, Douglas M. Machine learning for refining interpretation of magnetic resonance imaging scans in the management of multiple sclerosis: a narrative review. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241052. [PMID: 39845718 PMCID: PMC11750376 DOI: 10.1098/rsos.241052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 11/17/2024] [Indexed: 01/24/2025]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the brain and spinal cord with both inflammatory and neurodegenerative features. Although advances in imaging techniques, particularly magnetic resonance imaging (MRI), have improved the process of diagnosis, its cause is unknown, a cure remains elusive and the evidence base to guide treatment is lacking. Computational techniques like machine learning (ML) have started to be used to understand MS. Published MS MRI-based computational studies can be divided into five categories: automated diagnosis; differentiation between lesion types and/or MS stages; differential diagnosis; monitoring and predicting disease progression; and synthetic MRI dataset generation. Collectively, these approaches show promise in assisting with MS diagnosis, monitoring of disease activity and prediction of future progression, all potentially contributing to disease management. Analysis quality using ML is highly dependent on the dataset size and variability used for training. Wider public access would mean larger datasets for experimentation, resulting in higher-quality analysis, permitting for more conclusive research. This narrative review provides an outline of the fundamentals of MS pathology and pathogenesis, diagnostic techniques and data types in computational analysis, as well as collating literature pertaining to the application of computational techniques to MRI towards developing a better understanding of MS.
Collapse
Affiliation(s)
- Adam C. Szekely-Kohn
- School of Engineering, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Marco Castellani
- School of Engineering, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Daniel M. Espino
- School of Engineering, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Luca Baronti
- School of Computer Science, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Zubair Ahmed
- University Hospitals Birmingham NHS Foundation Trust, Edgbaston, BirminghamB15 2GW, UK
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | | | - Michael Douglas
- University Hospitals Birmingham NHS Foundation Trust, Edgbaston, BirminghamB15 2GW, UK
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
- Department of Neurology, Dudley Group NHS Foundation Trust, Russells Hall Hospital, BirminghamDY1 2HQ, UK
- School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
7
|
Correia I, Bernardes C, Cunha C, Nunes C, Macário C, Sousa L, Batista S. Picturing the Multiple Sclerosis Patient Journey: A Symptomatic Overview. J Clin Med 2024; 13:5687. [PMID: 39407747 PMCID: PMC11476823 DOI: 10.3390/jcm13195687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Multiple sclerosis (MS) presents a wide range of clinical symptoms, historically understood through long-term studies of earlier patient cohorts. However, due to improved diagnostic criteria, modern patients are diagnosed earlier and benefit from effective treatments, altering the disease's natural history. This study aimed to assess the clinical symptoms of MS patients in a modern population at various stages: before diagnosis, at diagnosis, during the disease course, and at the time of the survey. Methods: This was an observational study with retrospective and cross-sectional components; patients that fulfilled the 2017 revised McDonald criteria for MS completed a survey evaluating demographic and clinical data. Results: We included 163 patients, 69.9% female, with a mean age of 48.21 years; 87.1% had relapsing-remitting MS (RRMS), with a median EDSS of 2.0. Before diagnosis, 74.2% of patients experienced symptoms, mainly sensory issues (39.3%), fatigue (29.4%), and imbalance (27%). Motor and coordination symptoms were more common in progressive forms. At diagnosis, sensory (46.6%) and motor complaints (36.8%) were most prevalent. In RRMS and secondary progressive MS (SPMS), sensory and motor complaints predominated alongside imbalance, while primary progressive MS (PPMS) was characterized by motor, imbalance, and genitourinary symptoms. Throughout the disease, sensory symptoms were most common (76.1%), with fatigue (73%) and motor issues (62.6%) more prevalent in progressive forms. At the time of the survey, 50.7% of RRMS patients were asymptomatic, while progressive patients continued to experience motor symptoms, imbalance, and fatigue. Conclusions: The study reflects the modern spectrum of MS symptoms, consistent with previous research.
Collapse
Affiliation(s)
- Inês Correia
- Neurology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugalúde.pt (C.N.)
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Catarina Bernardes
- Neurology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugalúde.pt (C.N.)
| | - Carolina Cunha
- Neurology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugalúde.pt (C.N.)
| | - Carla Nunes
- Neurology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugalúde.pt (C.N.)
| | - Carmo Macário
- Neurology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugalúde.pt (C.N.)
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lívia Sousa
- Neurology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugalúde.pt (C.N.)
| | - Sónia Batista
- Neurology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugalúde.pt (C.N.)
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
8
|
Rodríguez S. Artificial intelligence in multiple sclerosis management: Challenges in a new era. Mult Scler Relat Disord 2024; 86:105611. [PMID: 38604002 DOI: 10.1016/j.msard.2024.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Multiple sclerosis poses diagnostic and therapeutic challenges for healthcare professionals, with a high risk of misdiagnosis and difficulties in assessing therapeutic effectiveness. Artificial intelligence, particularly machine learning and deep neural networks, emerges as a promising tool to address these challenges. These technologies have the capability to analyze a wide range of data, from magnetic resonance imaging to genetic information, to provide more accurate diagnoses, classify multiple sclerosis subtypes, and predict disease progression and treatment response with extraordinary precision. However, their implementation raises ethical dilemmas, such as accountability in case of errors and the risk of excessive reliance on healthcare personnel. That said, this manuscript aims to urge healthcare professionals dedicated to the care and research of multiple sclerosis patients to recognize artificial intelligence as a valuable and complementary resource in their clinical practice. It also seeks to emphasize the importance of integrating this type of technology safely and responsibly, thereby ensuring the ethics and welfare of patients.
Collapse
Affiliation(s)
- Sebastián Rodríguez
- Universidad Nacional de Colombia, Sede Bogotá. Facultad de Medicina. Departamento de Movimiento Corporal Humano, Maestría en Fisioterapia del Deporte y la Actividad Física, Colombia.
| |
Collapse
|
9
|
Pelletier J, Sugar D, Koyfman A, Long B. Multiple Sclerosis: An Emergency Medicine-Focused Narrative Review. J Emerg Med 2024; 66:e441-e456. [PMID: 38472027 DOI: 10.1016/j.jemermed.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 03/14/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a rare but serious condition associated with significant morbidity. OBJECTIVE This review provides a focused assessment of MS for emergency clinicians, including the presentation, evaluation, and emergency department (ED) management based on current evidence. DISCUSSION MS is an autoimmune disorder targeting the central nervous system (CNS), characterized by clinical relapses and radiological lesions disseminated in time and location. Patients with MS most commonly present with long tract signs (e.g., myelopathy, asymmetric spastic paraplegia, urinary dysfunction, Lhermitte's sign), optic neuritis, or brainstem syndromes (bilateral internuclear ophthalmoplegia). Cortical syndromes or multifocal presentations are less common. Radiologically isolated syndrome and clinically isolated syndrome (CIS) may or may not progress to chronic forms of MS, including relapsing remitting MS, primary progressive MS, and secondary progressive MS. The foundation of outpatient management involves disease-modifying therapy, which is typically initiated with the first signs of disease onset. Management of CIS and acute flares of MS in the ED includes corticosteroid therapy, ideally after diagnostic testing with imaging and lumbar puncture for cerebrospinal fluid analysis. Emergency clinicians should evaluate whether patients with MS are presenting with new-onset debilitating neurological symptoms to avoid unnecessary testing and admissions, but failure to appropriately diagnose CIS or MS flare is associated with increased morbidity. CONCLUSIONS An understanding of MS can assist emergency clinicians in better diagnosing and managing this neurologically devastating disease.
Collapse
Affiliation(s)
- Jessica Pelletier
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Davis Sugar
- Department of Neurology, Virginia Tech Carilion, Roanoke, Virginia
| | - Alex Koyfman
- Department of Emergency Medicine, University of Texas Southwestern, Dallas, Texas
| | - Brit Long
- SAUSHEC (San Antonio Uniformed Services Health Education Consortium), Department of Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, Texas
| |
Collapse
|
10
|
Grunwald C, Krętowska-Grunwald A, Adamska-Patruno E, Kochanowicz J, Kułakowska A, Chorąży M. The Role of Selected Interleukins in the Development and Progression of Multiple Sclerosis-A Systematic Review. Int J Mol Sci 2024; 25:2589. [PMID: 38473835 PMCID: PMC10932438 DOI: 10.3390/ijms25052589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Multiple sclerosis is a disabling inflammatory disorder of the central nervous system characterized by demyelination and neurodegeneration. Given that multiple sclerosis remains an incurable disease, the management of MS predominantly focuses on reducing relapses and decelerating the progression of both physical and cognitive decline. The continuous autoimmune process modulated by cytokines seems to be a vital contributing factor to the development and relapse of multiple sclerosis. This review sought to summarize the role of selected interleukins in the pathogenesis and advancement of MS. Patients with MS in the active disease phase seem to exhibit an increased serum level of IL-2, IL-4, IL-6, IL-13, IL-17, IL-21, IL-22 and IL-33 compared to healthy controls and patients in remission, while IL-10 appears to have a beneficial impact in preventing the progression of the disease. Despite being usually associated with proinflammatory activity, several studies have additionally recognized a neuroprotective role of IL-13, IL-22 and IL-33. Moreover, selected gene polymorphisms of IL-2R, IL-4, IL-6, IL-13 and IL-22 were identified as a possible risk factor related to MS development. Treatment strategies of multiple sclerosis that either target or utilize these cytokines seem rather promising, but more comprehensive research is necessary to gain a clearer understanding of how these cytokines precisely affect MS development and progression.
Collapse
Affiliation(s)
- Cezary Grunwald
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| | - Anna Krętowska-Grunwald
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Jerzego Waszyngtona 17, 15-274 Białystok, Poland;
| | - Edyta Adamska-Patruno
- Clinical Research Center, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland;
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| | - Monika Chorąży
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| |
Collapse
|
11
|
Abstract
Multiple sclerosis (MS) misdiagnosis in the form of an incorrect diagnosis of MS, as well as delayed diagnosis in patients who do have MS, both influence patient clinical outcomes. Contemporary studies have reported data on factors associated with these diagnostic challenges and their frequency. Expediting diagnosis in patients with MS and reducing MS misdiagnosis in patients who do not have MS may be aided by educational efforts surrounding early MS symptoms and proper application of MS diagnostic criteria. Emerging novel MS diagnostic biomarkers may aid early and accurate diagnosis of MS in the future.
Collapse
Affiliation(s)
- Marwa Kaisey
- Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, A6600, Los Angeles, CA 90048, USA.
| | - Andrew J Solomon
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, University Health Center, Arnold 2, 1 South Prospect Street, Burlington, VT 05401, USA
| |
Collapse
|
12
|
Williams T, John N, Doshi A, Chataway J. Adult inflammatory leukoencephalopathies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:399-430. [PMID: 39322392 DOI: 10.1016/b978-0-323-99209-1.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Inflammatory white matter disorders may commonly mimic genetic leukoencephalopathies. These include atypical presentations of common conditions, such as multiple sclerosis, together with rare inflammatory disorders. A structured approach to such cases is essential, together with judicious use of the many available diagnostic biomarkers. The potential for such conditions to respond to immunotherapy emphasizes the importance of an accurate and prompt diagnosis in improving patient outcomes.
Collapse
Affiliation(s)
- Thomas Williams
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom.
| | - Nevin John
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Anisha Doshi
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; National Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, United Kingdom
| |
Collapse
|
13
|
Yuzkan S, Balsak S, Cinkir U, Kocak B. Multiple sclerosis versus cerebral small vessel disease in MRI: a practical approach using qualitative and quantitative signal intensity differences in white matter lesions. Acta Radiol 2024; 65:106-114. [PMID: 36862588 DOI: 10.1177/02841851231155608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) and cerebral small vessel disease (CSVD) are relatively common radiological entities that occasionally necessitate differential diagnosis. PURPOSE To investigate the differences in magnetic resonance imaging (MRI) signal intensity (SI) between MS and CSVD related white matter lesions. MATERIAL AND METHODS On 1.5-T and 3-T MRI scanners, 50 patients with MS (380 lesions) and 50 patients with CSVD (395 lesions) were retrospectively evaluated. Visual inspection was used to conduct qualitative analysis on diffusion-weighted imaging (DWI)_b1000 to determine relative signal intensity. The thalamus served as the reference for quantitative analysis based on SI ratio (SIR). The statistical analysis utilized univariable and multivariable methods. There were analyses of patient and lesion datasets. On a dataset restricted by age (30-50 years), additional evaluations, including unsupervised fuzzy c-means clustering, were performed. RESULTS Using both quantitative and qualitative features, the optimal model achieved a 100% accuracy, sensitivity, and specificity with an area under the curve (AUC) of 1 in patient-wise analysis. With an AUC of 0.984, the best model achieved a 94% accuracy, sensitivity, and specificity when using only quantitative features. The model's accuracy, sensitivity, and specificity were 91.9%, 84.6%, and 95.8%, respectively, when using the age-restricted dataset. Independent predictors were T2_SIR_max (optimal cutoff=2.1) and DWI_b1000_SIR_mean (optimal cutoff=1.1). Clustering also performed well with an accuracy, sensitivity, and specificity of 86.5%, 70.6%, and 100%, respectively, in the age-restricted dataset. CONCLUSION SI characteristics derived from DWI_b1000 and T2-weighted-based MRI demonstrate excellent performance in differentiating white matter lesions caused by MS and CSVD.
Collapse
Affiliation(s)
- Sabahattin Yuzkan
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Serdar Balsak
- Department of Radiology, Bezmialem Vakif University Hospital, Istanbul, Turkey
| | - Ufuk Cinkir
- Department of Neurology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Burak Kocak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| |
Collapse
|
14
|
Amezcua L, Robers MV, Soneji D, Manouvakhova O, Martinez A, Islam T. Inclusion of optic neuritis in dissemination in space improves the performance of McDonald 2017 criteria in Hispanic people with suspected multiple sclerosis. Mult Scler 2023; 29:1748-1754. [PMID: 37942880 PMCID: PMC10841903 DOI: 10.1177/13524585231209016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
BACKGROUND Hispanic people compared to White people with multiple sclerosis (MS) are two times more likely to present with optic neuritis (ON). ON in dissemination in space (DIS) after a single attack is not part of the current McDonald 2017 criteria. OBJECTIVE To evaluate if adding ON in DIS (ON-modified criteria) improves the performance of the McDonald 2017 criteria in the diagnosis of MS after a single attack of ON. METHODS Retrospective study of 102 patients of Hispanic background. Cases were reviewed between 2017 and 2021. Clinical ON was reported for 35 cases. ON in DIS was verified for 28 patients via MRI, optical coherence tomography, and/or visual evoked potential. We investigated the performance of the McDonald 2017 criteria and ON-modified criteria and calculated sensitivity, specificity, positive and negative predictive values, and accuracy. RESULTS The ON-modified criteria significantly improved the performance of the McDonald 2017 criteria (p = 0.003) and identified an additional nine patients. Both sensitivity and accuracy increased from 64% to 74% and 62% to 71%, respectively, while specificity remained unchanged (40% (95% confidence interval (CI): 0.10, 0.70)). CONCLUSION This study provides evidence that the inclusion of ON in DIS improved the overall performance of the McDonald 2017 criteria among Hispanic people.
Collapse
Affiliation(s)
- Lilyana Amezcua
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Deepak Soneji
- Neurology and Neuroophthalmology, Sutter East Bay Medical Group, Lafayette, CA, USA
| | - Olga Manouvakhova
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrea Martinez
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Talat Islam
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Weidauer S, Hattingen E, Arendt CT. Cervical myelitis: a practical approach to its differential diagnosis on MR imaging. ROFO-FORTSCHR RONTG 2023; 195:1081-1096. [PMID: 37479218 DOI: 10.1055/a-2114-1350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
BACKGROUND Differential diagnosis of non-compressive cervical myelopathy encompasses a broad spectrum of inflammatory, infectious, vascular, neoplastic, neurodegenerative, and metabolic etiologies. Although the speed of symptom onset and clinical course seem to be specific for certain neurological diseases, lesion pattern on MR imaging is a key player to confirm diagnostic considerations. METHODS The differentiation between acute complete transverse myelitis and acute partial transverse myelitis makes it possible to distinguish between certain entities, with the latter often being the onset of multiple sclerosis. Typical medullary MRI lesion patterns include a) longitudinal extensive transverse myelitis, b) short-range ovoid and peripheral lesions, c) polio-like appearance with involvement of the anterior horns, and d) granulomatous nodular enhancement prototypes. RESULTS AND CONCLUSION Cerebrospinal fluid analysis, blood culture tests, and autoimmune antibody testing are crucial for the correct interpretation of imaging findings. The combination of neuroradiological features and neurological and laboratory findings including cerebrospinal fluid analysis improves diagnostic accuracy. KEY POINTS · The differentiation of medullary lesion patterns, i. e., longitudinal extensive transverse, short ovoid and peripheral, polio-like, and granulomatous nodular, facilitates the diagnosis of myelitis.. · Discrimination of acute complete and acute partial transverse myelitis makes it possible to categorize different entities, with the latter frequently being the overture of multiple sclerosis (MS).. · Neuromyelitis optica spectrum disorders (NMOSD) may start as short transverse myelitis and should not be mistaken for MS.. · The combination of imaging features and neurological and laboratory findings including cerebrospinal fluid analysis improves diagnostic accuracy.. · Additional brain imaging is mandatory in suspected demyelinating, systemic autoimmune, infectious, paraneoplastic, and metabolic diseases..
Collapse
Affiliation(s)
- Stefan Weidauer
- Institute for Neuroradiology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Elke Hattingen
- Institute for Neuroradiology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | |
Collapse
|
16
|
Levraut M, Gavoille A, Landes-Chateau C, Cohen M, Bresch S, Seitz-Polski B, Mondot L, Lebrun-Frenay C. Kappa Free Light Chain Index Predicts Disease Course in Clinically and Radiologically Isolated Syndromes. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200156. [PMID: 37640543 PMCID: PMC10462056 DOI: 10.1212/nxi.0000000000200156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/19/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND AND OBJECTIVES To evaluate whether the kappa free light chain index (K-index) can predict the occurrence of new T2-weighted MRI lesions (T2L) and clinical events in clinically isolated syndrome (CIS) and radiologically isolated syndrome (RIS). METHODS All consecutive patients presenting for the diagnostic workup, including CSF analysis, of clinical and/or MRI suspicion of multiple sclerosis (MS) since May 1, 2018, were evaluated. All patients diagnosed with CIS and RIS with at least 1-year follow-up were included. Clinical events and new T2L were collected during follow-up. The K-index performances in predicting new T2L and a clinical event were evaluated using time-dependent ROC analyses. The time to clinical event or new T2L was estimated using survival analysis according to the binarized K-index using an independent cutoff of 8.9, and the ability of each variable to predict outcomes was compared using the Harrell c-index. RESULTS One hundred and eighty two patients (146 CIS and 36 RIS, median age 39 [30; 48] y-o, 70% females) were included with a median follow-up of 21 [13, 33] months. One hundred five (58%) patients (85 CIS and 20 RIS) experienced new T2L, and 28 (15%; 21 CIS and 7 RIS) experienced a clinical event. The K-index could predict new T2L over time in CIS (area under the curve [AUC] ranging from 0.86 to 0.96) and in RIS (AUC ranging from 0.84 to 0.54) but also a clinical event in CIS (AUC ranging from 0.75 to 0.87). Compared with oligoclonal bands (OCBs), the K-index had a better sensitivity and a slight lower specificity in predicting new T2L and clinical events in both populations. In the predictive model, the K-index was the variable that best predict new T2L in both CIS and RIS but also clinical events in CIS (c-index ranging from 0.70 to 0.77), better than the other variables, including OCB. DISCUSSION This study provides evidence that the K-index predicts new T2L in CIS and RIS but also clinical attack in patients with CIS. We suggest adding the K-index in the further MS diagnosis criteria revisions as a dissemination-in-time biomarker.
Collapse
Affiliation(s)
- Michael Levraut
- From the URRIS (M.L., C.L.-C., M.C., L.M., C.L.-F.), Unité Mixte de Recherche Clinique Côte d'Azur (UMR2CA); Service de Médecine Interne (M.L.), Hôpital l'Archet 1, Centre Hospitalier Universitaire de Nice; Service de Biostatistique-Bioinformatique (A.G.), Hospices Civils de Lyon; Service de Neurologie (A.G.), Sclérose en Plaques, Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre-Wertheimer, Hospices Civils de Lyon, Bron; Service de Neurologie (M.C., S.B., C.L.-F.), Centre de Ressource et Compétence - Sclérose En Plaques, Hôpital Pasteur 2; ImmunoPredict (B.S.-P.), Unité Mixte de Recherche Clinique Côte d'Azur (UMR2CA); Laboratoire d'Immunologie (B.S.-P.), Hôpital l'Archet 1; and Service de Radiologie (L.M.), Hôpital Pasteur 2, Centre Hospitalier Universitaire de Nice, France.
| | - Antoine Gavoille
- From the URRIS (M.L., C.L.-C., M.C., L.M., C.L.-F.), Unité Mixte de Recherche Clinique Côte d'Azur (UMR2CA); Service de Médecine Interne (M.L.), Hôpital l'Archet 1, Centre Hospitalier Universitaire de Nice; Service de Biostatistique-Bioinformatique (A.G.), Hospices Civils de Lyon; Service de Neurologie (A.G.), Sclérose en Plaques, Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre-Wertheimer, Hospices Civils de Lyon, Bron; Service de Neurologie (M.C., S.B., C.L.-F.), Centre de Ressource et Compétence - Sclérose En Plaques, Hôpital Pasteur 2; ImmunoPredict (B.S.-P.), Unité Mixte de Recherche Clinique Côte d'Azur (UMR2CA); Laboratoire d'Immunologie (B.S.-P.), Hôpital l'Archet 1; and Service de Radiologie (L.M.), Hôpital Pasteur 2, Centre Hospitalier Universitaire de Nice, France
| | - Cassandre Landes-Chateau
- From the URRIS (M.L., C.L.-C., M.C., L.M., C.L.-F.), Unité Mixte de Recherche Clinique Côte d'Azur (UMR2CA); Service de Médecine Interne (M.L.), Hôpital l'Archet 1, Centre Hospitalier Universitaire de Nice; Service de Biostatistique-Bioinformatique (A.G.), Hospices Civils de Lyon; Service de Neurologie (A.G.), Sclérose en Plaques, Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre-Wertheimer, Hospices Civils de Lyon, Bron; Service de Neurologie (M.C., S.B., C.L.-F.), Centre de Ressource et Compétence - Sclérose En Plaques, Hôpital Pasteur 2; ImmunoPredict (B.S.-P.), Unité Mixte de Recherche Clinique Côte d'Azur (UMR2CA); Laboratoire d'Immunologie (B.S.-P.), Hôpital l'Archet 1; and Service de Radiologie (L.M.), Hôpital Pasteur 2, Centre Hospitalier Universitaire de Nice, France
| | - Mikael Cohen
- From the URRIS (M.L., C.L.-C., M.C., L.M., C.L.-F.), Unité Mixte de Recherche Clinique Côte d'Azur (UMR2CA); Service de Médecine Interne (M.L.), Hôpital l'Archet 1, Centre Hospitalier Universitaire de Nice; Service de Biostatistique-Bioinformatique (A.G.), Hospices Civils de Lyon; Service de Neurologie (A.G.), Sclérose en Plaques, Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre-Wertheimer, Hospices Civils de Lyon, Bron; Service de Neurologie (M.C., S.B., C.L.-F.), Centre de Ressource et Compétence - Sclérose En Plaques, Hôpital Pasteur 2; ImmunoPredict (B.S.-P.), Unité Mixte de Recherche Clinique Côte d'Azur (UMR2CA); Laboratoire d'Immunologie (B.S.-P.), Hôpital l'Archet 1; and Service de Radiologie (L.M.), Hôpital Pasteur 2, Centre Hospitalier Universitaire de Nice, France
| | - Saskia Bresch
- From the URRIS (M.L., C.L.-C., M.C., L.M., C.L.-F.), Unité Mixte de Recherche Clinique Côte d'Azur (UMR2CA); Service de Médecine Interne (M.L.), Hôpital l'Archet 1, Centre Hospitalier Universitaire de Nice; Service de Biostatistique-Bioinformatique (A.G.), Hospices Civils de Lyon; Service de Neurologie (A.G.), Sclérose en Plaques, Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre-Wertheimer, Hospices Civils de Lyon, Bron; Service de Neurologie (M.C., S.B., C.L.-F.), Centre de Ressource et Compétence - Sclérose En Plaques, Hôpital Pasteur 2; ImmunoPredict (B.S.-P.), Unité Mixte de Recherche Clinique Côte d'Azur (UMR2CA); Laboratoire d'Immunologie (B.S.-P.), Hôpital l'Archet 1; and Service de Radiologie (L.M.), Hôpital Pasteur 2, Centre Hospitalier Universitaire de Nice, France
| | - Barbara Seitz-Polski
- From the URRIS (M.L., C.L.-C., M.C., L.M., C.L.-F.), Unité Mixte de Recherche Clinique Côte d'Azur (UMR2CA); Service de Médecine Interne (M.L.), Hôpital l'Archet 1, Centre Hospitalier Universitaire de Nice; Service de Biostatistique-Bioinformatique (A.G.), Hospices Civils de Lyon; Service de Neurologie (A.G.), Sclérose en Plaques, Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre-Wertheimer, Hospices Civils de Lyon, Bron; Service de Neurologie (M.C., S.B., C.L.-F.), Centre de Ressource et Compétence - Sclérose En Plaques, Hôpital Pasteur 2; ImmunoPredict (B.S.-P.), Unité Mixte de Recherche Clinique Côte d'Azur (UMR2CA); Laboratoire d'Immunologie (B.S.-P.), Hôpital l'Archet 1; and Service de Radiologie (L.M.), Hôpital Pasteur 2, Centre Hospitalier Universitaire de Nice, France
| | - Lydiane Mondot
- From the URRIS (M.L., C.L.-C., M.C., L.M., C.L.-F.), Unité Mixte de Recherche Clinique Côte d'Azur (UMR2CA); Service de Médecine Interne (M.L.), Hôpital l'Archet 1, Centre Hospitalier Universitaire de Nice; Service de Biostatistique-Bioinformatique (A.G.), Hospices Civils de Lyon; Service de Neurologie (A.G.), Sclérose en Plaques, Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre-Wertheimer, Hospices Civils de Lyon, Bron; Service de Neurologie (M.C., S.B., C.L.-F.), Centre de Ressource et Compétence - Sclérose En Plaques, Hôpital Pasteur 2; ImmunoPredict (B.S.-P.), Unité Mixte de Recherche Clinique Côte d'Azur (UMR2CA); Laboratoire d'Immunologie (B.S.-P.), Hôpital l'Archet 1; and Service de Radiologie (L.M.), Hôpital Pasteur 2, Centre Hospitalier Universitaire de Nice, France
| | - Christine Lebrun-Frenay
- From the URRIS (M.L., C.L.-C., M.C., L.M., C.L.-F.), Unité Mixte de Recherche Clinique Côte d'Azur (UMR2CA); Service de Médecine Interne (M.L.), Hôpital l'Archet 1, Centre Hospitalier Universitaire de Nice; Service de Biostatistique-Bioinformatique (A.G.), Hospices Civils de Lyon; Service de Neurologie (A.G.), Sclérose en Plaques, Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre-Wertheimer, Hospices Civils de Lyon, Bron; Service de Neurologie (M.C., S.B., C.L.-F.), Centre de Ressource et Compétence - Sclérose En Plaques, Hôpital Pasteur 2; ImmunoPredict (B.S.-P.), Unité Mixte de Recherche Clinique Côte d'Azur (UMR2CA); Laboratoire d'Immunologie (B.S.-P.), Hôpital l'Archet 1; and Service de Radiologie (L.M.), Hôpital Pasteur 2, Centre Hospitalier Universitaire de Nice, France
| |
Collapse
|
17
|
Lebrun-Frenay C, Kantarci O, Siva A, Azevedo CJ, Makhani N, Pelletier D, Okuda DT. Radiologically isolated syndrome. Lancet Neurol 2023; 22:1075-1086. [PMID: 37839432 DOI: 10.1016/s1474-4422(23)00281-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/29/2023] [Accepted: 07/17/2023] [Indexed: 10/17/2023]
Abstract
Individuals can be deemed to have radiologically isolated syndrome (RIS) if they have incidental demyelinating-appearing lesions in their brain or spinal cord that are highly suggestive of multiple sclerosis but their clinical history does not include symptoms consistent with multiple sclerosis. Data from international longitudinal cohorts indicate that around half of people with RIS will develop relapsing or progressive symptoms of multiple sclerosis within 10 years, suggesting that in some individuals, RIS is a presymptomatic stage of multiple sclerosis. Risk factors for progression from RIS to clinical multiple sclerosis include younger age (ie, <35 years), male sex, CSF-restricted oligoclonal bands, spinal cord or infratentorial lesions, and gadolinium-enhancing lesions. Other imaging, biological, genetic, and digital biomarkers that might be of value in identifying individuals who are at the highest risk of developing multiple sclerosis need further investigation. Two 2-year randomised clinical trials showed the efficacy of approved multiple sclerosis immunomodulatory medications in preventing the clinical conversion to multiple sclerosis in some individuals with RIS. If substantiated in longer-term studies, these data have the potential to transform our approach to care for the people with RIS who are at the greatest risk of diagnosis with multiple sclerosis.
Collapse
Affiliation(s)
- Christine Lebrun-Frenay
- CRC-SEP Nice, Neurologie CHU Nice, Hôpital Pasteur 2, UMR2CA-URRIS, Université Côte d'Azur, Nice, France.
| | | | - Aksel Siva
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul University, Turkiye
| | - Christina J Azevedo
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Naila Makhani
- Departments of Pediatrics and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Daniel Pelletier
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Darin T Okuda
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
18
|
Choi EL, Taheri N, Tan E, Matsumoto K, Hayashi Y. The Crucial Role of the Interstitial Cells of Cajal in Neurointestinal Diseases. Biomolecules 2023; 13:1358. [PMID: 37759758 PMCID: PMC10526372 DOI: 10.3390/biom13091358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Neurointestinal diseases result from dysregulated interactions between the nervous system and the gastrointestinal (GI) tract, leading to conditions such as Hirschsprung's disease and irritable bowel syndrome. These disorders affect many people, significantly diminishing their quality of life and overall health. Central to GI motility are the interstitial cells of Cajal (ICC), which play a key role in muscle contractions and neuromuscular transmission. This review highlights the role of ICC in neurointestinal diseases, revealing their association with various GI ailments. Understanding the functions of the ICC could lead to innovative perspectives on the modulation of GI motility and introduce new therapeutic paradigms. These insights have the potential to enhance efforts to combat neurointestinal diseases and may lead to interventions that could alleviate or even reverse these conditions.
Collapse
Affiliation(s)
- Egan L. Choi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Negar Taheri
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Elijah Tan
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Kenjiro Matsumoto
- Laboratory of Pathophysiology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyoto 610-0395, Japan;
| | - Yujiro Hayashi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Cohen JA. Commentary: Solomon AJ et al. Differential diagnosis of suspected multiple sclerosis: An updated consensus approach. Lancet Neurol 2023; 22(8): 750-768. Mult Scler 2023; 29:1047-1048. [PMID: 37470270 DOI: 10.1177/13524585231188097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Affiliation(s)
- Jeffrey A Cohen
- Mellen Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
20
|
Solomon AJ, Arrambide G, Brownlee WJ, Flanagan EP, Amato MP, Amezcua L, Banwell BL, Barkhof F, Corboy JR, Correale J, Fujihara K, Graves J, Harnegie MP, Hemmer B, Lechner-Scott J, Marrie RA, Newsome SD, Rocca MA, Royal W, Waubant EL, Yamout B, Cohen JA. Differential diagnosis of suspected multiple sclerosis: an updated consensus approach. Lancet Neurol 2023; 22:750-768. [PMID: 37479377 DOI: 10.1016/s1474-4422(23)00148-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 07/23/2023]
Abstract
Accurate diagnosis of multiple sclerosis requires careful attention to its differential diagnosis-many disorders can mimic the clinical manifestations and paraclinical findings of this disease. A collaborative effort, organised by The International Advisory Committee on Clinical Trials in Multiple Sclerosis in 2008, provided diagnostic approaches to multiple sclerosis and identified clinical and paraclinical findings (so-called red flags) suggestive of alternative diagnoses. Since then, knowledge of disorders in the differential diagnosis of multiple sclerosis has expanded substantially. For example, CNS inflammatory disorders that present with syndromes overlapping with multiple sclerosis can increasingly be distinguished from multiple sclerosis with the aid of specific clinical, MRI, and laboratory findings; studies of people misdiagnosed with multiple sclerosis have also provided insights into clinical presentations for which extra caution is warranted. Considering these data, an update to the recommended diagnostic approaches to common clinical presentations and key clinical and paraclinical red flags is warranted to inform the contemporary clinical evaluation of patients with suspected multiple sclerosis.
Collapse
Affiliation(s)
- Andrew J Solomon
- Department of Neurological Sciences, Larner College of Medicine at the University of Vermont, University Health Center, Burlington, VT, USA.
| | - Georgina Arrambide
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Wallace J Brownlee
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Eoin P Flanagan
- Departments of Neurology and Laboratory Medicine and Pathology and the Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Maria Pia Amato
- Department NEUROFARBA, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Lilyana Amezcua
- Department of Neurology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Brenda L Banwell
- Department of Neurology, University of Pennsylvania, Division of Child Neurology, Philadelphia, PA, USA; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - John R Corboy
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jorge Correale
- Department of Neurology, Fleni Institute of Biological Chemistry and Physical Chemistry (IQUIFIB), Buenos Aires, Argentina; National Council for Scientific and Technical Research/University of Buenos Aires, Buenos Aires, Argentina
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University School of Medicine, Koriyama, Japan; Multiple Sclerosis and Neuromyelitis Optica Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan
| | - Jennifer Graves
- Department of Neurosciences, University of California, San Diego, CA, USA
| | | | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Medical Faculty, Technische Universität München, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany
| | - Jeannette Lechner-Scott
- Department of Neurology, John Hunter Hospital, Newcastle, NSW Australia; Hunter Medical Research Institute Neurology, University of Newcastle, Newcastle, NSW, Australia
| | - Ruth Ann Marrie
- Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Scott D Newsome
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, Neurology Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Walter Royal
- Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Emmanuelle L Waubant
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Bassem Yamout
- Neurology Institute, Harley Street Medical Center, Abu Dhabi, United Arab Emirates
| | - Jeffrey A Cohen
- Mellen Center for MS Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
21
|
Maroto-García J, Martínez-Escribano A, Delgado-Gil V, Mañez M, Mugueta C, Varo N, García de la Torre Á, Ruiz-Galdón M. Biochemical biomarkers for multiple sclerosis. Clin Chim Acta 2023; 548:117471. [PMID: 37419300 DOI: 10.1016/j.cca.2023.117471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is the most frequent demyelinating disease of the central nervous system. Although there is currently no definite cure for MS, new therapies have recently been developed based on a continuous search for new biomarkers. DEVELOPMENT MS diagnosis relies on the integration of clinical, imaging and laboratory findings as there is still no singlepathognomonicclinical feature or diagnostic laboratory biomarker. The most commonly laboratory test used is the presence of immunoglobulin G oligoclonal bands (OCB) in cerebrospinal fluid of MS patients. This test is now included in the 2017 McDonald criteria as a biomarker of dissemination in time. Nevertheless, there are other biomarkers currently in use such as kappa free light chain, which has shown higher sensitivity and specificity for MS diagnosis than OCB. In addition, other potential laboratory tests involved in neuronal damage, demyelination and/or inflammation could be used for detecting MS. CONCLUSIONS CSF and serum biomarkers have been reviewed for their use in MS diagnosis and prognosis to stablish an accurate and prompt MS diagnosis, crucial to implement an adequate treatment and to optimize clinical outcomes over time.
Collapse
Affiliation(s)
- Julia Maroto-García
- Biochemistry Department, Clínica Universidad de Navarra, Spain; Department of Biochemistry and Molecular Biology. Faculty of Medicine. University of Malaga, Spain.
| | - Ana Martínez-Escribano
- Department of Biochemistry and Molecular Biology. Faculty of Medicine. University of Malaga, Spain; Laboratory Medicine, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-ARRIXACA, Murcia, Spain
| | - Virginia Delgado-Gil
- Neurology Department, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - Minerva Mañez
- Neurology Department, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - Carmen Mugueta
- Biochemistry Department, Clínica Universidad de Navarra, Spain
| | - Nerea Varo
- Biochemistry Department, Clínica Universidad de Navarra, Spain
| | - Ángela García de la Torre
- Clinical Analysis Service, Hospital Universitario Virgen de la Victoria, Malaga, Spain; The Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| | - Maximiliano Ruiz-Galdón
- Department of Biochemistry and Molecular Biology. Faculty of Medicine. University of Malaga, Spain; Clinical Analysis Service, Hospital Universitario Virgen de la Victoria, Malaga, Spain; The Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| |
Collapse
|
22
|
Tzanetakos D, Kyrozis A, Karavasilis E, Velonakis G, Tzartos JS, Toulas P, Sotirli SA, Evdokimidis I, Tsivgoulis G, Potagas C, Kilidireas C, Andreadou E. Early metabolic alterations in the normal‑appearing grey and white matter of patients with clinically isolated syndrome suggestive of multiple sclerosis: A proton MR spectroscopic study. Exp Ther Med 2023; 26:349. [PMID: 37324507 PMCID: PMC10265702 DOI: 10.3892/etm.2023.12048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) is an advanced method of examining metabolic profiles. The present study aimed to assess in vivo metabolite levels in areas of normal-appearing grey (thalamus) and white matter (centrum semiovale) using 1H-MRS in patients with clinically isolated syndrome (CIS) suggestive of multiple sclerosis and compare them to healthy controls (HCs). Data from 35 patients with CIS (CIS group), of which 23 were untreated (CIS-untreated group) and 12 were treated (CIS-treated group) with disease-modifying-therapies (DMTs) at the time of 1H-MRS, and from 28 age- and sex-matched HCs were collected using a 3.0 T MRI and single-voxel 1H-MRS (point resolved spectroscopy sequence; repetition time, 2,000 msec; time to echo, 35 msec). Concentrations and ratios of total N-acetyl aspartate (tNAA), total creatine (tCr), total choline (tCho), myoinositol, glutamate (Glu), glutamine (Gln), Glu + Gln (Glx) and glutathione (Glth) were estimated in the thalamic-voxel (th) and centrum semiovale-voxel (cs). For the CIS group, the median duration from the first clinical attack to 1H-MRS was 102 days (interquartile range, 89.5.-131.5). Compared with HCs, significantly lower Glx(cs) (P=0.014) and ratios of tCho/tCr(th) (P=0.026), Glu/tCr(cs) (P=0.040), Glx/tCr(cs) (P=0.004), Glx/tNAA(th) (P=0.043) and Glx/tNAA(cs) (P=0.015) were observed in the CIS group. No differences in tNAA levels were observed between the CIS and the HC groups; however, tNAA(cs) was higher in the CIS-treated than in the CIS-untreated group (P=0.028). Compared with those in HC group, decreased Glu(cs) (P=0.019) and Glx(cs) levels (P=0.014) and lower ratios for tCho/tCr(th) (P=0.015), Gln/tCr(th) (P=0.004), Glu/tCr(cs) (P=0.021), Glx/tCr(th) (P=0.041), Glx/tCr(cs) (P=0.003), Glx/tNAA(th) (P=0.030) and Glx/tNAA(cs) (P=0.015) were found in the CIS-untreated group. The present findings showed alterations in the normal-appearing grey and white matter of patients with CIS; moreover, the present results suggested an early indirect treatment effect of DMTs on the brain metabolic profile of these patients.
Collapse
Affiliation(s)
- Dimitrios Tzanetakos
- Second Department of Neurology, ‘Attikon’ University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Andreas Kyrozis
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Efstratios Karavasilis
- Research Unit of Radiology, Second Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Medical Physics Laboratory, School of Medicine, Democritus University of Thrace, 68100 Alexandroupoli, Greece
| | - Georgios Velonakis
- Research Unit of Radiology, Second Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - John S. Tzartos
- Second Department of Neurology, ‘Attikon’ University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Panagiotis Toulas
- Research Unit of Radiology, Second Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Stefania Alexia Sotirli
- MS Center and Other Neurodegenerative diseases, Metropolitan General Hospital, 15562 Holargos, Athens, Greece
| | - Ioannis Evdokimidis
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, ‘Attikon’ University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Constantin Potagas
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Costantinos Kilidireas
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Elisabeth Andreadou
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
23
|
Khan Z, Gupta GD, Mehan S. Cellular and Molecular Evidence of Multiple Sclerosis Diagnosis and Treatment Challenges. J Clin Med 2023; 12:4274. [PMID: 37445309 DOI: 10.3390/jcm12134274] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that impacts the central nervous system and can result in disability. Although the prevalence of MS has increased in India, diagnosis and treatment continue to be difficult due to several factors. The present study examines the difficulties in detecting and treating multiple sclerosis in India. A lack of MS knowledge among healthcare professionals and the general public, which delays diagnosis and treatment, is one of the significant issues. Inadequate numbers of neurologists and professionals with knowledge of MS management also exacerbate the situation. In addition, MS medications are expensive and not covered by insurance, making them inaccessible to most patients. Due to the absence of established treatment protocols and standards for MS care, India's treatment techniques vary. In addition, India's population diversity poses unique challenges regarding genetic variations, cellular and molecular abnormalities, and the potential for differing treatment responses. MS is more difficult to accurately diagnose and monitor due to a lack of specialized medical supplies and diagnostic instruments. Improved awareness and education among healthcare professionals and the general public, as well as the development of standardized treatment regimens and increased investment in MS research and infrastructure, are required to address these issues. By addressing these issues, it is anticipated that MS diagnosis and treatment in India will improve, leading to better outcomes for those affected by this chronic condition.
Collapse
Affiliation(s)
- Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| |
Collapse
|
24
|
Quigley S, Asad M, Doherty C, Byrne D, Cronin S, Kearney H. Concurrent diagnoses of Tuberous sclerosis and multiple sclerosis. Mult Scler Relat Disord 2023; 71:104586. [PMID: 36863086 DOI: 10.1016/j.msard.2023.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Tuberous sclerosis (TS) is a monogenic disorder which causes disabling neurological symptoms. Similarly, multiple sclerosis (MS) may result in disability, but in contrast, is diagnosed without genetic testing. Clinicians are advised to exercise caution in diagnosing MS in the presence of a pre-existing genetic disorder, as it may be a potential 'red flag'. A dual diagnosis of MS and TS has not previously been reported in the literature. We provide two cases of known cases of TS who presented with new neurological symptoms and associated physical signs compatible with a dual diagnosis of TS/MS.
Collapse
Affiliation(s)
- Suzanne Quigley
- MS Unit, Department of Neurology, St James's Hospital, Ireland.
| | - Murva Asad
- MS Unit, Department of Neurology, St James's Hospital, Ireland
| | - Colin Doherty
- Department of Neurology, St James's Hospital, Ireland
| | | | - Simon Cronin
- Clinical Neuroscience, School of Medicine, University College Cork, Ireland; Department of Neurology, Cork University Hospital, Ireland
| | - Hugh Kearney
- MS Unit, Department of Neurology, St James's Hospital, Ireland
| |
Collapse
|
25
|
Carnero Contentti E, López PA, Criniti J, Alonso R, Silva B, Luetic G, Correa-Díaz EP, Galleguillos L, Navas C, Soto de Castillo I, Hamuy FDDB, Gracia F, Tkachuk V, Weinshenker BG, Rojas JI. Frequency of NMOSD misdiagnosis in a cohort from Latin America: Impact and evaluation of different contributors. Mult Scler 2023; 29:277-286. [PMID: 36453614 DOI: 10.1177/13524585221136259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) misdiagnosis (i.e. the incorrect diagnosis of patients who truly have NMOSD) remains an issue in clinical practice. We determined the frequency and factors associated with NMOSD misdiagnosis in patients evaluated in a cohort from Latin America. METHODS We retrospectively reviewed the medical records of patients with NMOSD, according to the 2015 diagnostic criteria, from referral clinics in six Latin American countries (Argentina, Chile, Paraguay, Colombia, Ecuador, and Venezuela). Diagnoses prior to NMOSD and ultimate diagnoses, demographic, clinical and paraclinical data, and treatment schemes were evaluated. RESULTS A total of 469 patients presented with an established diagnosis of NMOSD (73.2% seropositive) and after evaluation, we determined that 56 (12%) patients had been initially misdiagnosed with a disease other than NMOSD. The most frequent alternative diagnoses were multiple sclerosis (MS; 66.1%), clinically isolated syndrome (17.9%), and cerebrovascular disease (3.6%). NMOSD misdiagnosis was determined by MS/NMOSD specialists in 33.9% of cases. An atypical MS syndrome was found in 86% of misdiagnosed patients, 50% had NMOSD red flags in brain and/or spinal magnetic resonance imaging (MRI), and 71.5% were prescribed disease-modifying drugs. CONCLUSIONS NMOSD misdiagnosis is relatively frequent in Latin America (12%). Misapplication and misinterpretation of clinical and neuroradiological findings are relevant factors associated with misdiagnosis.
Collapse
Affiliation(s)
| | - Pablo A López
- Neuroimmunology Unit, Department of Neuroscience, Hospital Alemán, Buenos Aires, Argentina
| | - Juan Criniti
- Department of Internal Medicine, Hospital Alemán, Buenos Aires, Argentina
| | - Ricardo Alonso
- Neurology Department, Hospital J.M. Ramos Mejía, University of Buenos Aires, Buenos Aires, Argentina
| | - Berenice Silva
- Neurology Department, Hospital J.M. Ramos Mejía, University of Buenos Aires, Buenos Aires, Argentina/Sección Enfermedades Desmielinizantes, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | | | - Lorna Galleguillos
- Clínica Alemana de Santiago, Santiago, Chile; Universidad del Desarrollo, Santiago, Chile
| | - Carlos Navas
- Clínica Enfermedad Desmielinizante, Clinica Universitaria Colombia, Bogotá, Colombia
| | | | | | - Fernando Gracia
- Hospital Santo Tomas, Universidad Interamericana de Panamá, Panama City, Panamá
| | - Verónica Tkachuk
- Neuroimmunology Section, Department of Neurology, Hospital de Clínicas "José de San Martín," Buenos Aires, Argentina
| | | | - Juan Ignacio Rojas
- Centro de Esclerosis Múltiple de Buenos Aires (CEMBA), Buenos Aires, Argentina
| |
Collapse
|
26
|
Boufidou F, Vakrakou AG, Anagnostouli M, Patas K, Paraskevas G, Chatzipanagiotou S, Stefanis L, Evangelopoulos ME. An Updated Evaluation of Intrathecal IgG Synthesis Markers in Relation to Oligoclonal Bands. Diagnostics (Basel) 2023; 13:diagnostics13030389. [PMID: 36766494 PMCID: PMC9913896 DOI: 10.3390/diagnostics13030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The aim was to evaluate the performance of the latest quantitative marker for intrathecal IgG synthesis and to compare it with other established markers used for the same purpose. We retrospectively applied Auer's and Reiber's intrathecal IgG synthesis formulae in a cohort of 372 patients under investigation for central nervous system demyelination who had undergone lumbar puncture and oligoclonal bands (OCBs) detection for demonstrating intrathecal IgG synthesis. A ROC analysis revealed Auer's formula had lower sensitivity (68%) compared to Reiber's formula (83%) and IgG index (89%), in our cohort of patients that exhibited normal to mildly elevated albumin quotients (4.48 ± 3.93). By excluding possible sources of errors, we assume that Auer's formula is less sensitive than other established tools for the "prediction" of the detection of OCBs in routine cerebrospinal fluid (CSF) analyses due to the mathematical model used. Given the ability of Reiber's hyperbolic formula to describe the blood-CSF IgG distribution across a wide range of blood-brain barrier functionality, its use and the use of similar formulae are recommended for the discrimination between CNS-derived and blood-derived molecules in clinical laboratories.
Collapse
Affiliation(s)
- Fotini Boufidou
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
- Department of Biopathology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
- Correspondence: ; Tel.: +30-2107289125
| | - Aigli G. Vakrakou
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Maria Anagnostouli
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Kostas Patas
- Department of Biopathology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Georgios Paraskevas
- 2nd Department of Neurology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Stylianos Chatzipanagiotou
- Department of Biopathology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Maria-Eleftheria Evangelopoulos
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| |
Collapse
|
27
|
Shah AA, Piche J, Stewart B, Lyness C, Callaghan B, Solomon AJ. Limited diagnostic utility of serologic testing for neurologic manifestations of systemic disease in the evaluation of suspected multiple sclerosis: A single-center observational study. Mult Scler Relat Disord 2023; 69:104443. [PMID: 36521385 DOI: 10.1016/j.msard.2022.104443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The clinical evaluation of a new diagnosis of MS typically includes serologic testing to evaluate for its many mimics, yet there is little data to guide approaches to such testing. OBJECTIVE To evaluate for the frequency and clinical significance of serologic testing for MS diagnostic evaluations. METHODS In a single MS subspeciality center retrospective study, new patient evaluations for MS over the course of a year were identified, and the results of serologic testing and diagnostic evaluation extracted. Retrospective longitudinal diagnostic assessment was performed to confirm the accuracy of initial serological testing assessments. RESULTS 150 patients had 823 serologic tests. 40 (5%) tests were positive, and resulted in 117 additional serologic tests, 10 radiographs, and 2 biopsies. 77 (51%) patients were diagnosed with a non-demyelinating disorder. Serologic testing results did not change any diagnosis, yet in some patients, it resulted in unnecessary additional testing and diagnostic delay. CONCLUSIONS Serologic testing in the clinical assessment for routine MS resulted in unnecessary diagnostic delay, additional testing, and considerable healthcare cost.
Collapse
Affiliation(s)
- Anna A Shah
- Department of Neurology & Rocky Mountain MS Center, University of Colorado School of Medicine, Academic Office 1, B-185, 12631 East 17th Avenue, Aurora, CO 80045, USA.
| | - Jessica Piche
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | | | - Brian Callaghan
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Andrew J Solomon
- Department of Neurological Sciences, Lartner College of Medicine at the University of Vermont School, Burlington, VT, USA
| |
Collapse
|
28
|
Dimitriou NG, Meuth SG, Martinez-Lapiscina EH, Albrecht P, Menge T. Treatment of Patients with Multiple Sclerosis Transitioning Between Relapsing and Progressive Disease. CNS Drugs 2023; 37:69-92. [PMID: 36598730 PMCID: PMC9829585 DOI: 10.1007/s40263-022-00977-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating and neurodegenerative disease of the central nervous system with a wide variety of clinical phenotypes. In spite of the phenotypic classification of MS patients, current data provide evidence that diffuse neuroinflammation and neurodegeneration coexist in all MS forms, the latter gaining increasing clinical relevance in progressive phases. Given that the transition phase of relapsing-remitting MS (RRMS) to secondary progressive MS (SPMS) is not well defined, and widely accepted criteria for SPMS are lacking, randomised controlled trials (RCTs) specifically designed for the transition phase have not been conducted. This review summarizes primary and secondary analyses and reports derived from phase III prospective clinical RCTs listed in PubMed of compounds authorised through the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) for the treatment of MS. The best data are available for interferon beta-1a (IFNb-1a) subcutaneous (s.c.), IFNb-1b s.c., mitoxantrone and siponimod, the latter being the most modern compound with likely the best risk-to-effect ratio. Moreover, there is a labels discrepancy for many disease-modifying treatments (DMTs) between the FDA and EMA, which have to be taken into consideration when opting for a specific DMT.
Collapse
Affiliation(s)
- Nikolaos G. Dimitriou
- grid.411327.20000 0001 2176 9917Department of Neurology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Sven G. Meuth
- grid.411327.20000 0001 2176 9917Department of Neurology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Elena H. Martinez-Lapiscina
- grid.10403.360000000091771775Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain ,grid.452397.eOffice of Therapies for Neurological and Psychiatric Disorders, Human Medicines Division, European Medicines Agency, Amsterdam, The Netherlands
| | - Philipp Albrecht
- Department of Neurology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany. .,Department of Neurology, Maria Hilf Clinic, Mönchengladbach, Germany.
| | - Til Menge
- grid.411327.20000 0001 2176 9917Department of Neurology, LVR-Klinikum Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
29
|
Mathey G, Ferrand M, Epstein J, Soudant M. An algorithm to determine the date when the McDonald criteria are met for the diagnosis of relapsing-remitting multiple sclerosis. Rev Neurol (Paris) 2022; 178:1090-1097. [PMID: 36180291 DOI: 10.1016/j.neurol.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/13/2022] [Accepted: 07/04/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND A patient is diagnosed with multiple sclerosis once they meet the McDonald criteria of dissemination in space and time. Studies of cohorts of patients with multiple sclerosis need a reproducible way to determine an accurate date of diagnosis. We developed an automatic data-driven algorithm to determine the date when the MacDonald criteria are met, which we validated with the Registre Lorrain des Scleroses en Plaques (ReLSEP), a regional French registry of patients with multiple sclerosis. METHODS We developed an algorithm to determine the date of diagnosis based on clinical and paraclinical data adapted from the four versions of the McDonald criteria. For validation, the dates of diagnosis generated by the algorithm were compared with those determined by an expert physician using the patients' files as the gold standard. We calculated the sensitivity and specificity of the algorithm to provide a date, then we tested the equivalence between the dates of the gold standard and the algorithm (two-one-sided-t-test). RESULTS The algorithm used every possibility of determining dissemination in space and time according to the four sets. The sensitivity of the algorithm was 100% for the four sets, and specificity ranged between 95 and 100%. The difference between the dates of diagnosis found by the physician and the algorithm was usually less than 2 weeks (equivalence test P<0.0001). CONCLUSION The algorithm appears to be an efficient surrogate to accurately determine dates of diagnosis of multiple sclerosis in datasets of patients.
Collapse
Affiliation(s)
- G Mathey
- Department of neurology, Nancy university hospital, 54035 Nancy, France; APEMAC, équipe MICS, université de Lorraine, 54000 Nancy, France.
| | - M Ferrand
- Department of neurology, Nancy university hospital, 54035 Nancy, France
| | - J Epstein
- APEMAC, équipe MICS, université de Lorraine, 54000 Nancy, France; Inserm, CIC, épidémiologie clinique, université de Lorraine, CHRU-Nancy, 54000 Nancy, France
| | - M Soudant
- Inserm, CIC, épidémiologie clinique, université de Lorraine, CHRU-Nancy, 54000 Nancy, France
| |
Collapse
|
30
|
Response: Treatment of multiple sclerosis as a single disease based on the body-pathology-environment model. Mult Scler Relat Disord 2022; 68:104222. [PMID: 36274286 DOI: 10.1016/j.msard.2022.104222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
|
31
|
Evangelopoulos ME, Koutsis G, Boufidou F, Markianos M. Cholesterol levels in plasma and cerebrospinal fluid in patients with clinically isolated syndrome and relapsing-remitting multiple sclerosis. Neurobiol Dis 2022; 174:105889. [DOI: 10.1016/j.nbd.2022.105889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 10/31/2022] Open
|
32
|
Aslam N, Khan IU, Bashamakh A, Alghool FA, Aboulnour M, Alsuwayan NM, Alturaif RK, Brahimi S, Aljameel SS, Al Ghamdi K. Multiple Sclerosis Diagnosis Using Machine Learning and Deep Learning: Challenges and Opportunities. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22207856. [PMID: 36298206 PMCID: PMC9609137 DOI: 10.3390/s22207856] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 10/11/2022] [Indexed: 05/17/2023]
Abstract
Multiple Sclerosis (MS) is a disease that impacts the central nervous system (CNS), which can lead to brain, spinal cord, and optic nerve problems. A total of 2.8 million are estimated to suffer from MS. Globally, a new case of MS is reported every five minutes. In this review, we discuss the proposed approaches to diagnosing MS using machine learning (ML) published between 2011 and 2022. Numerous models have been developed using different types of data, including magnetic resonance imaging (MRI) and clinical data. We identified the methods that achieved the best results in diagnosing MS. The most implemented approaches are SVM, RF, and CNN. Moreover, we discussed the challenges and opportunities in MS diagnosis to improve AI systems to enable researchers and practitioners to enhance their approaches and improve the automated diagnosis of MS. The challenges faced by automated MS diagnosis include difficulty distinguishing the disease from other diseases showing similar symptoms, protecting the confidentiality of the patients' data, achieving reliable ML models that are also easily understood by non-experts, and the difficulty of collecting a large reliable dataset. Moreover, we discussed several opportunities in the field such as the implementation of secure platforms, employing better AI solutions, developing better disease prognosis systems, combining more than one data type for better MS prediction and using OCT data for diagnosis, utilizing larger, multi-center datasets to improve the reliability of the developed models, and commercialization.
Collapse
Affiliation(s)
- Nida Aslam
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Correspondence:
| | - Irfan Ullah Khan
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Asma Bashamakh
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Fatima A. Alghool
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Menna Aboulnour
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Noorah M. Alsuwayan
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Rawa’a K. Alturaif
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Samiha Brahimi
- Department of Computer Information Systems, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sumayh S. Aljameel
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Kholoud Al Ghamdi
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
33
|
Ning L, Wang B. Neurofilament light chain in blood as a diagnostic and predictive biomarker for multiple sclerosis: A systematic review and meta-analysis. PLoS One 2022; 17:e0274565. [PMID: 36103562 PMCID: PMC9473405 DOI: 10.1371/journal.pone.0274565] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Neurofilament light chain (NfL) in cerebrospinal fluid (CSF) is a biomarker of multiple sclerosis (MS). However, CSF sampling is invasive and has limited the clinical application. With the development of highly sensitive single-molecule assay, the accurate quantification of the very low NfL levels in blood become feasible. As evidence being accumulated, we performed a meta-analysis to evaluate the diagnostic and predictive value of blood NfL in MS patients.
Methods
We performed literature search on PubMed, EMBASE, Web of Science and Cochrane Library from inception to May 31, 2022. The blood NfL differences between MS vs. controls, MS vs. clinically isolated syndrome (CIS), progressive MS (PMS) vs. relapsing-remitting MS (RRMS), and MS in relapse vs. MS in remission were estimated by standard mean difference (SMD) and corresponding 95% confidence interval (CI). Pooled hazard ratio (HR) and 95%CI were calculated to predict time to reach Expanded Disability Status Scale (EDSS) score≥4.0 and to relapse.
Results
A total of 28 studies comprising 6545 MS patients and 2477 controls were eligible for meta-analysis of diagnosis value, and 5 studies with 4444 patients were synthesized in analysis of predictive value. Blood NfL levels were significantly higher in MS patients vs. age-matched controls (SMD = 0.64, 95%CI 0.44–0.85, P<0.001), vs. non-matched controls (SMD = 0.76, 95%CI 0.56–0.96, P<0.001) and vs. CIS patients (SMD = 0.30, 95%CI 0.18–0.42, P<0.001), in PMS vs. RRMS (SMD = 0.56, 95%CI 0.27–0.85, P<0.001), and in relapsed patients vs. remitted patients (SMD = 0.54, 95%CI 0.16–0.92, P = 0.005). Patients with high blood NfL levels had shorter time to reach EDSS score≥4.0 (HR = 2.36, 95%CI 1.32–4.21, P = 0.004) but similar time to relapse (HR = 1.32, 95%CI 0.90–1.93, P = 0.155) compared to those with low NfL levels.
Conclusion
As far as we know, this is the first meta-analysis evaluating the diagnosis and predictive value of blood NfL in MS. The present study indicates blood NfL may be a useful biomarker in diagnosing MS, distinguishing MS subtypes and predicting disease worsening in the future.
Collapse
Affiliation(s)
- Liangxia Ning
- Department of Neurology, Yuncheng Central Hospital, The Eighth Shanxi Medical University, Yuncheng, China
| | - Bin Wang
- Department of Neurology, Yuncheng Central Hospital, The Eighth Shanxi Medical University, Yuncheng, China
- * E-mail:
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The diagnosis of multiple sclerosis (MS) can be made based on clinical symptoms and signs alone or a combination of clinical and paraclinical features. Diagnostic criteria for MS have evolved over time, and the latest version facilitates earlier diagnosis of MS in those presenting with typical clinical syndromes. This article summarizes the current diagnostic criteria for MS, typical and atypical presentations of MS, and when diagnostic criteria should be applied with caution. RECENT FINDINGS The most recent version of the MS diagnostic criteria has the benefits of simplicity and greater sensitivity in comparison to previous iterations. However, misdiagnosis remains a significant issue in MS clinical care, even at MS specialty centers. It is, therefore, evident that careful clinical application of the current version of the diagnostic criteria is necessary and that tools improving the diagnostic accuracy of MS would be of substantial clinical utility. Emerging diagnostic biomarkers that may be useful in this regard, including the central vein sign, paramagnetic rim lesions, and fluid biomarkers, are discussed. SUMMARY Current MS diagnostic criteria facilitate the early diagnosis of MS in people presenting with typical clinical syndromes but should be used cautiously in those presenting with atypical syndromes and in special populations. Clinical judgment and existing paraclinical tools, including sequential MRIs of the neuraxis and laboratory tests, are useful in minimizing misdiagnosis and facilitating the accurate diagnosis of MS. Diagnostic biomarkers that may facilitate or refute a diagnosis of MS in these settings, and emerging imaging and fluid biomarkers may eventually become available for use in clinical settings.
Collapse
|
35
|
Huang YT, Giacomini PS, Massie R, Venkateswaran S, Trudelle AM, Fadda G, Sharifian-Dorche M, Boudjani H, Poliquin-Lasnier L, Airas L, Saveriano AW, Ziller MG, Miller E, Martinez-Rios C, Wilson N, Davila J, Rush C, Longbrake EE, Longoni G, Macaron G, Bernard G, Tampieri D, Antel J, Brais B, La Piana R. The White Matter Rounds experience: The importance of a multidisciplinary network to accelerate the diagnostic process for adult patients with rare white matter disorders. Front Neurol 2022; 13:928493. [PMID: 35959404 PMCID: PMC9359417 DOI: 10.3389/fneur.2022.928493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Adult genetic leukoencephalopathies are rare neurological disorders that present unique diagnostic challenges due to their clinical and radiological overlap with more common white matter diseases, notably multiple sclerosis (MS). In this context, a strong collaborative multidisciplinary network is beneficial for shortening the diagnostic odyssey of these patients and preventing misdiagnosis. The White Matter Rounds (WM Rounds) are multidisciplinary international online meetings attended by more than 30 physicians and scientists from 15 participating sites that gather every month to discuss patients with atypical white matter disorders. We aim to present the experience of the WM Rounds Network and demonstrate the value of collaborative multidisciplinary international case discussion meetings in differentiating and preventing misdiagnoses between genetic white matter diseases and atypical MS. Methods We retrospectively reviewed the demographic, clinical and radiological data of all the subjects presented at the WM Rounds since their creation in 2013. Results Seventy-four patients (mean age 44.3) have been referred and discussed at the WM Rounds since 2013. Twenty-five (33.8%) of these patients were referred by an MS specialist for having an atypical presentation of MS, while in most of the remaining cases, the referring physician was a geneticist (23; 31.1%). Based on the WM Rounds recommendations, a definite diagnosis was made in 36/69 (52.2%) patients for which information was available for retrospective review. Of these diagnosed patients, 20 (55.6%) had a genetic disease, 8 (22.2%) had MS, 3 (8.3%) had both MS and a genetic disorder and 5 (13.9%) had other non-genetic conditions. Interestingly, among the patients initially referred by an MS specialist, 7/25 were definitively diagnosed with MS, 5/25 had a genetic condition (e.g., X-linked adrenoleukodystrophy and hereditary small vessel diseases like Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) and COL4A1-related disorder), and one had both MS and a genetic demyelinating neuropathy. Thanks to the WM Rounds collaborative efforts, the subjects who currently remain without a definite diagnosis, despite extensive investigations performed in the clinical setting, have been recruited in research studies aimed at identifying novel forms of genetic MS mimickers. Conclusions The experience of the WM Rounds Network demonstrates the benefit of collective discussions on complex cases to increase the diagnostic rate and decrease misdiagnosis in patients with rare or atypical white matter diseases. Networks of this nature allow physicians and scientists to compare and share information on challenging cases from across the world, provide a basis for future multicenter research studies, and serve as model for other rare diseases.
Collapse
Affiliation(s)
- Yu Tong Huang
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Paul S. Giacomini
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Rami Massie
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sunita Venkateswaran
- Department of Pediatrics, Division of Neurology, CHEO, University of Ottawa, Ottawa, ON, Canada
| | | | - Giulia Fadda
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Maryam Sharifian-Dorche
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Hayet Boudjani
- Department of Neurology, Maisonneuve-Rosemont Hospital, Université de Montréal, Montreal, QC, Canada
| | | | - Laura Airas
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Alexander W. Saveriano
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Matthias Georg Ziller
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada,Department of Neurology, St. Mary's Hospital, Montreal, QC, Canada
| | - Elka Miller
- Department of Medical Imaging, CHEO, University of Ottawa, Ottawa, ON, Canada
| | | | - Nagwa Wilson
- Department of Medical Imaging, CHEO, University of Ottawa, Ottawa, ON, Canada
| | - Jorge Davila
- Department of Medical Imaging, CHEO, University of Ottawa, Ottawa, ON, Canada
| | - Carolina Rush
- Division of Neurology, Neuroscience Department, University of Ottawa, Ottawa, ON, Canada
| | - Erin E. Longbrake
- Department of Neurology, Yale MS Center, Yale School of Medicine, North Haven, CT, United States
| | - Giulia Longoni
- Department of Pediatrics, Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Gabrielle Macaron
- Department of Neurology, Hotel Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada,Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada,Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada,Departments of Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
| | - Donatella Tampieri
- Department of Diagnostic Radiology, Kingston Health Science Centre, Queen's University, Kingston, ON, Canada
| | - Jack Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada,Department of Diagnostic Radiology, McGill University, Montreal, QC, Canada,*Correspondence: Roberta La Piana
| |
Collapse
|
36
|
Solomon AJ, Arrambide G, Brownlee W, Cross AH, Gaitan MI, Lublin FD, Makhani N, Mowry EM, Reich DS, Rovira À, Weinshenker BG, Cohen JA. Confirming a Historical Diagnosis of Multiple Sclerosis: Challenges and Recommendations. Neurol Clin Pract 2022; 12:263-269. [PMID: 35747540 PMCID: PMC9208427 DOI: 10.1212/cpj.0000000000001149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022]
Abstract
Patients with a historical diagnosis of multiple sclerosis (MS)-a patient presenting with a diagnosis of MS made previously and by a different clinician-present specific diagnostic and therapeutic challenges in clinical practice. Application of the McDonald criteria is most straightforward when applied contemporaneously with a syndrome typical of an MS attack or relapse; however, retrospective application of the criteria in some patients with a historical diagnosis of MS can be problematic. Limited patient recollection of symptoms and evolution of neurologic examination and MRI findings complicate confirmation of an earlier MS diagnosis and assessment of subsequent disease activity or clinical progression. Adequate records for review of prior clinical examinations, laboratory results, and/or MRI scans obtained at the time of diagnosis or during ensuing care may be inadequate or unavailable. This article provides recommendations for a clinical approach to the evaluation of patients with a historical diagnosis of MS to aid diagnostic confirmation, avoid misdiagnosis, and inform therapeutic decision making.
Collapse
Affiliation(s)
- Andrew J Solomon
- Department of Neurological Sciences (AJS), Larner College of Medicine at the University of Vermont, University Health Center - Arnold 2, Burlington, VT; Servei de Neurologia-Neuroimmunologia (GA), Centre d'Esclerosi Múltiple de Catalunya, (Cemcat), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain; National Hospital for Neurology and Neurosurgery (WB), London, United Kingdom; Department of Neurology (AHC), Washington University School of Medicine, St. Louis, MO; Department of Neurology (MIG), Neuroimmunology Section, FLENI, Buenos Aires City, Argentina; The Corinne Goldsmith Dickinson Center for Multiple Sclerosis (FDL), Icahn School of Medicine at Mount Sinai, New York, NY; Departments of Pediatrics and Neurology (NM), Yale School of Medicine, New Haven, CT; Multiple Sclerosis Precision Medicine Center of Excellence (EMM), Johns Hopkins University, Baltimore, MD; Translational Neuroradiology Section (DSR), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Section of Neuroradiology (ÀR), Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Neurology (BGW), Mayo Clinic, Rochester, MN; and Mellen Center for MS Treatment and Research (JAC), Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Georgina Arrambide
- Department of Neurological Sciences (AJS), Larner College of Medicine at the University of Vermont, University Health Center - Arnold 2, Burlington, VT; Servei de Neurologia-Neuroimmunologia (GA), Centre d'Esclerosi Múltiple de Catalunya, (Cemcat), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain; National Hospital for Neurology and Neurosurgery (WB), London, United Kingdom; Department of Neurology (AHC), Washington University School of Medicine, St. Louis, MO; Department of Neurology (MIG), Neuroimmunology Section, FLENI, Buenos Aires City, Argentina; The Corinne Goldsmith Dickinson Center for Multiple Sclerosis (FDL), Icahn School of Medicine at Mount Sinai, New York, NY; Departments of Pediatrics and Neurology (NM), Yale School of Medicine, New Haven, CT; Multiple Sclerosis Precision Medicine Center of Excellence (EMM), Johns Hopkins University, Baltimore, MD; Translational Neuroradiology Section (DSR), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Section of Neuroradiology (ÀR), Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Neurology (BGW), Mayo Clinic, Rochester, MN; and Mellen Center for MS Treatment and Research (JAC), Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Wallace Brownlee
- Department of Neurological Sciences (AJS), Larner College of Medicine at the University of Vermont, University Health Center - Arnold 2, Burlington, VT; Servei de Neurologia-Neuroimmunologia (GA), Centre d'Esclerosi Múltiple de Catalunya, (Cemcat), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain; National Hospital for Neurology and Neurosurgery (WB), London, United Kingdom; Department of Neurology (AHC), Washington University School of Medicine, St. Louis, MO; Department of Neurology (MIG), Neuroimmunology Section, FLENI, Buenos Aires City, Argentina; The Corinne Goldsmith Dickinson Center for Multiple Sclerosis (FDL), Icahn School of Medicine at Mount Sinai, New York, NY; Departments of Pediatrics and Neurology (NM), Yale School of Medicine, New Haven, CT; Multiple Sclerosis Precision Medicine Center of Excellence (EMM), Johns Hopkins University, Baltimore, MD; Translational Neuroradiology Section (DSR), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Section of Neuroradiology (ÀR), Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Neurology (BGW), Mayo Clinic, Rochester, MN; and Mellen Center for MS Treatment and Research (JAC), Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Anne H Cross
- Department of Neurological Sciences (AJS), Larner College of Medicine at the University of Vermont, University Health Center - Arnold 2, Burlington, VT; Servei de Neurologia-Neuroimmunologia (GA), Centre d'Esclerosi Múltiple de Catalunya, (Cemcat), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain; National Hospital for Neurology and Neurosurgery (WB), London, United Kingdom; Department of Neurology (AHC), Washington University School of Medicine, St. Louis, MO; Department of Neurology (MIG), Neuroimmunology Section, FLENI, Buenos Aires City, Argentina; The Corinne Goldsmith Dickinson Center for Multiple Sclerosis (FDL), Icahn School of Medicine at Mount Sinai, New York, NY; Departments of Pediatrics and Neurology (NM), Yale School of Medicine, New Haven, CT; Multiple Sclerosis Precision Medicine Center of Excellence (EMM), Johns Hopkins University, Baltimore, MD; Translational Neuroradiology Section (DSR), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Section of Neuroradiology (ÀR), Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Neurology (BGW), Mayo Clinic, Rochester, MN; and Mellen Center for MS Treatment and Research (JAC), Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - María I Gaitan
- Department of Neurological Sciences (AJS), Larner College of Medicine at the University of Vermont, University Health Center - Arnold 2, Burlington, VT; Servei de Neurologia-Neuroimmunologia (GA), Centre d'Esclerosi Múltiple de Catalunya, (Cemcat), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain; National Hospital for Neurology and Neurosurgery (WB), London, United Kingdom; Department of Neurology (AHC), Washington University School of Medicine, St. Louis, MO; Department of Neurology (MIG), Neuroimmunology Section, FLENI, Buenos Aires City, Argentina; The Corinne Goldsmith Dickinson Center for Multiple Sclerosis (FDL), Icahn School of Medicine at Mount Sinai, New York, NY; Departments of Pediatrics and Neurology (NM), Yale School of Medicine, New Haven, CT; Multiple Sclerosis Precision Medicine Center of Excellence (EMM), Johns Hopkins University, Baltimore, MD; Translational Neuroradiology Section (DSR), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Section of Neuroradiology (ÀR), Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Neurology (BGW), Mayo Clinic, Rochester, MN; and Mellen Center for MS Treatment and Research (JAC), Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Fred D Lublin
- Department of Neurological Sciences (AJS), Larner College of Medicine at the University of Vermont, University Health Center - Arnold 2, Burlington, VT; Servei de Neurologia-Neuroimmunologia (GA), Centre d'Esclerosi Múltiple de Catalunya, (Cemcat), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain; National Hospital for Neurology and Neurosurgery (WB), London, United Kingdom; Department of Neurology (AHC), Washington University School of Medicine, St. Louis, MO; Department of Neurology (MIG), Neuroimmunology Section, FLENI, Buenos Aires City, Argentina; The Corinne Goldsmith Dickinson Center for Multiple Sclerosis (FDL), Icahn School of Medicine at Mount Sinai, New York, NY; Departments of Pediatrics and Neurology (NM), Yale School of Medicine, New Haven, CT; Multiple Sclerosis Precision Medicine Center of Excellence (EMM), Johns Hopkins University, Baltimore, MD; Translational Neuroradiology Section (DSR), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Section of Neuroradiology (ÀR), Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Neurology (BGW), Mayo Clinic, Rochester, MN; and Mellen Center for MS Treatment and Research (JAC), Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Naila Makhani
- Department of Neurological Sciences (AJS), Larner College of Medicine at the University of Vermont, University Health Center - Arnold 2, Burlington, VT; Servei de Neurologia-Neuroimmunologia (GA), Centre d'Esclerosi Múltiple de Catalunya, (Cemcat), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain; National Hospital for Neurology and Neurosurgery (WB), London, United Kingdom; Department of Neurology (AHC), Washington University School of Medicine, St. Louis, MO; Department of Neurology (MIG), Neuroimmunology Section, FLENI, Buenos Aires City, Argentina; The Corinne Goldsmith Dickinson Center for Multiple Sclerosis (FDL), Icahn School of Medicine at Mount Sinai, New York, NY; Departments of Pediatrics and Neurology (NM), Yale School of Medicine, New Haven, CT; Multiple Sclerosis Precision Medicine Center of Excellence (EMM), Johns Hopkins University, Baltimore, MD; Translational Neuroradiology Section (DSR), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Section of Neuroradiology (ÀR), Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Neurology (BGW), Mayo Clinic, Rochester, MN; and Mellen Center for MS Treatment and Research (JAC), Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Ellen M Mowry
- Department of Neurological Sciences (AJS), Larner College of Medicine at the University of Vermont, University Health Center - Arnold 2, Burlington, VT; Servei de Neurologia-Neuroimmunologia (GA), Centre d'Esclerosi Múltiple de Catalunya, (Cemcat), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain; National Hospital for Neurology and Neurosurgery (WB), London, United Kingdom; Department of Neurology (AHC), Washington University School of Medicine, St. Louis, MO; Department of Neurology (MIG), Neuroimmunology Section, FLENI, Buenos Aires City, Argentina; The Corinne Goldsmith Dickinson Center for Multiple Sclerosis (FDL), Icahn School of Medicine at Mount Sinai, New York, NY; Departments of Pediatrics and Neurology (NM), Yale School of Medicine, New Haven, CT; Multiple Sclerosis Precision Medicine Center of Excellence (EMM), Johns Hopkins University, Baltimore, MD; Translational Neuroradiology Section (DSR), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Section of Neuroradiology (ÀR), Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Neurology (BGW), Mayo Clinic, Rochester, MN; and Mellen Center for MS Treatment and Research (JAC), Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Daniel S Reich
- Department of Neurological Sciences (AJS), Larner College of Medicine at the University of Vermont, University Health Center - Arnold 2, Burlington, VT; Servei de Neurologia-Neuroimmunologia (GA), Centre d'Esclerosi Múltiple de Catalunya, (Cemcat), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain; National Hospital for Neurology and Neurosurgery (WB), London, United Kingdom; Department of Neurology (AHC), Washington University School of Medicine, St. Louis, MO; Department of Neurology (MIG), Neuroimmunology Section, FLENI, Buenos Aires City, Argentina; The Corinne Goldsmith Dickinson Center for Multiple Sclerosis (FDL), Icahn School of Medicine at Mount Sinai, New York, NY; Departments of Pediatrics and Neurology (NM), Yale School of Medicine, New Haven, CT; Multiple Sclerosis Precision Medicine Center of Excellence (EMM), Johns Hopkins University, Baltimore, MD; Translational Neuroradiology Section (DSR), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Section of Neuroradiology (ÀR), Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Neurology (BGW), Mayo Clinic, Rochester, MN; and Mellen Center for MS Treatment and Research (JAC), Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Àlex Rovira
- Department of Neurological Sciences (AJS), Larner College of Medicine at the University of Vermont, University Health Center - Arnold 2, Burlington, VT; Servei de Neurologia-Neuroimmunologia (GA), Centre d'Esclerosi Múltiple de Catalunya, (Cemcat), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain; National Hospital for Neurology and Neurosurgery (WB), London, United Kingdom; Department of Neurology (AHC), Washington University School of Medicine, St. Louis, MO; Department of Neurology (MIG), Neuroimmunology Section, FLENI, Buenos Aires City, Argentina; The Corinne Goldsmith Dickinson Center for Multiple Sclerosis (FDL), Icahn School of Medicine at Mount Sinai, New York, NY; Departments of Pediatrics and Neurology (NM), Yale School of Medicine, New Haven, CT; Multiple Sclerosis Precision Medicine Center of Excellence (EMM), Johns Hopkins University, Baltimore, MD; Translational Neuroradiology Section (DSR), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Section of Neuroradiology (ÀR), Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Neurology (BGW), Mayo Clinic, Rochester, MN; and Mellen Center for MS Treatment and Research (JAC), Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Brian G Weinshenker
- Department of Neurological Sciences (AJS), Larner College of Medicine at the University of Vermont, University Health Center - Arnold 2, Burlington, VT; Servei de Neurologia-Neuroimmunologia (GA), Centre d'Esclerosi Múltiple de Catalunya, (Cemcat), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain; National Hospital for Neurology and Neurosurgery (WB), London, United Kingdom; Department of Neurology (AHC), Washington University School of Medicine, St. Louis, MO; Department of Neurology (MIG), Neuroimmunology Section, FLENI, Buenos Aires City, Argentina; The Corinne Goldsmith Dickinson Center for Multiple Sclerosis (FDL), Icahn School of Medicine at Mount Sinai, New York, NY; Departments of Pediatrics and Neurology (NM), Yale School of Medicine, New Haven, CT; Multiple Sclerosis Precision Medicine Center of Excellence (EMM), Johns Hopkins University, Baltimore, MD; Translational Neuroradiology Section (DSR), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Section of Neuroradiology (ÀR), Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Neurology (BGW), Mayo Clinic, Rochester, MN; and Mellen Center for MS Treatment and Research (JAC), Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Jeffrey A Cohen
- Department of Neurological Sciences (AJS), Larner College of Medicine at the University of Vermont, University Health Center - Arnold 2, Burlington, VT; Servei de Neurologia-Neuroimmunologia (GA), Centre d'Esclerosi Múltiple de Catalunya, (Cemcat), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain; National Hospital for Neurology and Neurosurgery (WB), London, United Kingdom; Department of Neurology (AHC), Washington University School of Medicine, St. Louis, MO; Department of Neurology (MIG), Neuroimmunology Section, FLENI, Buenos Aires City, Argentina; The Corinne Goldsmith Dickinson Center for Multiple Sclerosis (FDL), Icahn School of Medicine at Mount Sinai, New York, NY; Departments of Pediatrics and Neurology (NM), Yale School of Medicine, New Haven, CT; Multiple Sclerosis Precision Medicine Center of Excellence (EMM), Johns Hopkins University, Baltimore, MD; Translational Neuroradiology Section (DSR), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Section of Neuroradiology (ÀR), Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Neurology (BGW), Mayo Clinic, Rochester, MN; and Mellen Center for MS Treatment and Research (JAC), Neurological Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
37
|
Ji Q, Dong H, Lee H, Liu Z, Tong Y, Elkin K, Haddad Y, Geng X, Ding Y. Clinical Characteristics and Outcomes of Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder With Brainstem Lesions as Heralding Prodrome. Front Neurol 2022; 13:836337. [PMID: 35614913 PMCID: PMC9124782 DOI: 10.3389/fneur.2022.836337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
ObjectiveThe present study sought to differentiate multiple sclerosis and neuromyelitis optica spectrum disorder patients at their first attack by describing and distinguishing their clinical features, radiographic characteristics, and immunologic characteristics of serum and cerebrospinal fluid.MethodsWe retrospectively studied 58 patients with multiple sclerosis (MS) and 52 patients with neuromyelitis optica spectrum disorder (NMOSD) by referencing brainstem lesions as the prodromal events. Their demographics and presentation at the time of the first attack was evaluated including their gender, age, clinical features of the first attack, the expanded disability status scale (EDSS), brainstem lesion(s) by head MRI, and immunological indices of serum and cerebrospinal fluid.ResultsThe NMOSD group had more female patients (4.8 vs. 1.9, p < 0.05), and was older than the MS group (37.81 ± 16.60 vs. 27.57 ± 11.17, p <0.001). NMOSD patients also had a significantly higher association with autoimmune diseases or positive autoimmune antibodies (p < 0.01). There was no significant difference in the EDSS scores between the two groups (p = 0.420). Central hiccups, vomiting, and pyramidal tract signs were more common in the NMOSD group than the MS group (p < 0.001, p < 0.001, p < 0.01), while eye movement abnormalities were more common with MS (p < 0.01). There were no significant differences in other clinical manifestations such as vertigo, diplopia, limb weakness, numbness, and eating difficulty. MS patients were more likely to have midbrain and pons imaging lesions (p < 0.001, p < 0.001), while NMOSD patients had more lesions in the medulla oblongata (p < 0.001). The lesions in the MS group were mostly located in the periphery, while those in the NMOSD group were centrally located (p < 0.001, p < 0.001). Patchy lesions were more common in MS patients (p < 0.001), while large lesions were more common in the NMOSD group (p < 0.001). Finally, serum AQP4 Ab was found only in the NMOSD group (p < 0.001).ConclusionPatients with MS and NMOSD have differentiating clinical manifestations at the time of their first brainstem lesions which include central hiccups, vomiting, pyramidal tract signs, and abnormal eye movements. Additionally, distinct imaging manifestations such as lesion location(s) and morphology may also aid in the development of pathognomonic criteria leading to timely initial diagnosis of MS and NMOSD.
Collapse
Affiliation(s)
- Qiling Ji
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Huiqing Dong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Huiqing Dong
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Zheng Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanna Tong
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Kenneth Elkin
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yazeed Haddad
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
- Xiaokun Geng
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
38
|
Azuma F, Nokura K, Kako T, Yoshida M, Tatsumi S. An Autopsy Confirmed Neuromyelitis Optica Spectrum Disorder with Extensive Brain White Matter Lesion and Optic Neuritis but Intact Spinal Cord, Clinically Mimicking a Secondary Progressive Multiple Sclerosis-like Course. Intern Med 2022; 61:1415-1422. [PMID: 34645756 PMCID: PMC9152861 DOI: 10.2169/internalmedicine.7635-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A 57-year-old woman presented with optic neuritis with repeated clinical symptoms of focal demyelination of the cerebral white matter and brain stem for 14 years. At the end of the patient's course, the clinical signs mimicked secondary progressive multiple sclerosis, but whether it was caused by interferon administration or neuromyelitis optica spectrum disorders (NMOSD) - or a combination of both or others - was unclear. Histopathological findings indicated the etiology to be NMOSD, with no apparent plaque in spinal cord specimens. This case suggests that an accurate clinical diagnosis requires serum anti-aquaporin 4 antibody measurements as well as an autopsy examination.
Collapse
Affiliation(s)
- Fumika Azuma
- Department of Neurology, Fujita Health University Bantane Hospital, Japan
| | - Kazuya Nokura
- Department of Neurology, Fujita Health University Bantane Hospital, Japan
| | - Tetsuharu Kako
- Department of Neurology, Fujita Health University Bantane Hospital, Japan
| | - Mari Yoshida
- Aichi Medical University, Institute for Medical Science of Aging, Japan
| | - Shinsui Tatsumi
- Department of Neurology, Yao Tokushukai General Hospital, Japan
| |
Collapse
|
39
|
Yang Y, Wang M, Xu L, Zhong M, Wang Y, Luan M, Li X, Zheng X. Cerebellar and/or Brainstem Lesions Indicate Poor Prognosis in Multiple Sclerosis: A Systematic Review. Front Neurol 2022; 13:874388. [PMID: 35572921 PMCID: PMC9099189 DOI: 10.3389/fneur.2022.874388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis is a serious neurological disease that affects millions of people worldwide. Cerebellar and brainstem symptoms are common in the course of multiple sclerosis, but their prognostic value is unclear. This systematic review aimed to determine the relationship between the location of lesions in the cerebellum and/or brainstem and the prognosis in multiple sclerosis. In this systematic review, we searched and comprehensively read articles related to this research topic in Chinese and English electronic databases (PubMed, Embase, Cochrane Library, CNKI, and CBM) using search terms “multiple sclerosis,” “cerebellum,” “brainstem,” “prognosis,” and others. Cerebellar and brainstem clinically isolated syndromes and clinically definite multiple sclerosis were important predictors of transformation (hazard ratio, 2.58; 95% confidence interval, 1.58–4.22). Cerebellar and/or brainstem lesions indicate a poor overall prognosis in multiple sclerosis, but because of inconsistency, more clinical data are needed.
Collapse
Affiliation(s)
- Yuyuan Yang
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Wang
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lulu Xu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meixiang Zhong
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yajuan Wang
- Department of Geriatric Medicine, The Qingdao Eighth People's Hospital, Qingdao, China
| | - Moxin Luan
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingao Li
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xueping Zheng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Xueping Zheng
| |
Collapse
|
40
|
Magyar M, Gattringer T, Enzinger C, Hassler E, Partl R, Khalil M, Reishofer G, Deutschmann H, Fazekas F. Incidence of Developmental Venous Anomalies in Patients With Multiple Sclerosis: A 3 Tesla MRI Study. Front Neurol 2022; 13:824347. [PMID: 35422748 PMCID: PMC9004542 DOI: 10.3389/fneur.2022.824347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives There is evidence of involvement of the venous system in multiple sclerosis (MS). If this bears also an association with the frequency and extent of developmental venous anomalies (DVA) still has to be determined. We therefore investigated this in patients with different phenotypes of MS and in comparison, to a control population. Methods We analyzed the contrast-enhanced T1-weighted MR scans of 431 patients (clinically isolated syndrome—CIS, n = 108; MS, n = 323) and of 162 control individuals for the presence of a DVA. We also measured the size of the DVA and draining vein and compared the DVA frequency between MS phenotypes. Results A DVA was found in 38 (8.8 %) of patients with CIS or MS and in 11 (6.8%) controls (p = 0.4). DVA frequency was highest in CIS (14.8%) and lowest in progressive MS (4.0%). The mean cranio-caudal and axial extension of the DVA was significantly lower in MS patients than controls (p < 0.05). Conclusions The frequency of DVA in MS patients is comparable to that in controls. Whether DVA size and appearance may change over time will have to be investigated in a longitudinal manner and with larger sample size.
Collapse
Affiliation(s)
- Marton Magyar
- Department of Radiology (Division of Neuroradiology, Vascular and Interventional Radiology), Medical University of Graz, Graz, Austria
| | - Thomas Gattringer
- Department of Radiology (Division of Neuroradiology, Vascular and Interventional Radiology), Medical University of Graz, Graz, Austria.,Department of Neurology, Medical University of Graz, Graz, Austria
| | - Christian Enzinger
- Department of Radiology (Division of Neuroradiology, Vascular and Interventional Radiology), Medical University of Graz, Graz, Austria.,Department of Neurology, Medical University of Graz, Graz, Austria
| | - Eva Hassler
- Department of Radiology (Division of Neuroradiology, Vascular and Interventional Radiology), Medical University of Graz, Graz, Austria
| | - Richard Partl
- Department of Radiation Oncology, Medical University of Graz, Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Gernot Reishofer
- Department of Radiology (Division of Neuroradiology, Vascular and Interventional Radiology), Medical University of Graz, Graz, Austria
| | - Hannes Deutschmann
- Department of Radiology (Division of Neuroradiology, Vascular and Interventional Radiology), Medical University of Graz, Graz, Austria
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Graz, Austria
| |
Collapse
|
41
|
Goldoni R, Dolci C, Boccalari E, Inchingolo F, Paghi A, Strambini L, Galimberti D, Tartaglia GM. Salivary biomarkers of neurodegenerative and demyelinating diseases and biosensors for their detection. Ageing Res Rev 2022; 76:101587. [PMID: 35151849 DOI: 10.1016/j.arr.2022.101587] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 02/07/2022] [Indexed: 01/08/2023]
Abstract
Salivary analysis is gaining increasing interest as a novel and promising field of research for the diagnosis of neurodegenerative and demyelinating diseases related to aging. The collection of saliva offers several advantages, being noninvasive, stress-free, and repeatable. Moreover, the detection of biomarkers directly in saliva could allow an early diagnosis of the disease, leading to timely treatments. The aim of this manuscript is to highlight the most relevant researchers' findings relatively to salivary biomarkers of neurodegenerative and demyelinating diseases, and to describe innovative and advanced biosensing strategies for the detection of salivary biomarkers. This review is focused on five relevant aging-related neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Multiple Sclerosis) and the salivary biomarkers most commonly associated with them. Advanced biosensors enabling molecular diagnostics for the detection of salivary biomarkers are presented, in order to stimulate future research in this direction and pave the way for their clinical application.
Collapse
Affiliation(s)
- Riccardo Goldoni
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, Italy
| | - Carolina Dolci
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, Italy
| | - Elisa Boccalari
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy
| | - Alessandro Paghi
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Via G. Caruso 16, Pisa, Italy
| | - Lucanos Strambini
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni, Consiglio Nazionale delle Ricerche, Via G. Caruso 16, Pisa, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, Italy; Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, Italy; UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20100 Milan, Italy.
| |
Collapse
|
42
|
Alves Martins D, Lopes J, Martins da Silva A, Morais CI, Vasconcelos J, Lima I, Carneiro C, Neves E. Kappa free light chains: Diagnostic performance in multiple sclerosis and utility in a clinical laboratory. Clin Chim Acta 2022; 528:56-64. [DOI: 10.1016/j.cca.2022.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 01/05/2023]
|
43
|
Yabata H, Saito Y, Fukuoka T, Akagi A, Riku Y, Sone J, Miyahara H, Doyu M, Yoshida M, Iwasaki Y. Pathological observations of a long spinal cord lesion in a patient with multiple sclerosis. Neuropathology 2022; 42:212-217. [PMID: 35170108 DOI: 10.1111/neup.12800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
We report an autopsy case of multiple sclerosis (MS) manifesting as a long spinal cord lesion. The patient was a Japanese woman. At the age of 59 years, she presented with a one-month history of progressive paraplegia, dysesthesia in the lower extremities, and urinary retention. Magnetic resonance imaging revealed a long, hyperintense lesion on T2-weighted images that extended from the inferior portion of the medulla oblongata to the cervical segments of the spinal cord and an isolated lesion at the T6 level. Cerebrospinal fluid (CSF) examination revealed the presence of oligoclonal bands and increased myelin basic protein levels (999 pg/mL). Serum antibody against aquaporin 4 (AQP4) was undetectable in this patient. She was diagnosed as having atypical MS and experienced symptom improvement following immunotherapy with corticosteroids and plasma exchange. She died of pneumonia and renal failure at the age of 62 years. Postmortem examination revealed a long demyelinating lesion that extended from the inferior portion of the medulla oblongata to the sacral segments of the spinal cord. The lesion was comprised of numerous demyelinating plaques with inflammatory cell infiltration. A long spinal cord lesion is usually indicative of neuromyelitis optica spectrum disorder (NMOSD), and there are limited reports of postmortem observations of long spinal cord lesions among patients with anti-AQP4 antibody-seronegative MS. Our findings suggest that the pathomechanisms of such long spinal cord lesion formation differ between anti-AQP4 antibody-seronegative MS and NMOSD.
Collapse
Affiliation(s)
- Hiroyuki Yabata
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology, Shiga University of Medical Science, Otsu, Japan
| | - Yufuko Saito
- Department of Neurology, Higashinagoya National Hospital, Nagoya, Japan
| | - Takaaki Fukuoka
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Yuichi Riku
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Manabu Doyu
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
44
|
Khan F, Sharma N, Ud Din M, Akabalu IG. Clinically Isolated Brainstem Progressive Multifocal Leukoencephalopathy: Diagnostic Challenges. AMERICAN JOURNAL OF CASE REPORTS 2022; 23:e935019. [PMID: 35001072 PMCID: PMC8762610 DOI: 10.12659/ajcr.935019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patient: Female, 47-year-old
Final Diagnosis: Brainstem progressive multifocal leukoencephalopathy
Symptoms: Dizziness • intermittent slurred speech • right-sided facial droop and numbness
Medication: —
Clinical Procedure: Lumbar puncture
Specialty: Neurology
Collapse
Affiliation(s)
- Faisal Khan
- Department of Neurology, Sam Houston State University College of Osteopathic Medicine, Huntsville, TX, USA.,Research Fellow, Houston Medical Clerkship, Sugar Land, TX, USA
| | - Neha Sharma
- Research Fellow, Houston Medical Clerkship, Sugar Land, TX, USA
| | - Moin Ud Din
- Research Fellow, Houston Medical Clerkship, Sugar Land, TX, USA
| | - Ijeoma Gloria Akabalu
- Medical Student 4, Caribbean Medical University School of Medicine, Willemstad, Curacao, Netherlands Antilles
| |
Collapse
|
45
|
Patti F, Chisari CG, Arena S, Toscano S, Finocchiaro C, Fermo SL, Judica ML, Maimone D. Factors driving delayed time to multiple sclerosis diagnosis: Results from a population-based study. Mult Scler Relat Disord 2022; 57:103361. [PMID: 35158432 DOI: 10.1016/j.msard.2021.103361] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a highly complex chronic inflammatory disease, in which a diagnostic delay could reduce the available therapeutic options. Our aim was to identify factors contributing to diagnostic delay in a MS population living in the municipality of Biancavilla. METHODS This retrospective population-based study consecutively selected patients with MS diagnosed from 1992 to 2018 and resident in the city of Biancavilla. Socio-demographic and clinical data were collected through the iMed database. Date of final MS diagnosis was obtained and diagnostic delay was calculated. RESULTS A total of 70 patients (66.7% women) were found affected by MS according to the 2011 McDonald criteria in the municipality of Biancavilla in the period between 2005 and 2010. The mean diagnostic delay in the MS cohort of Biancavilla was 33.8 ± 56 months [median 19.5, range 1-315]. The multivariate logistic regression confirmed that age ≥ 40 years, lower educational level (1-5 years) and motor symptoms at onset were associated to longer diagnostic delay. CONCLUSION In this population-based study a mean delay of about 30 months occurred between initial symptoms and the MS diagnosis. Older age at onset, lower education level and motor symptoms at onset were associated to longer MS diagnostic delay.
Collapse
Affiliation(s)
- Francesco Patti
- Department of Medical and Surgical Sciences, and Advanced Technologies, "G.F. Ingrassia", Multiple Sclerosis Center, University of Catania, Via Santa Sofia, 78, Catania 95123, Italy.
| | - Clara Grazia Chisari
- Department of Medical and Surgical Sciences, and Advanced Technologies, "G.F. Ingrassia", Multiple Sclerosis Center, University of Catania, Via Santa Sofia, 78, Catania 95123, Italy
| | - Sebastiano Arena
- Department of Medical and Surgical Sciences, and Advanced Technologies, "G.F. Ingrassia", Multiple Sclerosis Center, University of Catania, Via Santa Sofia, 78, Catania 95123, Italy
| | - Simona Toscano
- Department of Medical and Surgical Sciences, and Advanced Technologies, "G.F. Ingrassia", Multiple Sclerosis Center, University of Catania, Via Santa Sofia, 78, Catania 95123, Italy
| | - Chiara Finocchiaro
- Department of Medical and Surgical Sciences, and Advanced Technologies, "G.F. Ingrassia", Multiple Sclerosis Center, University of Catania, Via Santa Sofia, 78, Catania 95123, Italy
| | - Salvatore Lo Fermo
- Department of Medical and Surgical Sciences, and Advanced Technologies, "G.F. Ingrassia", Multiple Sclerosis Center, University of Catania, Via Santa Sofia, 78, Catania 95123, Italy
| | - Maria Luisa Judica
- Azienda Sanitaria Provinciale di Catania, distretto di Adrano, Catania, Italy
| | - Davide Maimone
- Multiple Sclerosis Center, Garibaldi-Nesima Hospital, Catania, Italy
| |
Collapse
|
46
|
Cristiano E, Abad P, Becker J, Carrá A, Correale J, Flores J, Fruns M, Garcea O, Garcia Bónitto J, Gracia F, Hamuy F, Navas C, Patrucco L, Rivera V, Velazquez M, Rojas JI. Multiple sclerosis care units in Latin America: Consensus recommendations about its objectives and functioning implementation. J Neurol Sci 2021; 429:118072. [PMID: 34509134 DOI: 10.1016/j.jns.2021.118072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/23/2021] [Accepted: 09/05/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Currently, there are several reasons to promote worldwide the concept of multiple sclerosis care units (MSCU) for a better management of affected patients. Ideally, the MSCU should have some human and technical resources that distinguish and improve the care of affected patients; however, local, and regional aspects should be considered when recommending how these units should operate. The objective of these consensus recommendations was to review how MSCU should work in Latin America to improve long-term outcomes in MS patients. METHODS A panel of neurology experts from Latin America dedicated to the diagnosis and care of MS patients gathered virtually during 2019 and 2020 to carry out a consensus recommendation about objectives and functioning implementation of MSCU in Latin America. To achieve consensus, the methodology of "formal consensus-RAND/UCLA method" was used. RESULTS Recommendations focused on the objectives, human and technical resources, and the general functioning that MSCU should have in Latin America. CONCLUSIONS The recommendations of these consensus guidelines attempt to optimize the health care and management of MS patients by setting how MSCU should work in our region.
Collapse
Affiliation(s)
- Edgardo Cristiano
- Centro de Esclerosis Múltiple de Buenos Aires, Buenos Aires, Argentina
| | - Patricio Abad
- Servicio Neurologia, Hospital Metropolitano de Quito, Ecuador, Profesor de Neurología PUCE, Ecuador
| | - Jefferson Becker
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Adriana Carrá
- MS Section Hospital Britanico Buenos Aires, Argentina; Neurociencias Fundación Favaloro/INECO, Buenos Aires, Argentina
| | | | - José Flores
- Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, Mexico; Centro Neurológico ABC Santa Fé, Ciudad de México, Mexico
| | | | - Orlando Garcea
- Clínica de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | | | - Fernando Gracia
- Clinica de Esclerosis Multiple, Servicio de Neurologia Hospital Santo Tomas, Panama. Universidad Interamericana de Panama, Panama
| | - Fernando Hamuy
- Departamento de Neurologia, Hospital IMT, Paraguay; Departamento de Neurologia de Diagnóstico Codas Thompson, Paraguay
| | - Cárlos Navas
- Clinica Enfermedad Desmielinizante Clinica Universitaria Colombia, Colombia
| | - Liliana Patrucco
- Servicio de Neurología, Hospital Italiano de Buenos Aires, Argentina
| | | | | | - Juan Ignacio Rojas
- Centro de Esclerosis Múltiple de Buenos Aires, Buenos Aires, Argentina; Servicio de Neurología, Hospital Universitario de CEMIC, Buenos Aires, Argentina.
| |
Collapse
|
47
|
Xu Y, Hiyoshi A, Smith KA, Piehl F, Olsson T, Fall K, Montgomery S. Association of Infectious Mononucleosis in Childhood and Adolescence With Risk for a Subsequent Multiple Sclerosis Diagnosis Among Siblings. JAMA Netw Open 2021; 4:e2124932. [PMID: 34633426 PMCID: PMC8506233 DOI: 10.1001/jamanetworkopen.2021.24932] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPORTANCE Epstein-Barr virus and its acute manifestation, infectious mononucleosis (IM), are associated with an increased risk of multiple sclerosis (MS). Whether this association is confounded by susceptibility to infection is still debated. OBJECTIVE To assess whether hospital-diagnosed IM during childhood, adolescence, or young adulthood is associated with subsequent MS diagnosis independent of shared familial factors. DESIGN, SETTING, AND PARTICIPANTS This population-based cohort study used the Swedish Total Population Register to identify individuals born in Sweden from January 1, 1958, to December 31, 1994. Participants aged 20 years were followed up from January 1, 1978, to December 31, 2018, with a median follow-up of 15.38 (IQR, 8.68-23.55; range, 0.01-40.96) years. Data were analyzed from October 2020 to July 2021. EXPOSURE Hospital-diagnosed IM before 25 years of age. MAIN OUTCOMES AND MEASURES Diagnoses of MS from 20 years of age were identified. Risk of an MS diagnosis associated with IM in childhood (birth to 10 years of age), adolescence (11-19 years of age), and early adulthood (20-24 years of age [time-dependent variable]) were estimated using conventional and stratified (to address familial environmental or genetic confounding) Cox proportional hazards regression. RESULTS Of the 2 492 980 individuals (1 312 119 men [52.63%] and 1 180 861 women [47.37%]) included, 5867 (0.24%) had an MS diagnosis from 20 years of age (median age, 31.50 [IQR, 26.78-37.54] years). Infectious mononucleosis in childhood (hazard ratio [HR], 1.98; 95% CI, 1.21-3.23) and adolescence (HR, 3.00; 95% CI, 2.48-3.63) was associated with an increased risk of an MS diagnosis that remained significant after controlling for shared familial factors in stratified Cox proportional hazards regression (HRs, 2.87 [95% CI, 1.44-5.74] and 3.19 [95% CI, 2.29-4.46], respectively). Infectious mononucleosis in early adulthood was also associated with risk of a subsequent MS diagnosis (HR, 1.89; 95% CI, 1.18-3.05), but this risk was attenuated and was not significant after controlling for shared familial factors (HR, 1.51; 95% CI, 0.82-2.76). CONCLUSIONS AND RELEVANCE These findings suggest that IM in childhood and particularly adolescence is a risk factor associated with a diagnosis of MS, independent of shared familial factors.
Collapse
Affiliation(s)
- Yin Xu
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ayako Hiyoshi
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Public Health Sciences, Stockholm University, Stockholm, Sweden
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Kelsi A. Smith
- Clinical Epidemiology Division, Karolinska Institute, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Katja Fall
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
- Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Scott Montgomery
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
- Clinical Epidemiology Division, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
48
|
Manifestation of Susac syndrome during interferon beta-1a and glatiramer acetate treatment for misdiagnosed multiple sclerosis: a case report. BMC Ophthalmol 2021; 21:352. [PMID: 34592956 PMCID: PMC8481314 DOI: 10.1186/s12886-021-02101-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Susac syndrome (SS) is characterized by the triad of encephalopathy, branch retinal artery occlusion, and sensorineural hearing loss. However, the diagnosis of SS remains difficult because the clinical triad rarely occurs at disease onset, and symptom severity varies. SS symptoms often suggest other diseases, in particular multiple sclerosis (MS), which is more common. Misdiagnosing SS as MS may cause serious complications because MS drugs, such as interferon beta-1a, can worsen the course of SS. This case report confirms previous reports that the use of interferon beta-1a in the course of misdiagnosed MS may lead to exacerbation of SS. Moreover, our case report shows that glatiramer acetate may also exacerbate the course of SS. To the best of our knowledge, this is the first reported case of exacerbation of SS by glatiramer acetate. Case presentation We present a case report of a patient with a primary diagnosis of MS who developed symptoms of SS during interferon beta-1a treatment for MS; these symptoms were resolved after the discontinuation of the treatment. Upon initiation of glatiramer acetate treatment, the patient developed the full clinical triad of SS. The diagnosis of MS was excluded, and glatiramer acetate therapy was discontinued. The patient’s neurological state improved only after the use of a combination of corticosteroids, intravenous immunoglobulins, and azathioprine. Conclusions The coincidence of SS signs and symptoms with treatment for MS, first with interferon beta-1a and then with glatiramer acetate, suggests that these drugs may influence the course of SS. This case report indicates that treatment with glatiramer acetate may modulate or even exacerbate the course of SS.
Collapse
|
49
|
Gebhardt M, Kropp P, Hoffmann F, Zettl UK. Headache in multiple sclerosis - pharmacological aspects. Curr Pharm Des 2021; 28:445-453. [PMID: 34551691 DOI: 10.2174/1381612827666210922114100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022]
Abstract
For decades, headache was not considered a typical symptom of multiple sclerosis (MS) and was construed as a "red flag" for important differential diagnoses such as cerebral vasculitis. Meanwhile, several studies have demonstrated an increased prevalence of headache in MS compared to the general population. This is due to the heterogeneity of headache genesis with frequent occurrence of both primary and secondary headaches in MS. On the one hand, MS and migraine are often comorbid. On the other hand, secondary headaches occur frequently, especially in the course of MS relapses. These are often migraine-like headaches caused by inflammation, which can improve as a result of MS-specific therapy. Headaches are particularly common in the early stages of chronic inflammatory CNS disease, where inflammatory activity is greatest. In addition, headache can also occur as a side effect of disease-modifying drugs (DMDs). Headache can occur with most DMDs and is most frequently described with interferon-beta therapy. The aim of this work is to present the prevalence of headache and describe the heterogeneity of possible causes of headache in MS. In addition, important therapeutic aspects in the treatment of MS patients in general will be presented as well as different approaches to the treatment of headache in MS depending on the etiological classification.
Collapse
Affiliation(s)
- Marcel Gebhardt
- Krankenhaus Martha-Maria Halle-Dölau, Klinik für Neurologie, Röntgenstraße 1, 06120 Halle. Germany
| | - Peter Kropp
- Institute of Medical Psychology and Medical Sociology, Medical Faculty, University of Rostock, Gehlsheimer Straße 20, 18147, Rostock. Germany
| | | | - Uwe K Zettl
- Department of Neurology, Neuroimmunological Section, University of Rostock, Rostock. Germany
| |
Collapse
|
50
|
Rommer P, Zettl UK. Treatment options in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Curr Pharm Des 2021; 28:428-436. [PMID: 34544336 DOI: 10.2174/1381612827666210920151231] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022]
Abstract
There are few diseases with as many therapeutic advances in recent years as in multiple sclerosis. Nine different drug classes with more than a dozen approved therapies are now available. Similarly, there have been unimaginable advances in understanding neuromyelitis optica (now neuromyelitis optica spectrum disorder [NMOSD]) over the past 15 years. Building on the knowledge gained, the first therapies have been approved in recent years. In this review, we aim to present all therapies approved for the treatment of MS or NMOSD. The different forms of application, different approval criteria and most important side effects will be presented. This work is intended for physicians who are interested in MS and NMOSD therapies and want to get a first overview and does not replace the respective guidelines of the regulatory authorities.
Collapse
Affiliation(s)
- Paulus Rommer
- Department of Neurology, Neuroimmunological Section, University of Rostock, Rostock. Germany
| | - Uwe K Zettl
- Department of Neurology, Neuroimmunological Section, University of Rostock, Rostock. Germany
| |
Collapse
|