1
|
Pressley KR, Schwegman L, De Oca Arena MM, Huizar CC, Zamvil SS, Forsthuber TG. HLA-transgenic mouse models to study autoimmune central nervous system diseases. Autoimmunity 2024; 57:2387414. [PMID: 39167553 PMCID: PMC11470778 DOI: 10.1080/08916934.2024.2387414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
It is known that certain human leukocyte antigen (HLA) genes are associated with autoimmune central nervous system (CNS) diseases, such as multiple sclerosis (MS), but their exact role in disease susceptibility and etiopathogenesis remains unclear. The best studied HLA-associated autoimmune CNS disease is MS, and thus will be the primary focus of this review. Other HLA-associated autoimmune CNS diseases, such as autoimmune encephalitis and neuromyelitis optica will be discussed. The lack of animal models to accurately capture the complex human autoimmune response remains a major challenge. HLA transgenic (tg) mice provide researchers with powerful tools to investigate the underlying mechanisms promoting susceptibility and progression of HLA-associated autoimmune CNS diseases, as well as for elucidating the myelin epitopes potentially targeted by T cells in autoimmune disease patients. We will discuss the potential role(s) of autoimmune disease-associated HLA alleles in autoimmune CNS diseases and highlight information provided by studies using HLA tg mice to investigate the underlying pathological mechanisms and opportunities to use these models for development of novel therapies.
Collapse
Affiliation(s)
- Kyle R. Pressley
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Lance Schwegman
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | | - Carol Chase Huizar
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Scott S. Zamvil
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Bianco A, Di Sante G, Colò F, De Arcangelis V, Cicia A, Del Giacomo P, De Bonis M, Morganti TG, Carlomagno V, Lucchini M, Minucci A, Calabresi P, Mirabella M. Multiple Sclerosis Onset before and after COVID-19 Vaccination: Can HLA Haplotype Be Determinant? Int J Mol Sci 2024; 25:4556. [PMID: 38674141 PMCID: PMC11050425 DOI: 10.3390/ijms25084556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
A few cases of multiple sclerosis (MS) onset after COVID-19 vaccination have been reported, although the evidence is insufficient to establish causality. The aim of this study is to compare cases of newly diagnosed relapsing-remitting MS before and after the outbreak of the COVID-19 pandemic and the impact of COVID-19 vaccination. Potential environmental and genetic predisposing factors were also investigated, as well as clinical patterns. This is a single-centre retrospective cohort study including all patients who presented with relapsing-remitting MS onset between January 2018 and July 2022. Data on COVID-19 vaccination administration, dose, and type were collected. HLA-DRB1 genotyping was performed in three subgroups. A total of 266 patients received a new diagnosis of relapsing-remitting MS in our centre, 143 before the COVID-19 pandemic (until and including March 2020), and 123 during the COVID-19 era (from April 2020). The mean number of new MS onset cases per year was not different before and during the COVID-19 era and neither were baseline patients' characteristics, type of onset, clinical recovery, or radiological patterns. Fourteen (11.4%) patients who subsequently received a new diagnosis of MS had a history of COVID-19 vaccination within one month before symptoms onset. Patients' characteristics, type of onset, clinical recovery, and radiological patterns did not differ from those of patients with non-vaccine-related new diagnoses of MS. The allele frequencies of HLA-DRB1*15 were 17.6% and 22.2% in patients with non-vaccine-related disease onset before and during the COVID-19 era, respectively, while no case of HLA-DRB1*15 was identified among patients with a new diagnosis of MS post-COVID-19 vaccine. In contrast, HLA-DRB1*08+ or HLA-DRB1*10+ MS patients were present only in this subgroup. Although a causal link between COVID-19 vaccination and relapsing-remitting MS cannot be detected, it is interesting to note and speculate about the peculiarities and heterogeneities underlying disease mechanisms of MS, where the interactions of genetics and the environment could be crucial also for the follow-up and the evaluation of therapeutic options.
Collapse
Affiliation(s)
- Assunta Bianco
- Division of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06123 Perugia, Italy
| | - Francesca Colò
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Valeria De Arcangelis
- Division of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Alessandra Cicia
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Paola Del Giacomo
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria De Bonis
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Genomics Core Facility, Gemelli Science and Technology Park (G-STeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Tommaso Giuseppe Morganti
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Vincenzo Carlomagno
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Matteo Lucchini
- Division of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Angelo Minucci
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Genomics Core Facility, Gemelli Science and Technology Park (G-STeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Paolo Calabresi
- Division of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Massimiliano Mirabella
- Division of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
3
|
Siriratnam P, Huda S, Butzkueven H, van der Walt A, Jokubaitis V, Monif M. A comprehensive review of the advances in neuromyelitis optica spectrum disorder. Autoimmun Rev 2023; 22:103465. [PMID: 37852514 DOI: 10.1016/j.autrev.2023.103465] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare relapsing neuroinflammatory autoimmune astrocytopathy, with a predilection for the optic nerves and spinal cord. Most cases are characterised by aquaporin-4-antibody positivity and have a relapsing disease course, which is associated with accrual of disability. Although the prognosis in NMOSD has improved markedly over the past few years owing to advances in diagnosis and therapeutics, it remains a severe disease. In this article, we review the evolution of our understanding of NMOSD, its pathogenesis, clinical features, disease course, treatment options and associated symptoms. We also address the gaps in knowledge and areas for future research focus.
Collapse
Affiliation(s)
- Pakeeran Siriratnam
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Saif Huda
- Department of Neurology, Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Torres-Camacho I, Pantoja MC, Zarco LA, Peralta JL, García-Alfonso C, Rosselli D. Prevalence of neuromyelitis optica spectrum disorder in Colombia: Analysis of the official Ministry of Health administrative registry. Mult Scler Relat Disord 2023; 78:104915. [PMID: 37506613 DOI: 10.1016/j.msard.2023.104915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/11/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is a rare entity with severe inflammatory demyelinating events of the central nervous system with debilitating sequelae. Its global prevalence ranges between 0.5 and 4/100,000 individuals, with variations by region and ethnicity. Latin America lacks epidemiological data on the disease, and Colombian prevalence is unknown. OBJECTIVE Prevalence of NMOSD in Colombia was estimated between 2017 and 2021 using the official Ministry of Health administrative database (SISPRO). METHODS This is an observational, cross-sectional retrospective study, using data between January 2017 and December 2021 in the SISPRO database using the International Classification of Disease code for NMOSD G36.0. Prevalence by gender, age and geographic distribution was estimated using official government statistics for 2019. World Health Organization (WHO) standard population was used to adjust using the direct method. RESULTS 2,650 patients were diagnosed with NMOSD; the average age was 44.9 years with an overall unadjusted prevalence of 5.3/100,000 individuals, higher for females (7.8) than for males (2.8). No significant changes (from 5.3 to 5.4) were seen after adjusting to the WHO standard. CONCLUSION According to this study Colombia has one of the highest prevalence rates of NMOSD in Latin America, further studies are needed to elucidate the contributing factors.
Collapse
Affiliation(s)
- Isabel Torres-Camacho
- Neurology Resident, Neuroscience Department, Pontificia Universidad Javeriana, Cra 7 # 40-62, Bogota, Colombia.
| | - María Camila Pantoja
- Neurologist, Neuroscience Department, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Luis Alfonso Zarco
- Neurologist, Neuroscience Department, Pontificia Universidad Javeriana, Bogota, Colombia; Director of the Neuroscience Department, Pontificia Universidad Javeriana, Bogota, Colombia
| | - José Luis Peralta
- Neurology Resident, Neuroscience Department, Pontificia Universidad Javeriana, Cra 7 # 40-62, Bogota, Colombia
| | | | - Diego Rosselli
- Neurologist, Clinical Epidemiology and Biostatistics Department, Pontificia Universidad Javeriana, Bogota, Colombia
| |
Collapse
|
5
|
Shen X. Research progress on pathogenesis and clinical treatment of neuromyelitis optica spectrum disorders (NMOSDs). Clin Neurol Neurosurg 2023; 231:107850. [PMID: 37390569 DOI: 10.1016/j.clineuro.2023.107850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 04/11/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Neuromyelitis optica spectrum disorders (NMOSDs) are characteristically referred to as various central nervous system (CNS)-based inflammatory and astrocytopathic disorders, often manifested by the axonal damage and immune-mediated demyelination targeting optic nerves and the spinal cord. This review article presents a detailed view of the etiology, pathogenesis, and prescribed treatment options for NMOSD therapy. Initially, we present the epidemiology of NMOSDs, highlighting the geographical and ethnical differences in the incidence and prevalence rates of NMOSDs. Further, the etiology and pathogenesis of NMOSDs are emphasized, providing discussions relevant to various genetic, environmental, and immune-related factors. Finally, the applied treatment strategies for curing NMOSD are discussed, exploring the perspectives for developing emergent innovative treatment strategies.
Collapse
Affiliation(s)
- Xinyu Shen
- Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, PR China.
| |
Collapse
|
6
|
Tabansky I, Tanaka AJ, Wang J, Zhang G, Dujmovic I, Mader S, Jeganathan V, DeAngelis T, Funaro M, Harel A, Messina M, Shabbir M, Nursey V, DeGouvia W, Laurent M, Blitz K, Jindra P, Gudesblatt M, King A, Drulovic J, Yunis E, Brusic V, Shen Y, Keskin DB, Najjar S, Stern JNH. Rare variants and HLA haplotypes associated in patients with neuromyelitis optica spectrum disorders. Front Immunol 2022; 13:900605. [PMID: 36268024 PMCID: PMC9578444 DOI: 10.3389/fimmu.2022.900605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) are rare, debilitating autoimmune diseases of the central nervous system. Many NMOSD patients have antibodies to Aquaporin-4 (AQP4). Prior studies show associations of NMOSD with individual Human Leukocyte Antigen (HLA) alleles and with mutations in the complement pathway and potassium channels. HLA allele associations with NMOSD are inconsistent between populations, suggesting complex relationships between the identified alleles and risk of disease. We used a retrospective case-control approach to identify contributing genetic variants in patients who met the diagnostic criteria for NMOSD and their unaffected family members. Potentially deleterious variants identified in NMOSD patients were compared to members of their families who do not have the disease and to existing databases of human genetic variation. HLA sequences from patients from Belgrade, Serbia, were compared to the frequency of HLA haplotypes in the general population in Belgrade. We analyzed exome sequencing on 40 NMOSD patients and identified rare inherited variants in the complement pathway and potassium channel genes. Haplotype analysis further detected two haplotypes, HLA-A*01, B*08, DRB1*03 and HLA-A*01, B*08, C*07, DRB1*03, DQB1*02, which were more prevalent in NMOSD patients than in unaffected individuals. In silico modeling indicates that HLA molecules within these haplotypes are predicted to bind AQP4 at several sites, potentially contributing to the development of autoimmunity. Our results point to possible autoimmune and neurodegenerative mechanisms that cause NMOSD, and can be used to investigate potential NMOSD drug targets.
Collapse
Affiliation(s)
- Inna Tabansky
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Akemi J. Tanaka
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Jiayao Wang
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, United States
- Department of Biomedical Informatics and Department of Systems Biology, Columbia University, New York, NY, United States
| | - Guanglan Zhang
- Department of Computer Science, Boston University, Boston, MA, United States
| | - Irena Dujmovic
- Clinical Center of Serbia University School of Medicine, Belgrade, Serbia
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Simone Mader
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Biomedical Center and University Hospitals, Ludwig Maximilian University Munich, Munich, Germany
| | - Venkatesh Jeganathan
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Tracey DeAngelis
- Department of Neurology, Neurological Associates of Long Island, New Hyde Park, NY, United States
| | - Michael Funaro
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Asaff Harel
- Department of Neurology, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Mark Messina
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Maya Shabbir
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Vishaan Nursey
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - William DeGouvia
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Micheline Laurent
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Karen Blitz
- Department of Neurology, South Shore Neurologic Associates, Patchogue, NY, United States
| | - Peter Jindra
- Division of Abdominal Transplantation, Baylor College of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mark Gudesblatt
- Biomedical Center and University Hospitals, Ludwig Maximilian University Munich, Munich, Germany
| | | | - Alejandra King
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, United States
| | - Jelena Drulovic
- Clinical Center of Serbia University School of Medicine, Belgrade, Serbia
| | - Edmond Yunis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Vladimir Brusic
- School of Computer Science, University of Nottingham Ningbo China, Ningbo, China
| | - Yufeng Shen
- Department of Biomedical Informatics and Department of Systems Biology, Columbia University, New York, NY, United States
| | - Derin B. Keskin
- Department of Translational Immuno-Genomics for Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Souhel Najjar
- Department of Neurology, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Joel N. H. Stern
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- *Correspondence: Joel N. H. Stern, ;
| |
Collapse
|
7
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
8
|
Kanikannan MA, Kathgave R, Yareeda S, Katkam SK, Kumaraswamy K, Kutala VK. Association of HLA DRB1-DQB1 Haplotypes with the Risk for Neuromyelitis Optica among South Indians. Neurol India 2022; 70:1481-1486. [PMID: 36076647 DOI: 10.4103/0028-3886.355130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Neuromyelitis optica (NMO) is an autoimmune demyelinating disorder, mainly characterized by severe optic neuritis, transverse myelitis and the high levels of antibodies against NMO-immunoglobulin G (IgG) or aquaporin-4 (AQP4). HLA-DR and HLA-DQ alleles within the HLA class II region on chromosome 6p21 are known to play a significant role in several autoimmune diseases including NMO. The rationale of the current case-control study is to explore the association of HLA-DRB1 and HLA-DQB1 alleles with the risk of NMO and its association with the clinical and serological markers. Methods A total of 158 samples (38 NMO cases and 120-age and ethnicity matched controls) were genotyped for the HLA-DRB1 and HLA-DQB1 alleles by using PCR-SSP method. Results Our analysis showed significant association of HLA-DRB1*10 allele (OR 2.63, 95% CI: 1.18-5.83, p=0.02) with NMO whereas DRB1*14 showed protective role against NMO (OR 0.33: 95% CI: 0.11-0.94, p=0.043). HLA-DRB1*10 allele also showed significant association in patients with NMO-IgG positive antibody (OR 3.28: 95% CI: 1.42-7.5, p=0.006). There was no association of HLA DQB1 alleles with NMO and also with NMO-IgG antibody. Among the haplotypes groups, HLA-DRB1*10-DQB1*05 (OR 2.61, 95% CI: 1.11-6.1, p=0.03), HLA-DRB1*15-DQB1*03 (OR 4.5, 95% CI: 1.81-11.5, p=0.001) were strongly associated with the risk of NMO, whereas DRB1*14-DQB1*05 (OR 0.20, 95% CI: 0.060-0.721, p=0.008) showed negative association with NMO. Conclusion From this study, it is concluded that the HLA-DRB1*10 and DRB1*10-DQB1*05 and HLA-DRB1*15-DQB1*03 haplotypes may influence the susceptibility to NMO among the South Indians. Additionally we found DRB1*14 allele and DRB1*14-DQB1*05 haplotype showed protective role for NMO.
Collapse
Affiliation(s)
- Meena A Kanikannan
- Department of Neurology, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, Telangana, India
| | - Rakesh Kathgave
- Department of Neurology, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, Telangana, India
| | - Sireesha Yareeda
- Department of Neurology, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, Telangana, India
| | - Shiva K Katkam
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, Telangana, India
| | - Konda Kumaraswamy
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, Telangana, India
| | - Vijay K Kutala
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, Telangana, India
| |
Collapse
|
9
|
Loda E, Arellano G, Perez-Giraldo G, Miller SD, Balabanov R. Can Immune Tolerance Be Re-established in Neuromyelitis Optica? Front Neurol 2022; 12:783304. [PMID: 34987468 PMCID: PMC8721118 DOI: 10.3389/fneur.2021.783304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Neuromyelitis optica (NMO) is a chronic inflammatory disease of the central nervous system that primarily affects the optic nerves and spinal cord of patients, and in some instances their brainstem, diencephalon or cerebrum as spectrum disorders (NMOSD). Clinical and basic science knowledge of NMO has dramatically increased over the last two decades and it has changed the perception of the disease as being inevitably disabling or fatal. Nonetheless, there is still no cure for NMO and all the disease-modifying therapies (DMTs) are only partially effective. Furthermore, DMTs are not disease- or antigen-specific and alter all immune responses including those protective against infections and cancer and are often associated with significant adverse reactions. In this review, we discuss the pathogenic mechanisms of NMO as they pertain to its DMTs and immune tolerance. We also examine novel research therapeutic strategies focused on induction of antigen-specific immune tolerance by administrating tolerogenic immune-modifying nanoparticles (TIMP). Development and implementation of immune tolerance-based therapies in NMO is likely to be an important step toward improving the treatment outcomes of the disease. The antigen-specificity of these therapies will likely ameliorate the disease safely and effectively, and will also eliminate the clinical challenges associated with chronic immunosuppressive therapies.
Collapse
Affiliation(s)
- Eileah Loda
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Neurology, Northwestern University, Chicago, IL, United States
| | - Gabriel Arellano
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gina Perez-Giraldo
- Department of Neurology, Northwestern University, Chicago, IL, United States
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Roumen Balabanov
- Department of Neurology, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Ghafouri-Fard S, Azimi T, Taheri M. A Comprehensive Review on the Role of Genetic Factors in Neuromyelitis Optica Spectrum Disorder. Front Immunol 2021; 12:737673. [PMID: 34675927 PMCID: PMC8524039 DOI: 10.3389/fimmu.2021.737673] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) comprise a variety of disorders being described by optic neuritis and myelitis. This disorder is mostly observed in sporadic form, yet 3% of cases are familial NMO. Different series of familial NMO cases have been reported up to now, with some of them being associated with certain HLA haplotypes. Assessment of HLA allele and haplotypes has also revealed association between some alleles within HLA-DRB1 or other loci and sporadic NMO. More recently, genome-wide SNP arrays have shown some susceptibility loci for NMO. In the current manuscript, we review available information about the role of genetic factors in NMO.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Azimi
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakin Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Carnero Contentti E, Correale J. Neuromyelitis optica spectrum disorders: from pathophysiology to therapeutic strategies. J Neuroinflammation 2021; 18:208. [PMID: 34530847 PMCID: PMC8444436 DOI: 10.1186/s12974-021-02249-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Neuromyelitis optica (NMO) is a chronic inflammatory autoimmune disease of the central nervous system (CNS) characterized by acute optic neuritis (ON) and transverse myelitis (TM). NMO is caused by a pathogenic serum IgG antibody against the water channel aquoporin 4 (AQP4) in the majority of patients. AQP4-antibody (AQP4-ab) presence is highly specific, and differentiates NMO from multiple sclerosis. It binds to AQP4 channels on astrocytes, triggering activation of the classical complement cascade, causing granulocyte, eosinophil, and lymphocyte infiltration, culminating in injury first to astrocyte, then oligodendrocytes followed by demyelination and neuronal loss. NMO spectrum disorder (NMOSD) has recently been defined and stratified based on AQP4-ab serology status. Most NMOSD patients experience severe relapses leading to permanent neurologic disability, making suppression of relapse frequency and severity, the primary objective in disease management. The most common treatments used for relapses are steroids and plasma exchange.Currently, long-term NMOSD relapse prevention includes off-label use of immunosuppressants, particularly rituximab. In the last 2 years however, three pivotal clinical trials have expanded the spectrum of drugs available for NMOSD patients. Phase III studies have shown significant relapse reduction compared to placebo in AQP4-ab-positive patients treated with satralizumab, an interleukin-6 receptor (IL-6R) inhibitor, inebilizumab, an antibody against CD19+ B cells; and eculizumab, an antibody blocking the C5 component of complement. In light of the new evidence on NMOSD pathophysiology and of preliminary results from ongoing trials with new drugs, we present this descriptive review, highlighting promising treatment modalities as well as auspicious preclinical and clinical studies.
Collapse
|
12
|
Alves-Leon SV, Ferreira CDS, Herlinger AL, Fontes-Dantas FL, Rueda-Lopes FC, Francisco RDS, Gonçalves JPDC, de Araújo AD, Rêgo CCDS, Higa LM, Gerber AL, Guimarães APDC, de Menezes MT, de Paula Tôrres MC, Maia RA, Nogueira BMG, França LC, da Silva MM, Naurath C, Correia ASDS, Vasconcelos CCF, Tanuri A, Ferreira OC, Cardoso CC, Aguiar RS, de Vasconcelos ATR. Exome-Wide Search for Genes Associated With Central Nervous System Inflammatory Demyelinating Diseases Following CHIKV Infection: The Tip of the Iceberg. Front Genet 2021; 12:639364. [PMID: 33815474 PMCID: PMC8010313 DOI: 10.3389/fgene.2021.639364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/08/2021] [Indexed: 12/31/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emergent arbovirus that causes a disease characterized primarily by fever, rash and severe persistent polyarthralgia, although <1% of cases develop severe neurological manifestations such as inflammatory demyelinating diseases (IDD) of the central nervous system (CNS) like acute disseminated encephalomyelitis (ADEM) and extensive transverse myelitis. Genetic factors associated with host response and disease severity are still poorly understood. In this study, we performed whole-exome sequencing (WES) to identify HLA alleles, genes and cellular pathways associated with CNS IDD clinical phenotype outcomes following CHIKV infection. The cohort includes 345 patients of which 160 were confirmed for CHIKV. Six cases presented neurological manifestation mimetizing CNS IDD. WES data analysis was performed for 12 patients, including the CNS IDD cases and 6 CHIKV patients without any neurological manifestation. We identified 29 candidate genes harboring rare, pathogenic, or probably pathogenic variants in all exomes analyzed. HLA alleles were also determined and patients who developed CNS IDD shared a common signature with diseases such as Multiple sclerosis (MS) and Neuromyelitis Optica Spectrum Disorders (NMOSD). When these genes were included in Gene Ontology analyses, pathways associated with CNS IDD syndromes were retrieved, suggesting that CHIKV-induced CNS outcomesmay share a genetic background with other neurological disorders. To our knowledge, this study was the first genome-wide investigation of genetic risk factors for CNS phenotypes in CHIKV infection. Our data suggest that HLA-DRB1 alleles associated with demyelinating diseases may also confer risk of CNS IDD outcomes in patients with CHIKV infection.
Collapse
Affiliation(s)
- Soniza Vieira Alves-Leon
- Translational Neuroscience Laboratory, Rio de Janeiro State Federal University, Rio de Janeiro, Brazil
- Department of Neurology/Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | - João Paulo da Costa Gonçalves
- Translational Neuroscience Laboratory, Rio de Janeiro State Federal University, Rio de Janeiro, Brazil
- Department of Neurology/Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amanda Dutra de Araújo
- Translational Neuroscience Laboratory, Rio de Janeiro State Federal University, Rio de Janeiro, Brazil
- Department of Neurology/Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cláudia Cecília da Silva Rêgo
- Translational Neuroscience Laboratory, Rio de Janeiro State Federal University, Rio de Janeiro, Brazil
- Department of Neurology/Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza Mendonça Higa
- Molecular Virology Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | - Richard Araújo Maia
- Molecular Virology Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Laise Carolina França
- Translational Neuroscience Laboratory, Rio de Janeiro State Federal University, Rio de Janeiro, Brazil
| | - Marcos Martins da Silva
- Department of Clinical Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christian Naurath
- Federal Hospital Cardoso Fontes, Ministry of Health, Rio de Janeiro, Brazil
| | | | | | - Amilcar Tanuri
- Molecular Virology Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Orlando Costa Ferreira
- Molecular Virology Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Renato Santana Aguiar
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
13
|
Alvarenga MP, do Carmo LF, Vasconcelos CCF, Alvarenga MP, Alvarenga-Filho H, de Melo Bento CA, Paiva CLA, Leyva-Fernández L, Fernández Ó, Papais-Alvarenga RM. Neuromyelitis optica is an HLA associated disease different from Multiple Sclerosis: a systematic review with meta-analysis. Sci Rep 2021; 11:152. [PMID: 33420337 PMCID: PMC7794341 DOI: 10.1038/s41598-020-80535-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/22/2020] [Indexed: 01/29/2023] Open
Abstract
Neuromyelitis Optica and Multiple Sclerosis are idiopathic inflammatory demyelinating diseases of the central nervous system that currently are considered distinct autoimmune diseases, so differences in genetic susceptibility would be expected. This study aimed to investigate the HLA association with Neuromyelitis Optica by a systematic review with meta-analysis. The STROBE instrument guided research paper assessments. Thirteen papers published between 2009 and 2020 were eligible. 568 Neuromyelitis Optica patients, 41.4% Asians, 32.4% Latin Americans and 26.2% Europeans were analyzed. Only alleles of the DRB1 locus were genotyped in all studies. Neuromyelitis Optica patients have 2.46 more chances of having the DRB1*03 allelic group than controls. Ethnicity can influence genetic susceptibility. The main HLA association with Neuromyelitis Optica was the DRB1*03:01 allele in Western populations and with the DPB1*05:01 allele in Asia. Differences in the Multiple Sclerosis and Neuromyelitis Optica genetic susceptibility was confirmed in Afro descendants. The DRB1*03 allelic group associated with Neuromyelitis Optica has also been described in other systemic autoimmune diseases.
Collapse
Affiliation(s)
- Marcos Papais Alvarenga
- Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro, RJ, 20270-004, Brazil
- Departamento de Neurologia, Hospital Federal da Lagoa, Rua Jardim Botânico 501, Rio de Janeiro, RJ, 22470-050, Brazil
- Universidade Estácio de Sá (UNESA), Avenida Ayrton Senna, 2800, Barra da Tijuca, Rio de Janeiro, RJ, 22775-003, Brazil
| | - Luciana Ferreira do Carmo
- Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro, RJ, 20270-004, Brazil
| | - Claudia Cristina Ferreira Vasconcelos
- Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro, RJ, 20270-004, Brazil
| | - Marina Papais Alvarenga
- Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro, RJ, 20270-004, Brazil
| | - Helcio Alvarenga-Filho
- Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro, RJ, 20270-004, Brazil
- Universidade Estácio de Sá (UNESA), Avenida Ayrton Senna, 2800, Barra da Tijuca, Rio de Janeiro, RJ, 22775-003, Brazil
| | - Cleonice Alves de Melo Bento
- Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro, RJ, 20270-004, Brazil
| | - Carmen Lucia Antão Paiva
- Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro, RJ, 20270-004, Brazil
| | - Laura Leyva-Fernández
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGCNeurociencias, Hospital Regional Universitario de Málaga, Avenida de Carlos Haya sn, 29010, Málaga, Spain
- Red Temática de Investigación Cooperativa: Red Española de Esclerosis Multiple REEM (RD 16/0015/0010), Barcelona, Spain
| | - Óscar Fernández
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, Avenida de Carlos Haya sn, 29010, Málaga, Spain
| | - Regina Maria Papais-Alvarenga
- Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro, RJ, 20270-004, Brazil.
- Departamento de Neurologia, Hospital Federal da Lagoa, Rua Jardim Botânico 501, Rio de Janeiro, RJ, 22470-050, Brazil.
| |
Collapse
|
14
|
Jarius S, Paul F, Weinshenker BG, Levy M, Kim HJ, Wildemann B. Neuromyelitis optica. Nat Rev Dis Primers 2020; 6:85. [PMID: 33093467 DOI: 10.1038/s41572-020-0214-9] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Neuromyelitis optica (NMO; also known as Devic syndrome) is a clinical syndrome characterized by attacks of acute optic neuritis and transverse myelitis. In most patients, NMO is caused by pathogenetic serum IgG autoantibodies to aquaporin 4 (AQP4), the most abundant water-channel protein in the central nervous system. In a subset of patients negative for AQP4-IgG, pathogenetic serum IgG antibodies to myelin oligodendrocyte glycoprotein, an antigen in the outer myelin sheath of central nervous system neurons, are present. Other causes of NMO (such as paraneoplastic disorders and neurosarcoidosis) are rare. NMO was previously associated with a poor prognosis; however, treatment with steroids and plasma exchange for acute attacks and with immunosuppressants (in particular, B cell-depleting agents) for attack prevention has greatly improved the long-term outcomes. Recently, a number of randomized controlled trials have been completed and the first drugs, all therapeutic monoclonal antibodies, have been approved for the treatment of AQP4-IgG-positive NMO and its formes frustes.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Romero-Hidalgo S, Flores-Rivera J, Rivas-Alonso V, Barquera R, Villarreal-Molina MT, Antuna-Puente B, Macias-Kauffer LR, Villalobos-Comparán M, Ortiz-Maldonado J, Yu N, Lebedeva TV, Alosco SM, García-Rodríguez JD, González-Torres C, Rosas-Madrigal S, Ordoñez G, Guerrero-Camacho JL, Treviño-Frenk I, Escamilla-Tilch M, García-Lechuga M, Tovar-Méndez VH, Pacheco-Ubaldo H, Acuña-Alonzo V, Bortolini MC, Gallo C, Bedoya G, Rothhammer F, González-Jose R, Ruiz-Linares A, Canizales-Quinteros S, Yunis E, Granados J, Corona T. Native American ancestry significantly contributes to neuromyelitis optica susceptibility in the admixed Mexican population. Sci Rep 2020; 10:13706. [PMID: 32792643 PMCID: PMC7426416 DOI: 10.1038/s41598-020-69224-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023] Open
Abstract
Neuromyelitis Optica (NMO) is an autoimmune disease with a higher prevalence in non-European populations. Because the Mexican population resulted from the admixture between mainly Native American and European populations, we used genome-wide microarray, HLA high-resolution typing and AQP4 gene sequencing data to analyze genetic ancestry and to seek genetic variants conferring NMO susceptibility in admixed Mexican patients. A total of 164 Mexican NMO patients and 1,208 controls were included. On average, NMO patients had a higher proportion of Native American ancestry than controls (68.1% vs 58.6%; p = 5 × 10-6). GWAS identified a HLA region associated with NMO, led by rs9272219 (OR = 2.48, P = 8 × 10-10). Class II HLA alleles HLA-DQB1*03:01, -DRB1*08:02, -DRB1*16:02, -DRB1*14:06 and -DQB1*04:02 showed the most significant associations with NMO risk. Local ancestry estimates suggest that all the NMO-associated alleles within the HLA region are of Native American origin. No novel or missense variants in the AQP4 gene were found in Mexican patients with NMO or multiple sclerosis. To our knowledge, this is the first study supporting the notion that Native American ancestry significantly contributes to NMO susceptibility in an admixed population, and is consistent with differences in NMO epidemiology in Mexico and Latin America.
Collapse
Affiliation(s)
- Sandra Romero-Hidalgo
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica (INMEGEN), 14610, Mexico City, Mexico.
| | - José Flores-Rivera
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez" (INNN), 14269, Mexico City, Mexico
| | - Verónica Rivas-Alonso
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez" (INNN), 14269, Mexico City, Mexico
| | - Rodrigo Barquera
- Molecular Genetics Laboratory, National School of Anthropology and History, 14030, Mexico City, Mexico.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | | | | | - Luis Rodrigo Macias-Kauffer
- Unidad de Genómica de Poblaciones Aplicada a La Salud, Facultad de Química, UNAM/INMEGEN, 04510, Mexico City, Mexico
| | - Marisela Villalobos-Comparán
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica (INMEGEN), 14610, Mexico City, Mexico
| | - Jair Ortiz-Maldonado
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez" (INNN), 14269, Mexico City, Mexico
| | - Neng Yu
- HLA Laboratory, The American Red Cross Northeast Division, Dedham, MA, 02026, USA
| | - Tatiana V Lebedeva
- HLA Laboratory, The American Red Cross Northeast Division, Dedham, MA, 02026, USA
| | - Sharon M Alosco
- HLA Laboratory, The American Red Cross Northeast Division, Dedham, MA, 02026, USA
| | - Juan Daniel García-Rodríguez
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica (INMEGEN), 14610, Mexico City, Mexico
| | | | | | | | | | - Irene Treviño-Frenk
- Department of Neurology, Instituto Nacional de Ciencias Medicas y Nutrición "Salvador Zubirán" (INCMNSZ), 14080, Mexico City, Mexico.,Neurologic Center, ABC Medical Center, Mexico City, Mexico
| | | | | | | | - Hanna Pacheco-Ubaldo
- Molecular Genetics Laboratory, National School of Anthropology and History, 14030, Mexico City, Mexico
| | - Victor Acuña-Alonzo
- Molecular Genetics Laboratory, National School of Anthropology and History, 14030, Mexico City, Mexico
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, 91501-970, Brasil
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Peru
| | - Gabriel Bedoya
- GENMOL (Genetica Molecular), Universidad de Antioquia, 5001000, Medellin, Colombia
| | - Francisco Rothhammer
- Departamento de Tecnología Médica, Facultad de Ciencias de La Salud, Universidad de Tarapaca, 1000009, Arica, Chile
| | - Rolando González-Jose
- Centro Nacional Patagónico, CONICET, Unidad de Diversidad, Sistematica Y Evolucion, Puerto Madryn U912OACD, Argentina
| | - Andrés Ruiz-Linares
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, WC1E 6BT, UK
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a La Salud, Facultad de Química, UNAM/INMEGEN, 04510, Mexico City, Mexico
| | - Edmond Yunis
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Julio Granados
- Department of Transplantation, INCMNSZ, 14080, Mexico City, Mexico.
| | - Teresa Corona
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez" (INNN), 14269, Mexico City, Mexico.
| |
Collapse
|
16
|
Hofer LS, Ramberger M, Gredler V, Pescoller AS, Rostásy K, Sospedra M, Hegen H, Berger T, Lutterotti A, Reindl M. Comparative Analysis of T-Cell Responses to Aquaporin-4 and Myelin Oligodendrocyte Glycoprotein in Inflammatory Demyelinating Central Nervous System Diseases. Front Immunol 2020; 11:1188. [PMID: 32625206 PMCID: PMC7311656 DOI: 10.3389/fimmu.2020.01188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/13/2020] [Indexed: 12/30/2022] Open
Abstract
Autoantibodies against aquaporin-4 (AQP4-Ab) and myelin oligodendrocyte glycoprotein (MOG-Ab) are associated with rare central nervous system inflammatory demyelinating diseases like neuromyelitis optica spectrum disorders (NMOSD). Previous studies have shown that not only antibodies, but also autoreactive T-cell responses against AQP4 are present in NMOSD. However, no study has yet analyzed the presence of MOG reactive T-cells in patients with MOG antibodies. Therefore, we compared AQP4 and MOG specific peripheral T-cell response in individuals with AQP4-Ab (n = 8), MOG-Ab (n = 10), multiple sclerosis (MS, n = 8), and healthy controls (HC, n = 14). Peripheral blood mononuclear cell cultures were stimulated with eight AQP4 and nine MOG peptides selected from previous studies and a tetanus toxoid peptide mix as a positive control. Antigen-specific T-cell responses were assessed using the carboxyfluorescein diacetate succinimidyl ester proliferation assay and the detection of granulocyte macrophage colony-stimulating factor (GM-CSF), interferon (IFN)-ɤ and interleukin (IL)-4, IL-6, and IL-17A in cell culture supernatants. Additionally, human leukocyte antigen (HLA)-DQ and HLA-DR genotyping of all participants was performed. We classified a T-cell response as positive if proliferation (measured by a cell division index ≥3) was confirmed by the secretion of at least one cytokine. Reactivity against AQP4 peptides was observed in many groups, but the T-cell response against AQP4 p156-170 was present only in patients with AQP4-Ab (4/8, 50%) and absent in patients with MOG-Ab, MS and HC (corrected p = 0.02). This AQP4 p156-170 peptide specific T-cell response was significantly increased in participants with AQP4-Ab compared to those without [Odds ratio (OR) = 59.00, 95% confidence interval-CI 2.70–1,290.86]. Moreover, T-cell responses against at least one AQP4 peptide were also more frequent in participants with AQP4-Ab (OR = 11.45, 95% CI 1.24–106.05). We did not observe any significant differences for the other AQP4 peptides or any MOG peptide. AQP4-Ab were associated with HLA DQB1*02 (OR = 5.71, 95% CI 1.09–30.07), DRB1*01 (OR = 9.33, 95% CI 1.50–58.02) and DRB1*03 (OR = 6.75, 95% CI = 1.19–38.41). Furthermore, HLA DRB1*01 was also associated with the presence of AQP4 p156-170 reactive T-cells (OR = 31.67, 95% CI 1.30–772.98). To summarize, our findings suggest a role of AQP4-specific, but not MOG-specific T-cells, in NMOSD.
Collapse
Affiliation(s)
- Livia Sophie Hofer
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Melanie Ramberger
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.,Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Viktoria Gredler
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Sophie Pescoller
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kevin Rostásy
- Paediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University, Datteln, Germany
| | - Mireia Sospedra
- Department of Neuroimmunology, University of Zurich, Zurich, Switzerland
| | - Harald Hegen
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Andreas Lutterotti
- Department of Neuroimmunology, University of Zurich, Zurich, Switzerland
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Bruijstens AL, Wong YYM, van Pelt DE, van der Linden PJE, Haasnoot GW, Hintzen RQ, Claas FHJ, Neuteboom RF, Wokke BHA. HLA association in MOG-IgG- and AQP4-IgG-related disorders of the CNS in the Dutch population. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/3/e702. [PMID: 32198229 PMCID: PMC7136059 DOI: 10.1212/nxi.0000000000000702] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/07/2020] [Indexed: 01/04/2023]
Abstract
Objective To investigate the possible human leukocyte antigen (HLA) association of both myelin oligodendrocyte glycoprotein (MOG-IgG)-associated diseases (MOGAD) and aquaporin-4 antibody (AQP4-IgG)-positive neuromyelitis optica spectrum disorders (NMOSDs) in the Dutch population with European ancestry to clarify similarities or differences in the immunogenetic background of both diseases. Methods Blood samples from patients in the Dutch national MS/NMOSD expert clinic were tested for MOG-IgG and AQP4-IgG using a cell-based assay. HLA Class I and II genotyping was performed in 43 MOG-IgG–seropositive and 42 AQP4-IgG–seropositive Dutch patients with European ancestry and compared with those of 5,604 Dutch healthy blood donors. Results No significant HLA association was found in MOG-IgG–seropositive patients. The AQP4-IgG–seropositive patients had a significant higher frequency of HLA-A*01 (61.9% vs 33.7%, OR 3.16, 95% CI, 1.707–5.863, p after correction [pc] = 0.0045), HLA-B*08 (61.9% vs 25.6%, OR 4.66, 95% CI, 2.513–8.643, pc < 0.0001), and HLA-DRB1*03 (51.2% vs 27.6%, OR 2.75, 95% CI, 1.495–5.042, pc = 0.0199) compared with controls. Conclusions The present study demonstrates differences in the immunogenetic background of MOGAD and AQP4-IgG–positive NMOSD. The strong positive association with HLA-A*01, -B*08, and -DRB1*03 is suggestive of a role of this haplotype in the etiology of AQP4-IgG–positive NMOSD in patients with European ancestry, whereas in MOGAD no evidence was found for any HLA association in these disorders.
Collapse
Affiliation(s)
- Arlette L Bruijstens
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands.
| | - Yu Yi M Wong
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Daniëlle E van Pelt
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Pieter J E van der Linden
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Geert W Haasnoot
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Rogier Q Hintzen
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Frans H J Claas
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Rinze F Neuteboom
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Beatrijs H A Wokke
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| |
Collapse
|
18
|
Kay CSK, Scola RH, Arndt RC, Lorenzoni PJ, Werneck LC. HLA-alleles class I and II associated with genetic susceptibility to neuromyelitis optica in Brazilian patients. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 77:239-247. [PMID: 31090804 DOI: 10.1590/0004-282x20190031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/08/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To study the genetic susceptibility to neuromyelitis optica (NMO) as well as the relationship between HLA genotypes and susceptibility to the disease in the southern Brazilian population. METHODS We analyzed patients with NMO, who met criteria for Wingerchuk's diagnosis of NMO, with detected serum anti-AQP4-IgG antibody. The HLA genotyping was performed by high-resolution techniques (Sanger sequencing) in patients and controls. The HLA genotypes were statistically compared with a paired control population. RESULTS The HLA genotyping revealed the diversity of the southern Brazilian population whose HLA profile resembled European and Asian populations. Some alleles had statistical correlations with a positive association (increased susceptibility) with NMO, particularly the HLA-DRB1*04:05 and *16:02. CONCLUSIONS In our study, the HLA genotype was different to that previously reported for other Brazilian populations. Although our study had a small cohort, HLA genotypes were associated with increased susceptibility to NMO for HLA-DRB1*04:05 and *16:02. The alleles of HLA class I HLA-A*02:08 and *30:09, HLA-B*08:04 and *35:04 showed an association before the Bonferroni correction.
Collapse
Affiliation(s)
- Cláudia Suemi Kamoi Kay
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Curitiba PR, Brasil
| | - Rosana Herminia Scola
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Curitiba PR, Brasil
| | - Raquel Cristina Arndt
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Curitiba PR, Brasil
| | - Paulo José Lorenzoni
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Curitiba PR, Brasil
| | - Lineu Cesar Werneck
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Curitiba PR, Brasil
| |
Collapse
|
19
|
Naser Moghadasi A. Environmental and genetic risk factors in the development of neuromyelitis optica. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2020.1723416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Muñiz-Castrillo S, Vogrig A, Honnorat J. Associations between HLA and autoimmune neurological diseases with autoantibodies. AUTOIMMUNITY HIGHLIGHTS 2020; 11:2. [PMID: 32127039 PMCID: PMC7065322 DOI: 10.1186/s13317-019-0124-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/14/2019] [Indexed: 12/16/2022]
Abstract
Recently, several autoimmune neurological diseases have been defined by the presence of autoantibodies against different antigens of the nervous system. These autoantibodies have been demonstrated to be specific and useful biomarkers, and most of them are also pathogenic. These aspects have increased the value of autoantibodies in neurological practice, as they enable to establish more accurate diagnosis and to better understand the underlying mechanisms of the autoimmune neurological diseases when they are compared to those lacking them. Nevertheless, the exact mechanisms leading to the autoimmune response are still obscure. Genetic predisposition is likely to play a role in autoimmunity, HLA being the most reported genetic factor. Herein, we review the current knowledge about associations between HLA and autoimmune neurological diseases with autoantibodies. We report the main alleles and haplotypes, and discuss the clinical and pathogenic implications of these findings.
Collapse
Affiliation(s)
- Sergio Muñiz-Castrillo
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Boulevard Pinel, 69677, Bron Cedex, France.,SynatAc Team, Institut NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Alberto Vogrig
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Boulevard Pinel, 69677, Bron Cedex, France.,SynatAc Team, Institut NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Boulevard Pinel, 69677, Bron Cedex, France. .,SynatAc Team, Institut NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
21
|
Ramakrishnan P, Nagarajan D. Neuromyelitis optica spectrum disorder: an overview. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Liang H, Gao W, Liu X, Liu J, Mao X, Yang M, Long X, Zhou Y, Zhang Q, Zhu J, Wang S, Jin T. The GTF2I rs117026326 polymorphism is associated with neuromyelitis optica spectrum disorder but not with multiple sclerosis in a Northern Han Chinese population. J Neuroimmunol 2019; 337:577045. [PMID: 31520790 DOI: 10.1016/j.jneuroim.2019.577045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 01/18/2023]
Abstract
Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are common demyelinating disorders of the central nervous system. The etiology and pathogenesis of MS and NMOSD remain unclear. The pathogenesis of these two diseases involves a genetic predisposition as well as environmental factors. NMOSD sometimes co-exists with Sjögren's syndrome, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA), and these diseases are frequently associated with central nervous system disorder involvement, as manifest in MS- and NMOSD-like clinical features. Genetic variant rs117026326 upstream of the general transcription factor II-I (GTF2I) has been associated with primary Sjögren's syndrome, SLE and RA in East Asian populations. In this study, we genotyped single nucleotide rs117026326 polymorphisms of the GTF2I gene in 168 patients with MS, 144 patients with NMOSD, and 1403 healthy controls. We observed a significant genetic association between the variant rs117026326 and NMOSD (P = 1.09 × 10-11, OR = 2.535), however, the association with MS was not significant (P = .4289, OR = 1.129). Gene expression analyses showed that there was no significant association between the messenger RNA expression of GTF2I and genotypes at the variant. We conclude that the risk T allele of rs117026326 increases the risk of NMOSD, suggesting that NMOSD and MS may have different genetic risk factors.
Collapse
Affiliation(s)
- Hudong Liang
- Department of Neurology, The First Hospital of Jilin University, China
| | - Wenjing Gao
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, China
| | - Xianjun Liu
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, China
| | - Jingyao Liu
- Department of Neurology, The First Hospital of Jilin University, China
| | - Xijing Mao
- Department of Neurology, The Second Hospital of Jilin University, China
| | - Mengge Yang
- Department of Neurology, The First Hospital of Jilin University, China
| | - Xixi Long
- Department of Neurology, The First Hospital of Jilin University, China
| | - Yang Zhou
- Department of Neurology, The First Hospital of Jilin University, China
| | - Qingxiang Zhang
- Department of Neurology, The First Hospital of Jilin University, China
| | - Jie Zhu
- Department of Neurology, The First Hospital of Jilin University, China; Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Shaofeng Wang
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, China.
| | - Tao Jin
- Department of Neurology, The First Hospital of Jilin University, China.
| |
Collapse
|
23
|
Neuromyelitis Optica Spectrum Disorder and Anti-MOG Syndromes. Biomedicines 2019; 7:biomedicines7020042. [PMID: 31212763 PMCID: PMC6631227 DOI: 10.3390/biomedicines7020042] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/01/2019] [Accepted: 06/02/2019] [Indexed: 01/24/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) and anti-myelin oligodendrocyte glycoprotein (anti-MOG) syndromes are immune-mediated inflammatory conditions of the central nervous system that frequently involve the optic nerves and the spinal cord. Because of their similar clinical manifestations and habitual relapsing course they are frequently confounded with multiple sclerosis (MS). Early and accurate diagnosis of these distinct conditions is relevant as they have different treatments. Some agents used for MS treatment may be deleterious to NMOSD. NMOSD is frequently associated with antibodies which target aquaporin-4 (AQP4), the most abundant water channel in the CNS, located in the astrocytic processes at the blood-brain barrier (BBB). On the other hand, anti-MOG syndromes result from damage to myelin oligodendrocyte glycoprotein (MOG), expressed on surfaces of oligodendrocytes and myelin sheaths. Acute transverse myelitis with longitudinally extensive lesion on spinal MRI is the most frequent inaugural manifestation of NMOSD, usually followed by optic neuritis. Other core clinical characteristics include area postrema syndrome, brainstem, diencephalic and cerebral symptoms that may be associated with typical MRI abnormalities. Acute disseminated encephalomyelitis and bilateral or recurrent optic neuritis are the most frequent anti-MOG syndromes in children and adults, respectively. Attacks are usually treated with steroids, and relapses prevention with immunosuppressive drugs. Promising emerging therapies for NMOSD include monoclonal antibodies and tolerization.
Collapse
|
24
|
Assadeck H, Toudou Daouda M, Adehossi Omar É, Mamadou Z, Hassane Djibo F, Douma Maiga D. Inflammatory demyelinating diseases of the central nervous system in Niger. Rev Neurol (Paris) 2019; 175:261-268. [DOI: 10.1016/j.neurol.2018.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/13/2018] [Accepted: 05/24/2018] [Indexed: 01/30/2023]
|
25
|
da Silva Bernardes M, Antão Paiva CL, Ribeiro Paradela E, Papais Alvarenga M, Ferreira Pereira F, Vasconcelos CC, Papais Alvarenga RM. Familial multiple sclerosis in a Brazilian sample: Is HLA-DR15 involved in susceptibility to the disease? J Neuroimmunol 2019; 330:74-80. [PMID: 30836273 DOI: 10.1016/j.jneuroim.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/20/2019] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND The HLA-DR15 extended haplotype HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 comprises the strongest genetic risk factor for multiple sclerosis (MS). The aim of this work was to investigate whether HLA-DR15 alleles were significantly associated with the susceptibility to MS familial forms (MSf) in an admixed Brazilian population. METHODS Association analyses between DR15 and the clinical and demographic variables were made. RESULTS We have genotyped 25 familial cases. The DR15 was detected in 11/25 (44%) of them and in none of controls (P < .00001). DR15 was significantly associated to a foreign ancestor background (P = .029) and later age of onset (P = .018).
Collapse
Affiliation(s)
- Melina da Silva Bernardes
- Graduate Progam in Neurology (PPGNEURO), Hospital Universitário Gaffrée e Guinle (HUGG), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro/RJ 20270-004, Brazil.
| | - Carmen Lucia Antão Paiva
- Department of Genetics and Molecular Biology, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Frei Caneca 94, Rio de Janeiro/RJ 20211-040, Brazil
| | - Eduardo Ribeiro Paradela
- Graduate Progam in Neurology (PPGNEURO), Hospital Universitário Gaffrée e Guinle (HUGG), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro/RJ 20270-004, Brazil
| | - Marcos Papais Alvarenga
- Graduate Progam in Neurology (PPGNEURO), Hospital Universitário Gaffrée e Guinle (HUGG), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro/RJ 20270-004, Brazil; Department of Neurology, Hospital da Lagoa, Ministry of Health, Rua Jardim Botânico 501, Rio de Janeiro/RJ 22470-050, Brazil
| | - Fernanda Ferreira Pereira
- Graduate Progam in Neurology (PPGNEURO), Hospital Universitário Gaffrée e Guinle (HUGG), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro/RJ 20270-004, Brazil
| | - Claudia Cristina Vasconcelos
- Graduate Progam in Neurology (PPGNEURO), Hospital Universitário Gaffrée e Guinle (HUGG), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro/RJ 20270-004, Brazil; Department of Neurology, Hospital da Lagoa, Ministry of Health, Rua Jardim Botânico 501, Rio de Janeiro/RJ 22470-050, Brazil
| | - Regina Maria Papais Alvarenga
- Graduate Progam in Neurology (PPGNEURO), Hospital Universitário Gaffrée e Guinle (HUGG), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro/RJ 20270-004, Brazil; Department of Neurology, Hospital da Lagoa, Ministry of Health, Rua Jardim Botânico 501, Rio de Janeiro/RJ 22470-050, Brazil
| |
Collapse
|
26
|
Xie JL, Liu J, Lian ZY, Chen HX, Shi ZY, Zhang Q, Feng HR, Du Q, Miao XH, Zhou HY. Association of GTF2IRD1-GTF2I polymorphisms with neuromyelitis optica spectrum disorders in Han Chinese patients. Neural Regen Res 2018; 14:346-353. [PMID: 30531019 PMCID: PMC6301177 DOI: 10.4103/1673-5374.244800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Variants at the GTF2I repeat domain containing 1 (GTF2IRD1)–GTF2I locus are associated with primary Sjögren’s syndrome, systemic lupus erythematosus, and rheumatoid arthritis. Numerous studies have indicated that this susceptibility locus is shared by multiple autoimmune diseases. However, until now there were no studies of the correlation between GTF2IRD1–GTF2I polymorphisms and neuromyelitis optica spectrum disorders (NMOSD). This case control study assessed this association by recruiting 305 participants with neuromyelitis optica spectrum disorders and 487 healthy controls at the Department of Neurology, from September 2014 to April 2017. Peripheral blood was collected, DNA extracteds and the genetic association between GTF2IRD1–GTF2I polymorphisms and neuromyelitis optica spectrum disorders in the Chinese Han population was analyzed by genotyping. We found that the T allele of rs117026326 was associated with an increased risk of neuromyelitis optica spectrum disorders (odds ratio (OR) = 1.364, 95% confidence interval (CI) 1.019–1.828; P = 0.037). This association persisted after stratification analysis for aquaporin-4 immunoglobulin G antibodies (AQP4-IgG) positivity (OR = 1.397, 95% CI 1.021–1.912; P = 0.036) and stratification according to coexisting autoimmune diseases (OR = 1.446, 95% CI 1.072–1.952; P = 0.015). Furthermore, the CC genotype of rs73366469 was frequent in AQP4-IgG-seropositive patients (OR = 3.15, 95% CI 1.183–8.393, P = 0.022). In conclusion, the T allele of rs117026326 was associated with susceptibility to neuromyelitis optica spectrum disorders, and the CC genotype of rs73366469 conferred susceptibility to AQP4-IgG-seropositivity in Han Chinese patients. The protocol was approved by the Ethics Committee of West China Hospital of Sichuan University, China (approval number: 2016-31) on March 2, 2016.
Collapse
Affiliation(s)
- Jing-Lu Xie
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ju Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhi-Yun Lian
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hong-Xi Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zi-Yan Shi
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hui-Ru Feng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Du
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiao-Hui Miao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hong-Yu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
27
|
Zarei S, Eggert J, Franqui-Dominguez L, Carl Y, Boria F, Stukova M, Avila A, Rubi C, Chinea A. Comprehensive review of neuromyelitis optica and clinical characteristics of neuromyelitis optica patients in Puerto Rico. Surg Neurol Int 2018; 9:242. [PMID: 30603227 PMCID: PMC6293609 DOI: 10.4103/sni.sni_224_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Neuromyelitis optica (NMO) is an immune-mediated inflammatory disorder of the central nervous system. It is characterized by concurrent inflammation and demyelination of the optic nerve (optic neuritis [ON]) and the spinal cord (myelitis). Multiple studies show variations in prevalence, clinical, and demographic features of NMO among different populations. In addition, ethnicity and race are known as important factors on disease phenotype and clinical outcomes. There are little data on information about NMO patients in underserved groups, including Puerto Rico (PR). In this research, we will provide a comprehensive overview of all aspects of NMO, including epidemiology, environmental risk factors, genetic factors, molecular mechanism, symptoms, comorbidities and clinical differentiation, diagnosis, treatment, its management, and prognosis. We will also evaluate the demographic features and clinical phenotype of NMO patients in PR. This will provide a better understanding of NMO and establish a basis of knowledge that can be used to improve care. Furthermore, this type of population-based study can distinguish the clinical features variation among NMO patients and will provide insight into the potential mechanisms that cause these variations.
Collapse
Affiliation(s)
- Sara Zarei
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - James Eggert
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | | | - Yonatan Carl
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - Fernando Boria
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - Marina Stukova
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | | | - Cristina Rubi
- Caribbean Neurological Center, Guaynabo, Puerto Rico, USA
| | - Angel Chinea
- Caribbean Neurological Center, Guaynabo, Puerto Rico, USA
| |
Collapse
|
28
|
Kim SH, Mealy MA, Levy M, Schmidt F, Ruprecht K, Paul F, Ringelstein M, Aktas O, Hartung HP, Asgari N, Tsz-Ching JL, Siritho S, Prayoonwiwat N, Shin HJ, Hyun JW, Han M, Leite MI, Palace J, Kim HJ. Racial differences in neuromyelitis optica spectrum disorder. Neurology 2018; 91:e2089-e2099. [PMID: 30366977 DOI: 10.1212/wnl.0000000000006574] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE We aimed to evaluate racial differences in the clinical features of neuromyelitis optica spectrum disorder. METHODS This retrospective review included 603 patients (304 Asian, 207 Caucasian, and 92 Afro-American/Afro-European), who were seropositive for anti-aquaporin-4 antibody, from 6 centers in Denmark, Germany, South Korea, United Kingdom, United States, and Thailand. RESULTS Median disease duration at last follow-up was 8 years (range 0.3-38.4 years). Asian and Afro-American/Afro-European patients had a younger onset age than Caucasian patients (mean 36, 33, and 44 years, respectively; p < 0.001). During the disease course, Caucasian patients (23%) had a lower incidence of brain/brainstem involvement than Asian (42%) and Afro-American/Afro-European patients (38%) (p < 0.001). Severe attacks (visual acuity ≤0.1 in at least one eye or Expanded Disability Status Scale score ≥6.0 at nadir) at onset occurred more frequently in Afro-American/Afro-European (58%) than in Asian (46%) and Caucasian (38%) patients (p = 0.005). In the multivariable analysis, older age at onset, higher number of attacks before and after immunosuppressive treatment, but not race, were independent predictors of severe motor disabilities at last follow-up. CONCLUSION A review of a large international cohort revealed that race affected the clinical phenotype, age at onset, and severity of attacks, but the overall outcome was most dependent on early and effective immunosuppressive treatment.
Collapse
Affiliation(s)
- Su-Hyun Kim
- From the Department of Neurology (S.-H.K., H.-J.S., J.-W.H., H.J.K.) and Biometric Research Branch (M.H.), Research Institute and Hospital of National Cancer Center, Goyang, South Korea; Department of Neurology (M.A.M., M.L.), Johns Hopkins University School of Medicine, Baltimore, MD; NeuroCure Clinical Research Center (F.S., F.P.) and Department of Neurology (F.S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin; Department of Neurology (M.R., O.A., H.-P.H.), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (N.A.), Slagelse Hospital and Institute of Regional Health Research & Molecular Medicine, University of Southern Denmark, Odense; Department of Neurology (J.L.T.-C.), Queen Elizabeth Hospital, Hong Kong, China; Department of Medicine (S.S., N.P.), Siriraj Hospital, Mahidol University, Bangkok, Thailand; and Nuffield Department of Clinical Neurosciences (M.I.L., J.P.), John Radcliffe Hospital, University of Oxford, UK
| | - Maureen A Mealy
- From the Department of Neurology (S.-H.K., H.-J.S., J.-W.H., H.J.K.) and Biometric Research Branch (M.H.), Research Institute and Hospital of National Cancer Center, Goyang, South Korea; Department of Neurology (M.A.M., M.L.), Johns Hopkins University School of Medicine, Baltimore, MD; NeuroCure Clinical Research Center (F.S., F.P.) and Department of Neurology (F.S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin; Department of Neurology (M.R., O.A., H.-P.H.), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (N.A.), Slagelse Hospital and Institute of Regional Health Research & Molecular Medicine, University of Southern Denmark, Odense; Department of Neurology (J.L.T.-C.), Queen Elizabeth Hospital, Hong Kong, China; Department of Medicine (S.S., N.P.), Siriraj Hospital, Mahidol University, Bangkok, Thailand; and Nuffield Department of Clinical Neurosciences (M.I.L., J.P.), John Radcliffe Hospital, University of Oxford, UK
| | - Michael Levy
- From the Department of Neurology (S.-H.K., H.-J.S., J.-W.H., H.J.K.) and Biometric Research Branch (M.H.), Research Institute and Hospital of National Cancer Center, Goyang, South Korea; Department of Neurology (M.A.M., M.L.), Johns Hopkins University School of Medicine, Baltimore, MD; NeuroCure Clinical Research Center (F.S., F.P.) and Department of Neurology (F.S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin; Department of Neurology (M.R., O.A., H.-P.H.), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (N.A.), Slagelse Hospital and Institute of Regional Health Research & Molecular Medicine, University of Southern Denmark, Odense; Department of Neurology (J.L.T.-C.), Queen Elizabeth Hospital, Hong Kong, China; Department of Medicine (S.S., N.P.), Siriraj Hospital, Mahidol University, Bangkok, Thailand; and Nuffield Department of Clinical Neurosciences (M.I.L., J.P.), John Radcliffe Hospital, University of Oxford, UK
| | - Felix Schmidt
- From the Department of Neurology (S.-H.K., H.-J.S., J.-W.H., H.J.K.) and Biometric Research Branch (M.H.), Research Institute and Hospital of National Cancer Center, Goyang, South Korea; Department of Neurology (M.A.M., M.L.), Johns Hopkins University School of Medicine, Baltimore, MD; NeuroCure Clinical Research Center (F.S., F.P.) and Department of Neurology (F.S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin; Department of Neurology (M.R., O.A., H.-P.H.), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (N.A.), Slagelse Hospital and Institute of Regional Health Research & Molecular Medicine, University of Southern Denmark, Odense; Department of Neurology (J.L.T.-C.), Queen Elizabeth Hospital, Hong Kong, China; Department of Medicine (S.S., N.P.), Siriraj Hospital, Mahidol University, Bangkok, Thailand; and Nuffield Department of Clinical Neurosciences (M.I.L., J.P.), John Radcliffe Hospital, University of Oxford, UK
| | - Klemens Ruprecht
- From the Department of Neurology (S.-H.K., H.-J.S., J.-W.H., H.J.K.) and Biometric Research Branch (M.H.), Research Institute and Hospital of National Cancer Center, Goyang, South Korea; Department of Neurology (M.A.M., M.L.), Johns Hopkins University School of Medicine, Baltimore, MD; NeuroCure Clinical Research Center (F.S., F.P.) and Department of Neurology (F.S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin; Department of Neurology (M.R., O.A., H.-P.H.), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (N.A.), Slagelse Hospital and Institute of Regional Health Research & Molecular Medicine, University of Southern Denmark, Odense; Department of Neurology (J.L.T.-C.), Queen Elizabeth Hospital, Hong Kong, China; Department of Medicine (S.S., N.P.), Siriraj Hospital, Mahidol University, Bangkok, Thailand; and Nuffield Department of Clinical Neurosciences (M.I.L., J.P.), John Radcliffe Hospital, University of Oxford, UK
| | - Friedemann Paul
- From the Department of Neurology (S.-H.K., H.-J.S., J.-W.H., H.J.K.) and Biometric Research Branch (M.H.), Research Institute and Hospital of National Cancer Center, Goyang, South Korea; Department of Neurology (M.A.M., M.L.), Johns Hopkins University School of Medicine, Baltimore, MD; NeuroCure Clinical Research Center (F.S., F.P.) and Department of Neurology (F.S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin; Department of Neurology (M.R., O.A., H.-P.H.), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (N.A.), Slagelse Hospital and Institute of Regional Health Research & Molecular Medicine, University of Southern Denmark, Odense; Department of Neurology (J.L.T.-C.), Queen Elizabeth Hospital, Hong Kong, China; Department of Medicine (S.S., N.P.), Siriraj Hospital, Mahidol University, Bangkok, Thailand; and Nuffield Department of Clinical Neurosciences (M.I.L., J.P.), John Radcliffe Hospital, University of Oxford, UK
| | - Marius Ringelstein
- From the Department of Neurology (S.-H.K., H.-J.S., J.-W.H., H.J.K.) and Biometric Research Branch (M.H.), Research Institute and Hospital of National Cancer Center, Goyang, South Korea; Department of Neurology (M.A.M., M.L.), Johns Hopkins University School of Medicine, Baltimore, MD; NeuroCure Clinical Research Center (F.S., F.P.) and Department of Neurology (F.S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin; Department of Neurology (M.R., O.A., H.-P.H.), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (N.A.), Slagelse Hospital and Institute of Regional Health Research & Molecular Medicine, University of Southern Denmark, Odense; Department of Neurology (J.L.T.-C.), Queen Elizabeth Hospital, Hong Kong, China; Department of Medicine (S.S., N.P.), Siriraj Hospital, Mahidol University, Bangkok, Thailand; and Nuffield Department of Clinical Neurosciences (M.I.L., J.P.), John Radcliffe Hospital, University of Oxford, UK
| | - Orhan Aktas
- From the Department of Neurology (S.-H.K., H.-J.S., J.-W.H., H.J.K.) and Biometric Research Branch (M.H.), Research Institute and Hospital of National Cancer Center, Goyang, South Korea; Department of Neurology (M.A.M., M.L.), Johns Hopkins University School of Medicine, Baltimore, MD; NeuroCure Clinical Research Center (F.S., F.P.) and Department of Neurology (F.S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin; Department of Neurology (M.R., O.A., H.-P.H.), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (N.A.), Slagelse Hospital and Institute of Regional Health Research & Molecular Medicine, University of Southern Denmark, Odense; Department of Neurology (J.L.T.-C.), Queen Elizabeth Hospital, Hong Kong, China; Department of Medicine (S.S., N.P.), Siriraj Hospital, Mahidol University, Bangkok, Thailand; and Nuffield Department of Clinical Neurosciences (M.I.L., J.P.), John Radcliffe Hospital, University of Oxford, UK
| | - Hans-Peter Hartung
- From the Department of Neurology (S.-H.K., H.-J.S., J.-W.H., H.J.K.) and Biometric Research Branch (M.H.), Research Institute and Hospital of National Cancer Center, Goyang, South Korea; Department of Neurology (M.A.M., M.L.), Johns Hopkins University School of Medicine, Baltimore, MD; NeuroCure Clinical Research Center (F.S., F.P.) and Department of Neurology (F.S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin; Department of Neurology (M.R., O.A., H.-P.H.), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (N.A.), Slagelse Hospital and Institute of Regional Health Research & Molecular Medicine, University of Southern Denmark, Odense; Department of Neurology (J.L.T.-C.), Queen Elizabeth Hospital, Hong Kong, China; Department of Medicine (S.S., N.P.), Siriraj Hospital, Mahidol University, Bangkok, Thailand; and Nuffield Department of Clinical Neurosciences (M.I.L., J.P.), John Radcliffe Hospital, University of Oxford, UK
| | - Nasrin Asgari
- From the Department of Neurology (S.-H.K., H.-J.S., J.-W.H., H.J.K.) and Biometric Research Branch (M.H.), Research Institute and Hospital of National Cancer Center, Goyang, South Korea; Department of Neurology (M.A.M., M.L.), Johns Hopkins University School of Medicine, Baltimore, MD; NeuroCure Clinical Research Center (F.S., F.P.) and Department of Neurology (F.S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin; Department of Neurology (M.R., O.A., H.-P.H.), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (N.A.), Slagelse Hospital and Institute of Regional Health Research & Molecular Medicine, University of Southern Denmark, Odense; Department of Neurology (J.L.T.-C.), Queen Elizabeth Hospital, Hong Kong, China; Department of Medicine (S.S., N.P.), Siriraj Hospital, Mahidol University, Bangkok, Thailand; and Nuffield Department of Clinical Neurosciences (M.I.L., J.P.), John Radcliffe Hospital, University of Oxford, UK
| | - Jessica Li Tsz-Ching
- From the Department of Neurology (S.-H.K., H.-J.S., J.-W.H., H.J.K.) and Biometric Research Branch (M.H.), Research Institute and Hospital of National Cancer Center, Goyang, South Korea; Department of Neurology (M.A.M., M.L.), Johns Hopkins University School of Medicine, Baltimore, MD; NeuroCure Clinical Research Center (F.S., F.P.) and Department of Neurology (F.S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin; Department of Neurology (M.R., O.A., H.-P.H.), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (N.A.), Slagelse Hospital and Institute of Regional Health Research & Molecular Medicine, University of Southern Denmark, Odense; Department of Neurology (J.L.T.-C.), Queen Elizabeth Hospital, Hong Kong, China; Department of Medicine (S.S., N.P.), Siriraj Hospital, Mahidol University, Bangkok, Thailand; and Nuffield Department of Clinical Neurosciences (M.I.L., J.P.), John Radcliffe Hospital, University of Oxford, UK
| | - Sasitorn Siritho
- From the Department of Neurology (S.-H.K., H.-J.S., J.-W.H., H.J.K.) and Biometric Research Branch (M.H.), Research Institute and Hospital of National Cancer Center, Goyang, South Korea; Department of Neurology (M.A.M., M.L.), Johns Hopkins University School of Medicine, Baltimore, MD; NeuroCure Clinical Research Center (F.S., F.P.) and Department of Neurology (F.S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin; Department of Neurology (M.R., O.A., H.-P.H.), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (N.A.), Slagelse Hospital and Institute of Regional Health Research & Molecular Medicine, University of Southern Denmark, Odense; Department of Neurology (J.L.T.-C.), Queen Elizabeth Hospital, Hong Kong, China; Department of Medicine (S.S., N.P.), Siriraj Hospital, Mahidol University, Bangkok, Thailand; and Nuffield Department of Clinical Neurosciences (M.I.L., J.P.), John Radcliffe Hospital, University of Oxford, UK
| | - Naraporn Prayoonwiwat
- From the Department of Neurology (S.-H.K., H.-J.S., J.-W.H., H.J.K.) and Biometric Research Branch (M.H.), Research Institute and Hospital of National Cancer Center, Goyang, South Korea; Department of Neurology (M.A.M., M.L.), Johns Hopkins University School of Medicine, Baltimore, MD; NeuroCure Clinical Research Center (F.S., F.P.) and Department of Neurology (F.S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin; Department of Neurology (M.R., O.A., H.-P.H.), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (N.A.), Slagelse Hospital and Institute of Regional Health Research & Molecular Medicine, University of Southern Denmark, Odense; Department of Neurology (J.L.T.-C.), Queen Elizabeth Hospital, Hong Kong, China; Department of Medicine (S.S., N.P.), Siriraj Hospital, Mahidol University, Bangkok, Thailand; and Nuffield Department of Clinical Neurosciences (M.I.L., J.P.), John Radcliffe Hospital, University of Oxford, UK
| | - Hyun-June Shin
- From the Department of Neurology (S.-H.K., H.-J.S., J.-W.H., H.J.K.) and Biometric Research Branch (M.H.), Research Institute and Hospital of National Cancer Center, Goyang, South Korea; Department of Neurology (M.A.M., M.L.), Johns Hopkins University School of Medicine, Baltimore, MD; NeuroCure Clinical Research Center (F.S., F.P.) and Department of Neurology (F.S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin; Department of Neurology (M.R., O.A., H.-P.H.), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (N.A.), Slagelse Hospital and Institute of Regional Health Research & Molecular Medicine, University of Southern Denmark, Odense; Department of Neurology (J.L.T.-C.), Queen Elizabeth Hospital, Hong Kong, China; Department of Medicine (S.S., N.P.), Siriraj Hospital, Mahidol University, Bangkok, Thailand; and Nuffield Department of Clinical Neurosciences (M.I.L., J.P.), John Radcliffe Hospital, University of Oxford, UK
| | - Jae-Won Hyun
- From the Department of Neurology (S.-H.K., H.-J.S., J.-W.H., H.J.K.) and Biometric Research Branch (M.H.), Research Institute and Hospital of National Cancer Center, Goyang, South Korea; Department of Neurology (M.A.M., M.L.), Johns Hopkins University School of Medicine, Baltimore, MD; NeuroCure Clinical Research Center (F.S., F.P.) and Department of Neurology (F.S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin; Department of Neurology (M.R., O.A., H.-P.H.), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (N.A.), Slagelse Hospital and Institute of Regional Health Research & Molecular Medicine, University of Southern Denmark, Odense; Department of Neurology (J.L.T.-C.), Queen Elizabeth Hospital, Hong Kong, China; Department of Medicine (S.S., N.P.), Siriraj Hospital, Mahidol University, Bangkok, Thailand; and Nuffield Department of Clinical Neurosciences (M.I.L., J.P.), John Radcliffe Hospital, University of Oxford, UK
| | - Mira Han
- From the Department of Neurology (S.-H.K., H.-J.S., J.-W.H., H.J.K.) and Biometric Research Branch (M.H.), Research Institute and Hospital of National Cancer Center, Goyang, South Korea; Department of Neurology (M.A.M., M.L.), Johns Hopkins University School of Medicine, Baltimore, MD; NeuroCure Clinical Research Center (F.S., F.P.) and Department of Neurology (F.S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin; Department of Neurology (M.R., O.A., H.-P.H.), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (N.A.), Slagelse Hospital and Institute of Regional Health Research & Molecular Medicine, University of Southern Denmark, Odense; Department of Neurology (J.L.T.-C.), Queen Elizabeth Hospital, Hong Kong, China; Department of Medicine (S.S., N.P.), Siriraj Hospital, Mahidol University, Bangkok, Thailand; and Nuffield Department of Clinical Neurosciences (M.I.L., J.P.), John Radcliffe Hospital, University of Oxford, UK
| | - Maria Isabel Leite
- From the Department of Neurology (S.-H.K., H.-J.S., J.-W.H., H.J.K.) and Biometric Research Branch (M.H.), Research Institute and Hospital of National Cancer Center, Goyang, South Korea; Department of Neurology (M.A.M., M.L.), Johns Hopkins University School of Medicine, Baltimore, MD; NeuroCure Clinical Research Center (F.S., F.P.) and Department of Neurology (F.S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin; Department of Neurology (M.R., O.A., H.-P.H.), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (N.A.), Slagelse Hospital and Institute of Regional Health Research & Molecular Medicine, University of Southern Denmark, Odense; Department of Neurology (J.L.T.-C.), Queen Elizabeth Hospital, Hong Kong, China; Department of Medicine (S.S., N.P.), Siriraj Hospital, Mahidol University, Bangkok, Thailand; and Nuffield Department of Clinical Neurosciences (M.I.L., J.P.), John Radcliffe Hospital, University of Oxford, UK
| | - Jacqueline Palace
- From the Department of Neurology (S.-H.K., H.-J.S., J.-W.H., H.J.K.) and Biometric Research Branch (M.H.), Research Institute and Hospital of National Cancer Center, Goyang, South Korea; Department of Neurology (M.A.M., M.L.), Johns Hopkins University School of Medicine, Baltimore, MD; NeuroCure Clinical Research Center (F.S., F.P.) and Department of Neurology (F.S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin; Department of Neurology (M.R., O.A., H.-P.H.), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (N.A.), Slagelse Hospital and Institute of Regional Health Research & Molecular Medicine, University of Southern Denmark, Odense; Department of Neurology (J.L.T.-C.), Queen Elizabeth Hospital, Hong Kong, China; Department of Medicine (S.S., N.P.), Siriraj Hospital, Mahidol University, Bangkok, Thailand; and Nuffield Department of Clinical Neurosciences (M.I.L., J.P.), John Radcliffe Hospital, University of Oxford, UK
| | - Ho Jin Kim
- From the Department of Neurology (S.-H.K., H.-J.S., J.-W.H., H.J.K.) and Biometric Research Branch (M.H.), Research Institute and Hospital of National Cancer Center, Goyang, South Korea; Department of Neurology (M.A.M., M.L.), Johns Hopkins University School of Medicine, Baltimore, MD; NeuroCure Clinical Research Center (F.S., F.P.) and Department of Neurology (F.S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin; Department of Neurology (M.R., O.A., H.-P.H.), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (N.A.), Slagelse Hospital and Institute of Regional Health Research & Molecular Medicine, University of Southern Denmark, Odense; Department of Neurology (J.L.T.-C.), Queen Elizabeth Hospital, Hong Kong, China; Department of Medicine (S.S., N.P.), Siriraj Hospital, Mahidol University, Bangkok, Thailand; and Nuffield Department of Clinical Neurosciences (M.I.L., J.P.), John Radcliffe Hospital, University of Oxford, UK.
| |
Collapse
|
29
|
Gong J, Qiu W, Zeng Q, Liu X, Sun X, Li H, Yang Y, Wu A, Bao J, Wang Y, Shu Y, Hu X, Bellanti JA, Zheng SG, Lu Y, Lu Z. Lack of short-chain fatty acids and overgrowth of opportunistic pathogens define dysbiosis of neuromyelitis optica spectrum disorders: A Chinese pilot study. Mult Scler 2018; 25:1316-1325. [PMID: 30113252 DOI: 10.1177/1352458518790396] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background: Intestinal microbiota is an important environmental factor in the initiation and progression of autoimmune diseases. However, investigations on the gut microbiome in neuromyelitis optica spectrum disorders (NMOSD) are relatively insufficient, especially for that of the Asia population. Objectives: To evaluate whether or not the intestinal microbiota of NMOSD patients had specific microbial signatures. Methods: Next-generation sequencing and gas chromatography were employed to compare the fecal microbial composition and short-chain fatty acids (SCFAs) spectrum between patients with NMOSD ( n = 84) and healthy controls ( n = 54). Results: The gut microbial composition of NMOSD distinguished from healthy individuals. Streptococcus, significantly increased in NMOSD, is positively correlated with disease severities ( p < 0.05). The use of immunosuppressants results in a decrease of Streptococcus, suggesting that Streptococcus might play a significant role in the pathogenesis of NMOSD. A striking depletion of fecal SCFAs was observed in NMOSD patients ( p < 0.0001), with acetate and butyrate showing significantly negative correlation with disease severities ( p < 0.05). Conclusion: The fecal organismal structures and SCFAs level of patients with NMOSD were distinctive from healthy individuals. These findings not only could be critical events driving the aberrant immune response responsible for the pathogenesis of these disorders but could also provide suggestions for disease therapy.
Collapse
Affiliation(s)
- Junli Gong
- School of Life Sciences and Biomedical Center, Sun Yat-Sen University, Guangzhou, China
| | - Wei Qiu
- Multiple Sclerosis Centre, Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qin Zeng
- Multiple Sclerosis Centre, Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiyuan Liu
- School of Life Sciences and Biomedical Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiaobo Sun
- Multiple Sclerosis Centre, Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huijuan Li
- Multiple Sclerosis Centre, Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yu Yang
- Multiple Sclerosis Centre, Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Aimin Wu
- Multiple Sclerosis Centre, Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jian Bao
- Multiple Sclerosis Centre, Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuge Wang
- Multiple Sclerosis Centre, Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yaqing Shu
- Multiple Sclerosis Centre, Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xueqiang Hu
- Multiple Sclerosis Centre, Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Joseph A Bellanti
- Departments of Pediatrics and Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Song Guo Zheng
- Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Yongjun Lu
- School of Life Sciences and Biomedical Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhengqi Lu
- Multiple Sclerosis Centre, Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
30
|
Misra MK, Damotte V, Hollenbach JA. The immunogenetics of neurological disease. Immunology 2018; 153:399-414. [PMID: 29159928 PMCID: PMC5838423 DOI: 10.1111/imm.12869] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/18/2022] Open
Abstract
Genes encoding antigen-presenting molecules within the human major histocompatibility complex (MHC) account for the highest component of genetic risk for many neurological diseases, such as multiple sclerosis, neuromyelitis optica, Parkinson's disease, Alzheimer's disease, schizophrenia, myasthenia gravis and amyotrophic lateral sclerosis. Myriad genetic, immunological and environmental factors may contribute to an individual's susceptibility to neurological disease. Here, we review and discuss the decades long research on the influence of genetic variation at the MHC locus and the role of immunogenetic killer cell immunoglobulin-like receptor (KIR) loci in neurological diseases, including multiple sclerosis, neuromyelitis optica, Parkinson's disease, Alzheimer's disease, schizophrenia, myasthenia gravis and amyotrophic lateral sclerosis. The findings of immunogenetic association studies are consistent with a polygenic model of inheritance in the heterogeneous and multifactorial nature of complex traits in various neurological diseases. Future investigation is highly recommended to evaluate both coding and non-coding variation in immunogenetic loci using high-throughput high-resolution next-generation sequencing technologies in diverse ethnic groups to fully appreciate their role in neurological diseases.
Collapse
Affiliation(s)
- Maneesh K. Misra
- Department of NeurologySan Francisco School of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | - Vincent Damotte
- Department of NeurologySan Francisco School of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | - Jill A. Hollenbach
- Department of NeurologySan Francisco School of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The present review aims to discuss the recent advances in inflammatory demyelinating diseases of the central nervous system in Asia. RECENT FINDINGS Prevalence of multiple sclerosis (MS) in Asia is lower than that in Western countries, although it has been increasing recently. Meanwhile, there seems to be no major difference in neuromyelitis optica (NMO) prevalence in various regions or ethnicities. Thus, the ratios of NMO/NMO spectrum disorder (NMOSD) to MS are higher in Asia as compared with Western countries, indicating that the differential diagnosis between NMO/NMOSD and MS is a major challenge in Asia. Although the detection of aquaporin-4 (AQP4)-antibody is critical in distinguishing NMO/NMOSD from MS, some patients with NMO/NMOSD phenotype are seronegative for AQP4-antibody, and a fraction of those patients possess autoantibody against myelin oligodendrocyte glycoprotein. The clinical profile of Asian MS seems to be essentially similar to that in Western MS after careful exclusion of NMO/NMOSD, although some unique genetic and/or environmental factors may modify the disease in Asians. SUMMARY MS prevalence has been low but is increasing in Asia. In contrast, NMO/NMOSD prevalence seems relatively constant in the world. Asian MS is not fundamentally different from Western MS, but some genetic and/or environmental differences may cause some features unique to Asian patients.
Collapse
|
32
|
Abstract
Neuromyelitis optica (NMO) is a rare, disabling, sometimes fatal central nervous system inflammatory demyelinating disease that is associated with antibodies ("NMO IgG") that target the water channel protein aquaporin-4 (AQP4) expressed on astrocytes. There is considerable interest in identifying environmental triggers that may elicit production of NMO IgG by AQP4-reactive B cells. Although NMO is considered principally a humoral autoimmune disease, antibodies of NMO IgG are IgG1, a T-cell-dependent immunoglobulin subclass, indicating that AQP4-reactive T cells have a pivotal role in NMO pathogenesis. When AQP4-specific proliferative T cells were first identified in patients with NMO it was discovered that T cells recognizing the dominant AQP4 T-cell epitope exhibited a T helper 17 (Th17) phenotype and displayed cross-reactivity to a homologous peptide sequence within a protein of Clostridium perfringens, a commensal bacterium found in human gut flora. The initial analysis of gut microbiota in NMO demonstrated that, in comparison to healthy controls (HC) and patients with multiple sclerosis, the microbiome of NMO is distinct. Remarkably, C. perfringens was the second most significantly enriched taxon in NMO, and among bacteria identified at the species level, C. perfringens was the one most highly associated with NMO. Those discoveries, along with evidence that certain Clostridia in the gut can regulate the balance between regulatory T cells and Th17 cells, indicate that gut microbiota, and possibly C. perfringens itself, could participate in NMO pathogenesis. Collectively, the evidence linking microbiota to humoral and cellular immunity in NMO underscores the importance for further investigating this relationship.
Collapse
Affiliation(s)
- Scott S Zamvil
- Department of Neurology, University of California, San Francisco, CA, USA.
- Program in Immunology, University of California, San Francisco, CA, USA.
| | - Collin M Spencer
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Sergio E Baranzini
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Bruce A C Cree
- Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
33
|
Wang Z, Yan Y. Immunopathogenesis in Myasthenia Gravis and Neuromyelitis Optica. Front Immunol 2017; 8:1785. [PMID: 29312313 PMCID: PMC5732908 DOI: 10.3389/fimmu.2017.01785] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) and neuromyelitis optica (NMO) are autoimmune channelopathies of the peripheral neuromuscular junction (NMJ) and central nervous system (CNS) that are mainly mediated by humoral immunity against the acetylcholine receptor (AChR) and aquaporin-4 (AQP4), respectively. The diseases share some common features, including genetic predispositions, environmental factors, the breakdown of tolerance, the collaboration of T cells and B cells, imbalances in T helper 1 (Th1)/Th2/Th17/regulatory T cells, aberrant cytokine and antibody secretion, and complement system activation. However, some aspects of the immune mechanisms are unique. Both targets (AChR and AQP4) are expressed in the periphery and CNS, but MG mainly affects the NMJ in the periphery outside of CNS, whereas NMO preferentially involves the CNS. Inflammatory cells, including B cells and macrophages, often infiltrate the thymus but not the target—muscle in MG, whereas the infiltration of inflammatory cells, mainly polymorphonuclear leukocytes and macrophages, in NMO, is always observed in the target organ—the spinal cord. A review of the common and discrepant characteristics of these two autoimmune channelopathies may expand our understanding of the pathogenic mechanism of both disorders and assist in the development of proper treatments in the future.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin, China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
34
|
The HLA DRB1*03:01 allele is associated with NMO regardless of the NMO-IgG status in Brazilian patients from Rio de Janeiro. J Neuroimmunol 2017; 310:1-7. [DOI: 10.1016/j.jneuroim.2017.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 04/12/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022]
|
35
|
Association of CD58 gene polymorphisms with NMO spectrum disorders in a Han Chinese population. J Neuroimmunol 2017; 309:23-30. [DOI: 10.1016/j.jneuroim.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/10/2017] [Indexed: 12/31/2022]
|
36
|
Alvarenga MP, Schimidt S, Alvarenga RP. Epidemiology of neuromyelitis optica in Latin America. Mult Scler J Exp Transl Clin 2017; 3:2055217317730098. [PMID: 28979797 PMCID: PMC5617096 DOI: 10.1177/2055217317730098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/13/2017] [Indexed: 01/08/2023] Open
Abstract
A major development over the past two decades was the recognition of recurrent neuromyelitis optica (NMO) as a particular central nervous system disorder different from multiple sclerosis (MS). Here we reviewed the epidemiology of NMO in Latin America (LATAM). A predominance of a mixed population is found in this region. Recurrent NMO in black women was described in the Caribbean Islands and in Rio de Janeiro. The prevalence of NMO in LATAM varied from 0.37/100,000 (Volta Redonda city) to 4.2/100,000 inhabitants (Caribbean Islands). NMO differs significantly from MS with respect to gender, ethnicity, morbidity and genetic susceptibility. An association of the HLA DRB1*03 alleles with NMO was described in the French Antilles, Ribeirão Preto, Rio de Janeiro and Mexico. It is not common to find familial forms of NMO. NMO represents 11.8% of all inflammatory idiopathic diseases in South America (SA). In SA, the highest frequency of NMO occurs in African Brazilian young women. The overall relative frequency of NMO among MS cases in this region was 14%, decreasing following a north-south gradient, which parallels the percentage of nonwhite people.
Collapse
Affiliation(s)
- M P Alvarenga
- Department of Neurology, Hospital Federal da Lagoa, Brazil
| | | | | |
Collapse
|
37
|
Pilli D, Zou A, Tea F, Dale RC, Brilot F. Expanding Role of T Cells in Human Autoimmune Diseases of the Central Nervous System. Front Immunol 2017. [PMID: 28638382 PMCID: PMC5461350 DOI: 10.3389/fimmu.2017.00652] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is being increasingly recognized that a dysregulation of the immune system plays a vital role in neurological disorders and shapes the treatment of the disease. Aberrant T cell responses, in particular, are key in driving autoimmunity and have been traditionally associated with multiple sclerosis. Yet, it is evident that there are other neurological diseases in which autoreactive T cells have an active role in pathogenesis. In this review, we report on the recent progress in profiling and assessing the functionality of autoreactive T cells in central nervous system (CNS) autoimmune disorders that are currently postulated to be primarily T cell driven. We also explore the autoreactive T cell response in a recently emerging group of syndromes characterized by autoantibodies against neuronal cell-surface proteins. Common methodology implemented in T cell biology is further considered as it is an important determinant in their detection and characterization. An improved understanding of the contribution of autoreactive T cells expands our knowledge of the autoimmune response in CNS disorders and can offer novel methods of therapeutic intervention.
Collapse
Affiliation(s)
- Deepti Pilli
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at The Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - Alicia Zou
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at The Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - Fiona Tea
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at The Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - Russell C Dale
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at The Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at The Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
38
|
Greer JM, Broadley S, Pender MP. Reactivity to Novel Autoantigens in Patients with Coexisting Central Nervous System Demyelinating Disease and Autoimmune Thyroid Disease. Front Immunol 2017; 8:514. [PMID: 28533776 PMCID: PMC5420580 DOI: 10.3389/fimmu.2017.00514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/18/2017] [Indexed: 11/13/2022] Open
Abstract
Several lines of evidence suggest a definite and unique link between CNS demyelinating diseases and autoimmune thyroid disease (AITD). The aim of the current study was to systematically compare the clinical and laboratory features of patients with coexistent AITD and CNS demyelinating disease with those of patients with just CNS demyelinating disease. Forty-four patients with coexisting CNS demyelinating disease and AITD were identified and their clinical and radiological features were recorded. Blood and DNA were collected and tested for HLA type and for the response of T cells and antibodies to a variety of antigens. Patients with multiple sclerosis (MS) without AITD and healthy individuals were included as controls. Patients with coexisting AITD and CNS demyelinating disease were almost exclusively female (43/44) and had prominent spinal cord involvement as the main neurological finding. The HLA molecules carried by individuals with CNS demyelinating disease and AITD differed from both other MS patients and healthy individuals. Furthermore, patients with both CNS disease and AITD showed less T cell reactivity than patients with MS alone to myelin proteolipid protein, but, compared to other groups, showed elevated levels of T cell reactivity to the calcitonin gene-related peptide, which is present in both the CNS and the thyroid, and elevated levels of T cell and antibody to the leucine-rich repeat-containing G-protein coupled receptor 4 (LGR4), a molecule that is expressed in the brainstem and spinal cord, and which is a homolog of the thyroid-stimulating hormone receptor. We suggest that reactivity of autoreactive immune cells in these patients against antigens present in both the thyroid and the spinal cord is a potential mechanism underlying the pattern of lesion development in the CNS in patients with coexisting AITD and MS and might indicate a novel mechanism of disease pathogenesis in these patients.
Collapse
Affiliation(s)
- Judith M Greer
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Simon Broadley
- School of Medicine, Griffith University, Southport, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Michael P Pender
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
39
|
Yang TT, He Y, Xiang YJ, Ao DH, Wang YY, Zhang Q, He XJ, Zhong SS, Wu J, Liu GZ. No association of AQP4 polymorphisms with neuromyelitis optica and multiple sclerosis. Transl Neurosci 2017; 7:76-83. [PMID: 28123825 PMCID: PMC5234517 DOI: 10.1515/tnsci-2016-0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) and neuromyelitis optica (NMO) are inflammatory demyelinating disorders of the central nervous system (CNS). Various genetic and environmental factors have been identified to contribute to etiology of MS and NMO. Aquaporin 4 (AQP4), is the most abundant water channel in CNS. AQP4 is expressed in astrocytes of the brain, spinal cord, optic nerve and supportive cells in sensory organs. In contrast to MS, immunoreactivity of AQP4 is abolished in NMO lesions. However, conflicting results have been reported regarding the association between AQP4 polymorphisms and demyelinating disorders. Considering the ethnic differences of genetic variations, replications in other cohorts are required. In this study, single nucleotide polymorphisms (SNPs) of AQP4 gene in patients with NMO/neuromyelitis optica spectrum disorders (NMOSD), and MS in the Northern Han Chinese population were examined. Six selected AQP4 SNPs were genotyped by high-resolution melting (HRM) method. Compared with healthy control (HC), there was no significant difference of AQP4 allele and genotype frequency in MS or NMO/NMOSD group. This study showed no significant association of common AQP4 SNPs with MS or NMO/NMOSD, strongly suggesting that polymorphisms of AQP4 gene are unlikely to confer MS or NMO/NMOSD susceptibility, at least in Northern Han Chinese population.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Beijing, 102218, P. R. China
| | - Yang He
- Department of Neurology, Peking University People's Hospital, Beijing, 100044, P. R. China
| | - Ya-Juan Xiang
- Department of Neurology, Peking University People's Hospital, Beijing, 100044, P. R. China
| | - Dong-Hui Ao
- Department of Neurology, Peking University People's Hospital, Beijing, 100044, P. R. China
| | - Yang-Yang Wang
- Department of Neurology, Peking University People's Hospital, Beijing, 100044, P. R. China
| | - Qi Zhang
- Key Laboratory Centre, Peking University People's Hospital, Beijing, 100044, P. R. China
| | - Xiang-Jun He
- Key Laboratory Centre, Peking University People's Hospital, Beijing, 100044, P. R. China
| | - Shan-Shan Zhong
- Department of Neurology, Peking University People's Hospital, Beijing, 100044, P. R. China
| | - Jian Wu
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Beijing, 102218, P. R. China
| | - Guang-Zhi Liu
- Department of Neurology, Peking University People's Hospital, Beijing, 100044, P. R. China
| |
Collapse
|
40
|
Vogel AL, Knier B, Lammens K, Kalluri SR, Kuhlmann T, Bennett JL, Korn T. Deletional tolerance prevents AQP4-directed autoimmunity in mice. Eur J Immunol 2017; 47:458-469. [PMID: 28058717 PMCID: PMC5359142 DOI: 10.1002/eji.201646855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/22/2016] [Accepted: 01/02/2017] [Indexed: 12/20/2022]
Abstract
Neuromyelitis optica (NMO) is an autoimmune disorder of the central nervous system (CNS) mediated by antibodies to the water channel protein AQP4 expressed in astrocytes. The contribution of AQP4‐specific T cells to the class switch recombination of pathogenic AQP4‐specific antibodies and the inflammation of the blood–brain barrier is incompletely understood, as immunogenic naturally processed T‐cell epitopes of AQP4 are unknown. By immunizing Aqp4−/− mice with full‐length murine AQP4 protein followed by recall with overlapping peptides, we here identify AQP4(201‐220) as the major immunogenic IAb‐restricted epitope of AQP4. We show that WT mice do not harbor AQP4(201–220)‐specific T‐cell clones in their natural repertoire due to deletional tolerance. However, immunization with AQP4(201–220) of Rag1−/− mice reconstituted with the mature T‐cell repertoire of Aqp4−/− mice elicits an encephalomyelitic syndrome. Similarly to the T‐cell repertoire, the B‐cell repertoire of WT mice is “purged” of AQP4‐specific B cells, and robust serum responses to AQP4 are only mounted in Aqp4−/− mice. While AQP4(201–220)‐specific T cells alone induce encephalomyelitis, NMO‐specific lesional patterns in the CNS and the retina only occur in the additional presence of anti‐AQP4 antibodies. Thus, failure of deletional T‐cell and B‐cell tolerance against AQP4 is a prerequisite for clinically manifest NMO.
Collapse
Affiliation(s)
- Anna-Lena Vogel
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, Munich, Germany.,Klinikum rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany
| | - Benjamin Knier
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, Munich, Germany.,Klinikum rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany
| | - Katja Lammens
- Department of Biochemistry at the Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Sudhakar Reddy Kalluri
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, Munich, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Jeffrey L Bennett
- Department of Neurology, School of Medicine, University of Colorado, Aurora, CO, USA.,Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, CO, USA.,Program in Neuroscience, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Thomas Korn
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, Munich, Germany.,Klinikum rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
41
|
Brill L, Mandel M, Karussis D, Petrou P, Miller K, Ben-Hur T, Karni A, Paltiel O, Israel S, Vaknin-Dembinsky A. Increased occurrence of anti-AQP4 seropositivity and unique HLA Class II associations with neuromyelitis optica (NMO), among Muslim Arabs in Israel. J Neuroimmunol 2016; 293:65-70. [DOI: 10.1016/j.jneuroim.2016.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/24/2016] [Accepted: 02/08/2016] [Indexed: 12/29/2022]
|
42
|
Liu QB, Wu L, Zhao GX, Cai PP, Li ZX, Wu ZY. Variants of Interferon Regulatory Factor 5 are Associated with Neither Neuromyelitis Optica Nor Multiple Sclerosis in the Southeastern Han Chinese Population. Chin Med J (Engl) 2016; 128:1743-7. [PMID: 26112714 PMCID: PMC4733726 DOI: 10.4103/0366-6999.159347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Neuromyelitis optica (NMO) and multiple sclerosis (MS) are demyelinating disorders of the central nervous system. Interferon regulatory factor 5 (IRF5) is a common susceptibility gene to different autoimmune disorders. However, the association of IRF5 variants with NMO and MS patients has not been well studied. Therefore, we aimed to evaluate whether IRF5 variants were associated with NMO and MS in the Southeastern Han Chinese population. METHODS Four single nucleotide polymorphisms (SNPs) were selected and genotyped by matrix-assisted laser desorption/ionization time of flight mass spectrometry in 111 NMO patients, 145 MS patients and 300 controls from Southeastern China. RESULTS None of these 4 SNPs was associated with NMO or MS patients. CONCLUSIONS Our preliminary study indicates that genetic variants in IRF5 may affect neither NMO nor MS in the Southeastern Han Chinese population. Further studies with a large sample size and diverse ancestry populations are needed to clarify this issue.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhi-Ying Wu
- Department of Neurology, Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005; Department of Neurology, Research Center of Neurology in Second Affiliated Hospital, and The Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009; Department of Neurology, Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| |
Collapse
|
43
|
Abstract
Recent advances in the understanding of neuromyelitis optica spectrum of disorders (NMOSD) have expanded. Diagnostic criteria have changed over the years. The clinical spectrum of disease manifestations are now understood to include sites outside the spinal cord and optic nerve. A variety of autoimmune diseases may coexist with this disorder. Non neurological manifestations have been recently reported. Novel biomarkers other than aquoporin 4 Immunoglobulin G (anti AQP4-IgG) have been discovered which may have clinical relevance. In particul myelin associated oligoglycoprotein antibody (MOG-Ab) associated NMOSD may be relatively benign. This update describes some of these new findings highlighting the clinical manifestations, biomarkers associated with the disease and magnetic resonance imaging characteristics of brain and spinal cord.
Collapse
Affiliation(s)
- Lekha Pandit
- Professor of Neurology, KS Hegde Medical Academy, Nitte University, Mangalore, Karnataka, India
| |
Collapse
|
44
|
Hollenbach JA, Oksenberg JR. The immunogenetics of multiple sclerosis: A comprehensive review. J Autoimmun 2015; 64:13-25. [PMID: 26142251 DOI: 10.1016/j.jaut.2015.06.010] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system and common cause of non-traumatic neurological disability in young adults. The likelihood for an individual to develop MS is strongly influenced by her or his ethnic background and family history of disease, suggesting that genetic susceptibility is a key determinant of risk. Over 100 loci have been firmly associated with susceptibility, whereas the main signal genome-wide maps to the class II region of the human leukocyte antigen (HLA) gene cluster and explains up to 10.5% of the genetic variance underlying risk. HLA-DRB1*15:01 has the strongest effect with an average odds ratio of 3.08. However, complex allelic hierarchical lineages, cis/trans haplotypic effects, and independent protective signals in the class I region of the locus have been described as well. Despite the remarkable molecular dissection of the HLA region in MS, further studies are needed to generate unifying models to account for the role of the MHC in disease pathogenesis. Driven by the discovery of combinatorial associations of Killer-cell Immunoglobulin-like Receptor (KIR) and HLA alleles with infectious, autoimmune diseases, transplantation outcome and pregnancy, multi-locus immunogenomic research is now thriving. Central to immunity and critically important for human health, KIR molecules and their HLA ligands are encoded by complex genetic systems with extraordinarily high levels of sequence and structural variation and complex expression patterns. However, studies to-date of KIR in MS have been few and limited to very low resolution genotyping. Application of modern sequencing methodologies coupled with state of the art bioinformatics and analytical approaches will permit us to fully appreciate the impact of HLA and KIR variation in MS.
Collapse
Affiliation(s)
- Jill A Hollenbach
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Jorge R Oksenberg
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
45
|
Papais-Alvarenga RM, Pereira FFCC, Bernardes MS, Papais-Alvarenga M, Batista E, Paiva CA, Santos CM, Vasconcelos CCF. Familial forms of multiple sclerosis and neuromyelitis optica at an MS center in Rio de Janeiro State, Brazil. J Neurol Sci 2015; 356:196-201. [PMID: 26115914 DOI: 10.1016/j.jns.2015.06.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/05/2015] [Accepted: 06/16/2015] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To describe familial forms of demyelinating diseases from an MS referral center in Río de Janeiro State, Brazil. METHODS A descriptive, cross-sectional study was done to identify familial IIDD cases in Hospital da Lagoa, a public hospital where 75% of patients with IIDD who live in Rio de Janeiro state, located in the Southeast region of Brazil, are referred. The diagnoses of all consecutive patients followed in 2011 were reviewed to apply new diagnostic criteria (Wingerchuk et al., 2008). The diagnosis of IIDD was confirmed based on clinical history, neurological examination, MRI of the skull and spinal cord, CSF analysis and investigation of IgG NMO antibodies. The cases that had at least one other relative with IIDD were selected for the study. RESULTS Familial forms were found only in the multiple sclerosis (MS) and neuromyelitis optica syndrome (NMOSD) categories. 23 MS families were identified, 60.86% with first degree kinship. It has a Caucasian preponderance, 90% of whom were white. The frequency of early onset was 15% and 20% of the MSf cases have progressive primary course. CONCLUSION The frequency of familial cases of IIDD was 6.12% among MS patients and 2.8% in NMO spectrum syndromes.
Collapse
Affiliation(s)
- Regina M Papais-Alvarenga
- Department of Neurology, Federal University of the State of Rio de Janeiro-UNIRIO, Brazil; Department of Neurology, Hospital da Lagoa, Ministry of Health, Rio de Janeiro, Brazil
| | | | - Melina S Bernardes
- Department of Neurology, Federal University of the State of Rio de Janeiro-UNIRIO, Brazil; Department of Neurology, Hospital da Lagoa, Ministry of Health, Rio de Janeiro, Brazil
| | - Marcos Papais-Alvarenga
- Department of Neurology, Federal University of the State of Rio de Janeiro-UNIRIO, Brazil; Department of Neurology, Hospital da Lagoa, Ministry of Health, Rio de Janeiro, Brazil
| | - Elizabeth Batista
- Department of Neurology, Federal University of the State of Rio de Janeiro-UNIRIO, Brazil; Department of Neurology, Hospital da Lagoa, Ministry of Health, Rio de Janeiro, Brazil
| | - Carmen A Paiva
- Department of Neurology, Federal University of the State of Rio de Janeiro-UNIRIO, Brazil
| | - Claudia Miranda Santos
- Department of Neurology, Federal University of the State of Rio de Janeiro-UNIRIO, Brazil
| | | |
Collapse
|
46
|
Pereira WLDCJ, Reiche EMV, Kallaur AP, Kaimen-Maciel DR. Epidemiological, clinical, and immunological characteristics of neuromyelitis optica: A review. J Neurol Sci 2015; 355:7-17. [PMID: 26050520 DOI: 10.1016/j.jns.2015.05.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 01/16/2023]
Abstract
The aim of this study was to review the epidemiological and clinical characteristics of neuromyelitis optica (NMO) and the immunopathological mechanisms involved in the neuronal damage. NMO is an inflammatory demyelinating autoimmune disease of the central nervous system that most commonly affects the optic nerves and spinal cord. NMO is thought to be more prevalent among non-Caucasians and where multiple sclerosis (MS) prevalence is low. NMO follows a relapsing course in more than 80-90% of cases, which is more commonly in women. It is a complex disease with an interaction between host genetic and environmental factors and the main immunological feature is the presence of anti-aquaporin 4 (AQP4) antibodies in a subset of patients. NMO is frequently associated with multiple other autoantibodies and there is a strong association between NMO with other systemic autoimmune diseases. AQP4-IgG can cause antibody-dependent cellular cytotoxicity (ADCC) when effector cells are present and complement-dependent cytotoxicity (CDC) when complement is present. Acute therapies, including corticosteroids and plasma exchange, are designed to minimize injury and accelerate recovery. Several aspects of NMO pathogenesis remain unclear. More advances in the understanding of NMO disease mechanisms are needed in order to identify more specific biomarkers to NMO diagnosis.
Collapse
Affiliation(s)
- Wildéa Lice de Carvalho Jennings Pereira
- Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Paraná 86038-440, Brazil; Outpatient Clinic for Demyelinating Diseases, University Hospital, State University of Londrina, Londrina, Paraná 86061-335, Brazil.
| | - Edna Maria Vissoci Reiche
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Paraná 86038-440, Brazil.
| | - Ana Paula Kallaur
- Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Paraná 86038-440, Brazil.
| | - Damacio Ramón Kaimen-Maciel
- Outpatient Clinic for Demyelinating Diseases, University Hospital, State University of Londrina, Londrina, Paraná 86061-335, Brazil; Department of Clinical Medicine, Health Sciences Center, State University of Londrina, Londrina, Paraná 86038-440, Brazil.
| |
Collapse
|
47
|
Pandit L, Asgari N, Apiwattanakul M, Palace J, Paul F, Leite MI, Kleiter I, Chitnis T. Demographic and clinical features of neuromyelitis optica: A review. Mult Scler 2015; 21:845-53. [PMID: 25921037 PMCID: PMC4463026 DOI: 10.1177/1352458515572406] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/04/2015] [Indexed: 11/16/2022]
Abstract
The comparative clinical and demographic features of neuromyelitis optica (NMO) are not well known. In this review we analyzed peer-reviewed publications for incidence and prevalence, clinical phenotypes, and demographic features of NMO. Population-based studies from Europe, South East and Southern Asia, the Caribbean, and Cuba suggest that the incidence and prevalence of NMO ranges from 0.05-0.4 and 0.52-4.4 per 100,000, respectively. Mean age at onset (32.6-45.7) and median time to first relapse (8-12 months) was similar. Most studies reported an excess of disease in women and a relapsing course, particularly in anti-aquaporin 4 antibody (anti AQP4-IgG)-positive patients. Ethnicity may have a bearing on disease phenotype and clinical outcome. Despite limitations inherent to the review process, themes noted in clinical and demographic features of NMO among different populations promote a more global understanding of NMO and strategies to address it.
Collapse
Affiliation(s)
- L Pandit
- KS Hegde Medical Academy, Nitte University, Mangalore, Karnataka, India
| | - N Asgari
- Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, and Department of Neurology, Vejle Hospital, Denmark
| | | | - J Palace
- Department of Clinical Neurology, Oxford University Hospitals, Oxford, UK
| | - F Paul
- Neuro Cure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - M I Leite
- Department of Clinical Neurology, Oxford University Hospitals, Oxford, UK
| | - I Kleiter
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - T Chitnis
- Department of Neurology, Brigham and Women's Hospital and Massachusetts General Hospital, Boston, USA
| | | |
Collapse
|
48
|
Pandit L, Malli C, D'Cunha A, Mustafa S. Human leukocyte antigen association with neuromyelitis optica in a south Indian population. Mult Scler 2015; 21:1217-8. [PMID: 25698175 DOI: 10.1177/1352458515574149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Lekha Pandit
- Department of Neurology, KS Hegde Medical Academy, Nitte University, Mangalore, India
| | - Chaithra Malli
- Department of Neurology, KS Hegde Medical Academy, Nitte University, Mangalore, India
| | - Anita D'Cunha
- Department of Neurology, KS Hegde Medical Academy, Nitte University, Mangalore, India
| | - Sharik Mustafa
- Department of Neurology, KS Hegde Medical Academy, Nitte University, Mangalore, India
| |
Collapse
|
49
|
Wei Q, Yanyu C, Rui L, Caixia L, Youming L, Jianhua H, Weihua M, Xiaobo S, Wen X, Ying C, Zhengqi L, Xueqiang H. Human aquaporin 4 gene polymorphisms in Chinese patients with neuromyelitis optica. J Neuroimmunol 2014; 274:192-6. [DOI: 10.1016/j.jneuroim.2014.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/01/2014] [Accepted: 07/05/2014] [Indexed: 11/27/2022]
|
50
|
Papadopoulos MC, Bennett JL, Verkman AS. Treatment of neuromyelitis optica: state-of-the-art and emerging therapies. Nat Rev Neurol 2014; 10:493-506. [PMID: 25112508 DOI: 10.1038/nrneurol.2014.141] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuromyelitis optica (NMO) is an autoimmune disease of the CNS that is characterized by inflammatory demyelinating lesions in the spinal cord and optic nerve, potentially leading to paralysis and blindness. NMO can usually be distinguished from multiple sclerosis (MS) on the basis of seropositivity for IgG antibodies against the astrocytic water channel aquaporin-4 (AQP4). Differentiation from MS is crucial, because some MS treatments can exacerbate NMO. NMO pathogenesis involves AQP4-IgG antibody binding to astrocytic AQP4, which causes complement-dependent cytotoxicity and secondary inflammation with granulocyte and macrophage infiltration, blood-brain barrier disruption and oligodendrocyte injury. Current NMO treatments include general immunosuppressive agents, B-cell depletion, and plasma exchange. Therapeutic strategies targeting complement proteins, the IL-6 receptor, neutrophils, eosinophils and CD19--all initially developed for other indications--are under clinical evaluation for repurposing for NMO. Therapies in the preclinical phase include AQP4-blocking antibodies and AQP4-IgG enzymatic inactivation. Additional, albeit currently theoretical, treatment options include reduction of AQP4 expression, disruption of AQP4 orthogonal arrays, enhancement of complement inhibitor expression, restoration of the blood-brain barrier, and induction of immune tolerance. Despite the many therapeutic options in NMO, no controlled clinical trials in patients with this condition have been conducted to date.
Collapse
Affiliation(s)
- Marios C Papadopoulos
- Academic Neurosurgery Unit, St George's, University of London, Room 0.136 Jenner Wing, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, University of Colorado School of Medicine, Research Complex 2, Mail stop B-182, 12700 East 19th Avenue, Aurora, CO 80045, USA
| | - Alan S Verkman
- Department of Medicine, University of California, San Francisco, Health Science East Tower Room 1246, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|