1
|
Bolton C. Review of evidence linking exposure to environmental stressors and associated alterations in the dynamics of immunosenescence (ISC) with the global increase in multiple sclerosis (MS). Immun Ageing 2024; 21:73. [PMID: 39438909 PMCID: PMC11494837 DOI: 10.1186/s12979-024-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Historical survey confirms that, over the latter part of the 20th century, autoimmune-based diseases, including multiple sclerosis (MS), have shown a worldwide increase in incidence and prevalence. Analytical population studies have established that the exponential rise in MS is not solely due to improvements in diagnosis and healthcare but relates to an increase in autoimmune risk factors. Harmful environmental exposures, including non-communicable social determinants of health, anthropogens and indigenous or transmissible microbes, constitute a group of causal determinants that have been closely linked with the global rise in MS cases. Exposure to environmental stressors has profound effects on the adaptive arm of the immune system and, in particular, the associated intrinsic process of immune ageing or immunosenescence (ISC). Stressor-related disturbances to the dynamics of ISC include immune cell-linked untimely or premature (p) alterations and an accelerated replicative (ar) change. A recognised immune-associated feature of MS is pISC and current evidence supports the presence of an arISC during the disease. Moreover, collated data illustrates the immune-associated alterations that characterise pISC and arISC are inducible by environmental stressors strongly implicated in causing duplicate changes in adaptive immune cells during MS. The close relationship between exposure to environmental risk factors and the induction of pISC and arISC during MS offers a valid mechanism through which pro-immunosenescent stressors may act and contribute to the recorded increase in the global rate and number of new cases of the disease. Confirmation of alterations to the dynamics of ISC during MS provides a rational and valuable therapeutic target for the use of senolytic drugs to either prevent accumulation and enhance ablation of less efficient untimely senescent adaptive immune cells or decelerate the dysregulated process of replicative proliferation. A range of senotherapeutics are available including kinase and transcriptase inhibitors, rapalogs, flavanols and genetically-engineered T cells and the use of selective treatments to control emerging and unspecified aspects of pISC and arISC are discussed.
Collapse
|
2
|
Holt EA, Waytashek CM, Sessions KJ, Asarian L, Lahue KG, Usherwood EJ, Teuscher C, Krementsov DN. Host Genetic Variation Has a Profound Impact on Immune Responses Mediating Control of Viral Load in Chronic Gammaherpesvirus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1526-1539. [PMID: 37819784 PMCID: PMC10841120 DOI: 10.4049/jimmunol.2300294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Chronic infection with the gammaherpesvirus EBV is a risk factor for several autoimmune diseases, and poor control of EBV viral load and enhanced anti-EBV responses elevate this risk further. However, the role of host genetic variation in the regulation of immune responses to chronic gammaherpesvirus infection and control of viral replication remains unclear. To address this question, we infected C57BL/6J (B6) and genetically divergent wild-derived inbred PWD/PhJ (PWD) mice with murine gammaherpesvirus-68 (MHV-68), a gammaherpesvirus similar to EBV, and determined the effect of latent gammaherpesvirus infection on the CD4 T cell transcriptome. Chronic MHV-68 infection of B6 mice resulted in a dramatic upregulation of genes characteristic of a cytotoxic Th cell phenotype, including Gzmb, Cx3cr1, Klrg1, and Nkg7, a response that was highly muted in PWD mice. Flow cytometric analyses revealed an expansion of CX3CR1+KLRG1+ cytotoxic Th cell-like cells in B6 but not PWD mice. Analysis of MHV-68 replication demonstrated that in spite of muted adaptive responses, PWD mice had superior control of viral load in lymphoid tissue, despite an absence of a defect in MHV-68 in vitro replication in PWD macrophages. Depletion of NK cells in PWD mice, but not B6 mice, resulted in elevated viral load, suggesting genotype-dependent NK cell involvement in MHV-68 control. Taken together, our findings demonstrate that host genetic variation can regulate control of gammaherpesvirus replication through disparate immunological mechanisms, resulting in divergent long-term immunological sequelae during chronic infection.
Collapse
Affiliation(s)
- Emily A. Holt
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Courtney M. Waytashek
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Katherine J. Sessions
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Loredana Asarian
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, VT 05405, USA
| | - Karolyn G Lahue
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Edward J. Usherwood
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth College, Lebanon, NH 03756, USA
| | - Cory Teuscher
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, VT 05405, USA
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
3
|
Prenatal Stress Impairs Spinal Cord Oligodendrocyte Maturation via BDNF Signaling in the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. Cell Mol Neurobiol 2020; 42:1225-1240. [PMID: 33259004 PMCID: PMC8942968 DOI: 10.1007/s10571-020-01014-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
One of the most substantial and established environmental risk factors for neurological and psychiatric disorders is stress exposure, whose detrimental consequences hinge on several variables including time. In this regard the gestational period is known to present an intrinsic vulnerability to environmental insults and thus stressful events during pregnancy can lead to severe consequences on the offspring's brain development with long-term repercussions throughout adulthood. On this basis, we investigated the long-lasting impact of prenatal stress exposure on the susceptibility to the experimental autoimmune encephalomyelitis (EAE), a well-established murine model of multiple sclerosis. Although stress is considered a triggering factor for this chronic, progressive, autoimmune disease, little is known about the underlying mechanisms. To this end, EAE was induced by immunization with MOG35-55/CFA and pertussis toxin administration in adult female C57BL/6 mice born from control or stressed dams exposed to restraint stress during the last days of gestation. Our results demonstrate that gestational stress induces a marked increase in the severity of EAE symptoms in adulthood. Further, we highlight an altered maturation of oligodendrocytes in the spinal cord of prenatally stressed EAE mice, as indicated by the higher levels of GPR17, a marker of immature oligodendrocyte precursor cells. These behavioral and molecular alterations are paralleled by changes in the expression and signaling of the neurotrophin BDNF, an important mediator of neural plasticity that may contribute to stress-induced impaired remyelination. Since several already marketed drugs are able to modulate BDNF levels, these results pave the way to the possibility of repositioning these drugs in multiple sclerosis.
Collapse
|
4
|
Wang Z, Wang L, Zhong F, Wu C, Hou ST. Early postnatal tobacco smoke exposure aggravates experimental autoimmune encephalomyelitis in adult rats. Neurochem Int 2020; 141:104892. [PMID: 33127393 DOI: 10.1016/j.neuint.2020.104892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022]
Abstract
Although substantial evidence supports smoking as a risk factor for the development of multiple sclerosis (MS) in adulthood, it remains controversial whether early-life exposure to environmental tobacco smoke (ETS) increases the risk of MS later in life. Here, using experimental autoimmune encephalomyelitis (EAE) as an animal model for MS, we show that exposing neonatal rats during the first week (ETS1-EAE), but not the second week (ETS2-EAE) and the third week (ETS3-EAE) after birth, increased the severity of EAE in adulthood in comparison to pups exposed to filtered compressed air (AIR-EAE). The ETS1-EAE rats showed a worse neurological deficit score and a significant increase in CD4+ cell infiltration, demyelination, and axonal injury in the spinal cord compared to AIR-EAE, ETS2-EAE, and ETS3-EAE groups. Flow cytometry analysis showed that the ETS1 group had decreased numbers of regulatory T (Treg) cells and increased effector T (Teff) cells in the brain and spinal cord. The expressions of Treg upstream regulator Foxp3 and downstream cytokines such as IL-10 were also altered accordingly. Together, these findings demonstrate that neonatal ETS exposure suppresses Treg functions and aggravates the severity of EAE, confirming early-life exposure to ETS as a potential risk factor for multiple sclerosis in adulthood.
Collapse
Affiliation(s)
- Zhaowei Wang
- Department of Neurology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhonxin Bei Road, Shaoxing City, Zhejiang Province, 312000, PR China
| | - Liping Wang
- Department of Neurology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhonxin Bei Road, Shaoxing City, Zhejiang Province, 312000, PR China
| | - Fangfang Zhong
- Department of Neurology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhonxin Bei Road, Shaoxing City, Zhejiang Province, 312000, PR China
| | - Chenglong Wu
- Department of Neurology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhonxin Bei Road, Shaoxing City, Zhejiang Province, 312000, PR China
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province, 518055, PR China; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
5
|
Vitamin D in early life and later risk of multiple sclerosis-A systematic review, meta-analysis. PLoS One 2019; 14:e0221645. [PMID: 31454391 PMCID: PMC6711523 DOI: 10.1371/journal.pone.0221645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022] Open
Abstract
The study examined results from previous studies of early life vitamin D exposure and risk of MS in adulthood, including studies on season or month of birth and of migration. A systematic review was conducted using PubMed and Web of Science databases as well as checking references cited in articles. The quality of studies was assessed using the Newcastle-Ottawa scale and the AMSTAR score. Twenty-eight studies were selected for analysis. Of these, six population studies investigated early life vitamin D exposure and risk of MS, and three found inverse while the remaining found no associations. A consistent seasonal tendency for MS seemed evident from 11/15 studies, finding a reduced occurrence of MS for Northern hemisphere children who were born late autumn, and late fall for children born in the Southern hemisphere. This was also confirmed by pooled analysis of 6/15 studies. Results of the migration studies showed an increased risk of MS if migration from high to low-MS-risk areas had occurred after age 15 years, while risk of MS was reduced for those migrating earlier in life (<15years). A similar, but inverse risk pattern was observed among migrants from low to high-MS-risk areas. One study found an increased risk of MS in the second generation of migrants when migrating from low to high-MS-risk areas. An association between early life vitamin D and later risk of MS seems possible, however evidence is still insufficient to conclude that low vitamin D exposure in early life increases the risk of MS in adulthood. PROSPERO register number: CRD 42016043229.
Collapse
|
6
|
Effects of osteopathic manipulative treatment on patients with multiple sclerosis: A pilot study. Complement Ther Med 2019; 43:154-156. [PMID: 30935523 DOI: 10.1016/j.ctim.2019.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES To describe the effects of osteopathic manipulative treatment in patients affected by Multiple Sclerosis (MS). DESIGN AND SETTING This is a pilot study involving 20 MS patients attending the IRCCS Neurolesi "Bonino-Pulejo", Messina, Italy. INTERVENTION The clinical evaluation was performed before starting rehabilitation treatment (T0) and after 8 weeks of treatment (T1). The CG sample undergo a conventional rehabilitation training (CRT), 5 times/week for 60 min (for a total of 40 sessions), the EG performed the same CRT (but with a different frequency, i.e. 3 times/week, for a total of 24 sessions) and a specific OMT 2 times/week for 60 min (for a total of 16 sessions). MAIN OUTCOME MEASURES We analyzed the scores recorded in the following main scales: Expanded Disability Status Scale (EDSS), 10 m walking test (10mWT), Hamilton anxiety rating scale (HRS-A), and the Fatigue severity scale (FSS). RESULTS Our data showed a reduction in the FSS score for the EG (40 ± 1,41 at T0 vs 37 ± 2,32 at T1; p = 0.04) but not in the CG (41 ± 2,41 at TO vs 39 ± 2,6 at T1) with an intergroup difference p < 0.00. An improvement of HRS-A and 10mWT was also detected in the EG. CONCLUSIONS Our data raise idea that OMT might be useful in rehabilitative setting in MS patients, with particular regard to anxiety and fatigue.
Collapse
|
7
|
Krementsov DN, Asarian L, Fang Q, McGill MM, Teuscher C. Sex-Specific Gene-by-Vitamin D Interactions Regulate Susceptibility to Central Nervous System Autoimmunity. Front Immunol 2018; 9:1622. [PMID: 30065723 PMCID: PMC6056725 DOI: 10.3389/fimmu.2018.01622] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/29/2018] [Indexed: 12/19/2022] Open
Abstract
Vitamin D3 (VitD) insufficiency is postulated to represent a major modifiable risk factor for multiple sclerosis (MS). While low VitD levels strongly correlate with higher MS risk in white populations, this is not the case for other ethnic groups, suggesting the existence of a genetic component. Moreover, VitD supplementation studies in MS so far have not shown a consistent benefit. We sought to determine whether direct manipulation of VitD levels modulates central nervous system autoimmune disease in a sex-by-genotype-dependent manner. To this end, we used a dietary model of VitD modulation, together with the autoimmune animal model of MS, experimental autoimmune encephalomyelitis (EAE). To assess the impact of genotype-by-VitD interactions on EAE susceptibility, we utilized a chromosome substitution (consomic) mouse model that incorporates the genetic diversity of wild-derived PWD/PhJ mice. High VitD was protective in EAE in female, but not male C57BL/6J (B6) mice, and had no effect in EAE-resistant PWD/PhJ (PWD) mice. EAE protection was accompanied by sex- and genotype-specific suppression of proinflammatory transcriptional programs in CD4 T effector cells, but not CD4 regulatory T cells. Decreased expression of proinflammatory genes was observed with high VitD in female CD4 T effector cells, specifically implicating a key role of MHC class II genes, interferon gamma, and Th1 cell-mediated neuroinflammation. In consomic strains, effects of VitD on EAE were also sex- and genotype dependent, whereby high VitD: (1) was protective, (2) had no effect, and (3) unexpectedly had disease-exacerbating effects. Systemic levels of 25(OH)D differed across consomic strains, with higher levels associated with EAE protection only in females. Analysis of expression of key known VitD metabolism genes between B6 and PWD mice revealed that their expression is genetically determined and sex specific and implicated Cyp27b1 and Vdr as candidate genes responsible for differential EAE responses to VitD modulation. Taken together, our results support the observation that the association between VitD status and MS susceptibility is genotype dependent and suggest that the outcome of VitD status in MS is determined by gene-by-sex interactions.
Collapse
Affiliation(s)
- Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Loredana Asarian
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Qian Fang
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Mahalia M McGill
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Cory Teuscher
- Department of Medicine, University of Vermont, Burlington, VT, United States.,Department of Pathology, University of Vermont, Burlington, VT, United States
| |
Collapse
|
8
|
Reynolds JD, Case LK, Krementsov DN, Raza A, Bartiss R, Teuscher C. Modeling month-season of birth as a risk factor in mouse models of chronic disease: from multiple sclerosis to autoimmune encephalomyelitis. FASEB J 2017; 31:2709-2719. [PMID: 28292961 DOI: 10.1096/fj.201700062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/21/2017] [Indexed: 12/13/2022]
Abstract
Month-season of birth (M-SOB) is a risk factor in multiple chronic diseases, including multiple sclerosis (MS), where the lowest and greatest risk of developing MS coincide with the lowest and highest birth rates, respectively. To determine whether M-SOB effects in such chronic diseases as MS can be experimentally modeled, we examined the effect of M-SOB on susceptibility of C57BL/6J mice to experimental autoimmune encephalomyelitis (EAE). As in MS, mice that were born during the M-SOB with the lowest birth rate were less susceptible to EAE than mice born during the M-SOB with the highest birth rate. We also show that the M-SOB effect on EAE susceptibility is associated with differential production of multiple cytokines/chemokines by neuroantigen-specific T cells that are known to play a role in EAE pathogenesis. Taken together, these results support the existence of an M-SOB effect that may reflect seasonally dependent developmental differences in adaptive immune responses to self-antigens independent of external stimuli, including exposure to sunlight and vitamin D. Moreover, our documentation of an M-SOB effect on EAE susceptibility in mice allows for modeling and detailed analysis of mechanisms that underlie the M-SOB effect in not only MS but in numerous other diseases in which M-SOB impacts susceptibility.-Reynolds, J. D., Case, L. K., Krementsov, D. N., Raza, A., Bartiss, R., Teuscher, C. Modeling month-season of birth as a risk factor in mouse models of chronic disease: from multiple sclerosis to autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Jacob D Reynolds
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Laure K Case
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | | | - Abbas Raza
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | | | - Cory Teuscher
- Department of Medicine, University of Vermont, Burlington, Vermont, USA; .,Department of Pathology, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
9
|
Papathanasopoulos P, Preka-Papadema P, Gkotsinas A, Dimisianos N, Hillaris A, Katsavrias C, Antonakopoulos G, Moussas X, Andreadou E, Georgiou V, Papachristou P, Kargiotis O. The possible effects of the solar and geomagnetic activity on multiple sclerosis. Clin Neurol Neurosurg 2016; 146:82-9. [PMID: 27161905 DOI: 10.1016/j.clineuro.2016.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/23/2016] [Accepted: 04/26/2016] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Increasing observational evidence on the biological effects of Space Weather suggests that geomagnetic disturbances may be an environmental risk factor for multiple sclerosis (MS) relapses. In the present study, we aim to investigate the possible effect of geomagnetic disturbances on MS activity. PATIENTS AND METHODS MS patient admittance rates were correlated with the solar and geophysical data covering an eleven-year period (1996-2006, 23rd solar cycle). We also examined the relationship of patterns of the solar flares, the coronal mass ejections (CMEs) and the solar wind with the recorded MS admission numbers. RESULTS The rate of MS patient admittance due to acute relapses was found to be associated with the solar and geomagnetic events. There was a "primary" peak in MS admittance rates shortly after intense geomagnetic storms followed by a "secondary" peak 7-8 months later. CONCLUSION We conclude that the geomagnetic and solar activity may represent an environmental health risk factor for multiple sclerosis and we discuss the possible mechanisms underlying this association. More data from larger case series are needed to confirm these preliminary results and to explore the possible influence of Space Weather on the biological and radiological markers of the disease.
Collapse
Affiliation(s)
| | | | - Anastasios Gkotsinas
- Department of Astronomy, Astrophysics and Mechanics, University of Athens, Athens, Greece
| | | | - Alexandros Hillaris
- Department of Astronomy, Astrophysics and Mechanics, University of Athens, Athens, Greece
| | - Christos Katsavrias
- Department of Astronomy, Astrophysics and Mechanics, University of Athens, Athens, Greece
| | - Gregorios Antonakopoulos
- Department of Theoretical and Mathematical Physics, Astronomy and Astrophysics, University of Patras, Patra, Greece
| | - Xenophon Moussas
- Department of Astronomy, Astrophysics and Mechanics, University of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|
10
|
Association of myelin peptide with vitamin D prevents autoimmune encephalomyelitis development. Neuroscience 2016; 317:130-40. [PMID: 26762804 DOI: 10.1016/j.neuroscience.2015.12.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/14/2015] [Accepted: 12/30/2015] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis is a chronic, inflammatory and demyelinating disease of the central nervous system (CNS). As there is no cure for this disease, new therapeutic strategies and prophylactic measures are necessary. We recently described the therapeutic activity of the association between myelin oligodendrocyte glycoprotein peptide (MOG) and active vitamin D3 (VitD) against experimental autoimmune encephalomyelitis (EAE). The objective of this work was to evaluate the prophylactic potential of this association in EAE. C57BL/6 mice were vaccinated with MOG in the presence of VitD and then subjected to EAE induction. Animals were euthanized 7 and 19days after disease induction and the following parameters were evaluated: body weight, clinical score, inflammatory process in the CNS, amount of dendritic cells (DCs) and regulatory T cells in the spleen and cytokine production by spleen and CNS cell cultures. Vaccination with MOG associated with VitD determined a drastic reduction in clinical score, body weight loss, CNS inflammation, DCs maturation and also in the production of cytokines by CNS and spleen cell cultures. Collectively, our data indicate that this association prevents EAE development. A similar effect from specific self-antigens associated with VitD is expected in other autoimmune conditions and deserves to be experimentally appraised.
Collapse
|
11
|
Positive or negative involvement of heat shock proteins in multiple sclerosis pathogenesis: an overview. J Neuropathol Exp Neurol 2015; 73:1092-106. [PMID: 25383635 DOI: 10.1097/nen.0000000000000136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is the most diffuse chronic inflammatory disease of the central nervous system. Both immune-mediated and neurodegenerative processes apparently play roles in the pathogenesis of this disease. Heat shock proteins (HSPs) are a family of highly evolutionarily conserved proteins; their expression in the nervous system is induced in a variety of pathologic states, including cerebral ischemia, neurodegenerative diseases, epilepsy, and trauma. To date, investigators have observed protective effects of HSPs in a variety of brain disease models (e.g. of Alzheimer disease and Parkinson disease). In contrast, unequivocal data have been obtained for their roles in MS that depend on the HSP family and particularly on their localization (i.e. intracellular or extracellular). This article reviews our current understanding of the involvement of the principal HSP families in MS.
Collapse
|
12
|
Saligrama N, Case LK, Krementsov DN, Teuscher C. Histamine H₂ receptor signaling × environment interactions determine susceptibility to experimental allergic encephalomyelitis. FASEB J 2013; 28:1898-909. [PMID: 24371118 DOI: 10.1096/fj.13-239939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Histamine and its receptors are important in both multiple sclerosis and experimental allergic encephalomyelitis (EAE). C57BL/6J (B6) mice deficient for the histamine H2 receptor (H2RKO) are less susceptible to EAE and exhibit blunted Th1 responses. However, whether decreased antigen-specific T-cell effector responses in H2RKO mice were due to a lack of H2R signaling in CD4(+) T cells or antigen-presenting cells has remained unclear. We generated transgenic mice expressing H2R specifically in T cells on the H2RKO background, and, using wild-type B6 and H2RKO mice as controls, induced EAE either in the presence or absence of the ancillary adjuvant pertussis toxin (PTX), which models the effects of infectious inflammatory stimuli on autoimmune disease. We monitored the mice for clinical signs of EAE and neuropathology, as well as effector T-cell responses using flow cytometry. EAE severity and neuropathology in H2RKO mice expressing H2R exclusively in T cells become equal to those in wild-type B6 mice only when PTX is used to elicit disease. EAE complementation was associated with frequencies of CD4(+)IFN-γ(+) and CD4(+)IL-17(+) cells that are equal to or greater than those in wild-type B6, respectively. Thus, the regulation of encephalitogenic T-cell responses and EAE susceptibility by H2R signaling in CD4(+) T cells is dependent on gene × environment interactions.
Collapse
Affiliation(s)
- Naresha Saligrama
- 1Immunobiology Program, C331 Given Medical Building, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | |
Collapse
|