1
|
Rizoli C, Dos Santos NM, Maróstica Júnior MR, da Cruz-Höfling MA, Mendonça MCP, de Jesus MB. The therapeutic potential of reduced graphene oxide in attenuating cuprizone-induced demyelination in mice. NANOTECHNOLOGY 2024; 36:025102. [PMID: 39389086 DOI: 10.1088/1361-6528/ad857e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
Reduced graphene oxide (rGO) has unique physicochemical properties that make it suitable for therapeutic applications in neurodegenerative scenarios. This study investigates the therapeutic potential of rGO in a cuprizone-induced demyelination model in mice through histomorphological techniques and analysis of biochemical parameters. We demonstrate that daily intraperitoneal administration of rGO (1 mg ml-1) for 21 days tends to reduce demyelination in theCorpus callosumby decreasing glial cell recruitment during the repair mechanism. Additionally, rGO interferes with oxidative stress markers in the brain and liver indicating potential neuroprotective effects in the central nervous system. No significant damage to vital organs was observed, suggesting that multiple doses could be used safely. However, further long-term investigations are needed to understand rGO distribution, metabolism, routes of action and associated challenges in central neurodegenerative therapies. Overall, these findings contribute to the comprehension of rGO effectsin vivo, paving the way for possible future clinical research.
Collapse
Affiliation(s)
- Cintia Rizoli
- Departmento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | - Maria Alice da Cruz-Höfling
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | | | - Marcelo Bispo de Jesus
- Departmento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
2
|
Piura Y, Bregman N, Kavé G, Karni A, Kolb H, Vigiser I, Day GS, Lopez-Chiriboga S, Shiner T, Regev K. Long-term cognitive outcomes in Susac syndrome: A case series. J Neuroimmunol 2024; 393:578396. [PMID: 38908330 DOI: 10.1016/j.jneuroim.2024.578396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Susac syndrome (SuS) presents with encephalopathy, visual disturbances, and hearing loss from immune-mediated microvascular occlusion. While acute SuS is well-described, long-term cognitive outcomes with current treatments are underknown. We assessed ten SuS patients treated in accordance with evidence-based guidelines using immunotherapies targeting humoral and cell-mediated pathways. Patients were followed for a median 3.6 years. Initially, cognition inversely correlated with corpus callosum lesions on MRI. All reported cognitive improvement; 5/10 patients had residual deficits in visual attention and executive function. Early, aggressive treatment was associated with good outcomes; extensive early corpus callosum lesions may identify patients at-risk of persistent cognitive deficits.
Collapse
Affiliation(s)
- Yoav Piura
- Department of Neurology, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Cognitive Neurology Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; The Neuroimmunology and Multiple Sclerosis Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.
| | - Noa Bregman
- Department of Neurology, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; School of Medicine, Tel Aviv University, Tel Aviv, Israel; Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Cognitive Neurology Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Gitit Kavé
- Department of Education and Psychology, The Open University of Israel, Ra'anana, Israel; Cognitive Neurology Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Arnon Karni
- Department of Neurology, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; The Neuroimmunology and Multiple Sclerosis Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Hadar Kolb
- Department of Neurology, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; The Neuroimmunology and Multiple Sclerosis Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Ifat Vigiser
- Department of Neurology, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; School of Medicine, Tel Aviv University, Tel Aviv, Israel; The Neuroimmunology and Multiple Sclerosis Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Gregory S Day
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL, USA
| | | | - Tamara Shiner
- Department of Neurology, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; School of Medicine, Tel Aviv University, Tel Aviv, Israel; Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Cognitive Neurology Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Keren Regev
- Department of Neurology, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; The Neuroimmunology and Multiple Sclerosis Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| |
Collapse
|
3
|
Jellinger KA. Cognitive impairment in multiple sclerosis: from phenomenology to neurobiological mechanisms. J Neural Transm (Vienna) 2024; 131:871-899. [PMID: 38761183 DOI: 10.1007/s00702-024-02786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated disease of the central nervous system characterized by inflammation, demyelination and chronic progressive neurodegeneration. Among its broad and unpredictable range of clinical symptoms, cognitive impairment (CI) is a common and disabling feature greatly affecting the patients' quality of life. Its prevalence is 20% up to 88% with a wide variety depending on the phenotype of MS, with highest frequency and severity in primary progressive MS. Involving different cognitive domains, CI is often associated with depression and other neuropsychiatric symptoms, but usually not correlated with motor and other deficits, suggesting different pathophysiological mechanisms. While no specific neuropathological data for CI in MS are available, modern research has provided evidence that it arises from the disease-specific brain alterations. Multimodal neuroimaging, besides structural changes of cortical and deep subcortical gray and white matter, exhibited dysfunction of fronto-parietal, thalamo-hippocampal, default mode and cognition-related networks, disruption of inter-network connections and involvement of the γ-aminobutyric acid (GABA) system. This provided a conceptual framework to explain how aberrant pathophysiological processes, including oxidative stress, mitochondrial dysfunction, autoimmune reactions and disruption of essential signaling pathways predict/cause specific disorders of cognition. CI in MS is related to multi-regional patterns of cerebral disturbances, although its complex pathogenic mechanisms await further elucidation. This article, based on systematic analysis of PubMed, Google Scholar and Cochrane Library, reviews current epidemiological, clinical, neuroimaging and pathogenetic evidence that could aid early identification of CI in MS and inform about new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, Vienna, A-1150, Austria.
| |
Collapse
|
4
|
Simani L, Molaeipour L, Kian S, Leavitt VM. Correlation between cognitive changes and neuroradiological changes over time in multiple sclerosis: a systematic review and meta-analysis. J Neurol 2024; 271:5498-5518. [PMID: 38890188 DOI: 10.1007/s00415-024-12517-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND While many studies have examined relationships of neuroimaging variables to cognitive measures in multiple sclerosis (MS), longitudinal studies are lacking. The relationship of cognitive changes to neuroradiological changes in MS is thus incompletely understood. The present study systematically reviews all studies reporting a relationship between MRI changes and cognitive changes after at least one year of follow-up. METHOD An extensive and methodical search of online databases was conducted to identify qualified studies until August 2023. Among various cognitive tests and magnetic resonance imaging (MRI) measures, Symbol Digit Modalities Test (SDMT), Paced Auditory Serial Addition Test (PASAT), verbal fluency, T2 lesion volume (T2LV), white matter lesion volume (WML), and grey matter volume (GMV) qualified for inclusion in a meta-analysis investigating the association of cognitive changes to neuroradiological changes. RESULTS We identified 35 studies that explored the link between MRI changes and changes in cognitive outcomes. Of these, twenty studies (57.14%) investigated the association between SDMT/PASAT and MRI metrics. Eleven studies (31.42%) focused on the relationship between MRI metrics and verbal learning and memory, while ten studies (28.57%) reported associations with visuospatial learning and memory. Furthermore, eight studies (22.85%) analyzed the correlation between verbal fluency and MRI measures. Only 5 were eligible for inclusion in the meta-analysis. The meta-analysis evaluated correlations between SDMT/PASAT and GMV (rs = 0.67, 95% CI 0.44-0.91), and verbal fluency and T2LV (rs = 0.35, 95% CI 0.09-0.60). CONCLUSION In this rigorously conducted systematic review, we found a significant association of cognitive changes, specifically SDMT/PASAT and verbal fluency, to changes in T2LV and atrophy in individuals with MS. Findings should be interpreted cautiously due to the limited amount of high-quality research, small sample sizes, and variability in study methodologies.
Collapse
Affiliation(s)
- Leila Simani
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Leila Molaeipour
- Department of Biostatistics and Epidemiology, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeid Kian
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Victoria M Leavitt
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Fujimori J, Nakashima I. Early-stage volume losses in the corpus callosum and thalamus predict the progression of brain atrophy in patients with multiple sclerosis. J Neuroimmunol 2024; 387:578280. [PMID: 38171046 DOI: 10.1016/j.jneuroim.2023.578280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND A method that can be used in the early stage of multiple sclerosis (MS) to predict the progression of brain volume loss (BVL) has not been fully established. METHODS To develop a method of predicting progressive BVL in patients with MS (pwMS), eighty-two consecutive Japanese pwMS-with either relapsing-remitting MS (86%) or secondary progressive MS (14%)-and 41 healthy controls were included in this longitudinal retrospective analysis over an observational period of approximately 3.5 years. Using a hierarchical cluster analysis with multivariate imaging data obtained by FreeSurfer analysis, we classified the pwMS into clusters. RESULTS At baseline and follow-up, pwMS were cross-sectionally classified into three major clusters (Clusters 1, 2, and 3) in ascending order by disability and BVL. Among the patients included in Cluster 1 at baseline, approximately one-third of patients (12/52) transitioned into Cluster 2 at follow-up. The volumes of the corpus callosum, the thalamus, and the whole brain excluding the ventricles were significantly decreased in the transition group compared with the nontransition group and were found to be the most important predictors of transition. CONCLUSION Decreased volumes of the corpus callosum and thalamus in the relatively early stage of MS may predict the development of BVL.
Collapse
Affiliation(s)
- Juichi Fujimori
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Ichiro Nakashima
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
6
|
Nabizadeh F, Zafari R, Mohamadi M, Maleki T, Fallahi MS, Rafiei N. MRI features and disability in multiple sclerosis: A systematic review and meta-analysis. J Neuroradiol 2024; 51:24-37. [PMID: 38172026 DOI: 10.1016/j.neurad.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND In this systematic review and meta-analysis, we aimed to investigate the correlation between disability in patients with Multiple sclerosis (MS) measured by the Expanded Disability Status Scale (EDSS) and brain Magnetic Resonance Imaging (MRI) features to provide reliable results on which characteristics in the MRI can predict disability and prognosis of the disease. METHODS A systematic literature search was performed using three databases including PubMed, Scopus, and Web of Science. The selected peer-reviewed studies must report a correlation between EDSS scores and MRI features. The correlation coefficients of included studies were converted to the Fisher's z scale, and the results were pooled. RESULTS Overall, 105 studies A total of 16,613 patients with MS entered our study. We found no significant correlation between total brain volume and EDSS assessment (95 % CI: -0.37 to 0.08; z-score: -0.15). We examined the potential correlation between the volume of T1 and T2 lesions and the level of disability. A positive significant correlation was found (95 % CI: 0.19 to 0.43; z-score: 0.31), (95 % CI: 0.17 to 0.33; z-score: 0.25). We observed a significant correlation between white matter volume and EDSS score in patients with MS (95 % CI: -0.37 to -0.03; z-score: -0.21). Moreover, there was a significant negative correlation between gray matter volume and disability (95 % CI: -0.025 to -0.07; z-score: -0.16). CONCLUSION In conclusion, this systematic review and meta-analysis revealed that disability in patients with MS is linked to extensive changes in different brain regions, encompassing gray and white matter, as well as T1 and T2 weighted MRI lesions.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasa Zafari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobin Mohamadi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Maleki
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nazanin Rafiei
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Akaike S, Okamoto T, Kurosawa R, Onodera N, Lin Y, Sato W, Yamamura T, Takahashi Y. Exploring the Potential of the Corpus Callosum Area as a Predictive Marker for Impaired Information Processing in Multiple Sclerosis. J Clin Med 2023; 12:6948. [PMID: 37959412 PMCID: PMC10647459 DOI: 10.3390/jcm12216948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Early cognitive impairment (CI) detection is crucial in multiple sclerosis (MS). However, it can progress silently regardless of relapse activity and reach an advanced stage. We aimed to determine whether the corpus callosum area (CCA) is a sensitive and feasible marker for CI in MS compared to other neuroimaging markers. We assessed cognitive function in 77 MS patients using the Symbol Digit Modalities Test, Paced Auditory Serial Additions Task, Wechsler Adult Intelligence Scale-IV, and Wechsler Memory Scale-Revised. The neuroimaging markers included manually measured CCA, two diffusion tensor imaging markers, and nine volumetric measurements. Apart from volumes of the hippocampus and cerebellum, ten markers showed a significant correlation with all neuropsychological tests and significant differences between the groups. The normalized CCA demonstrated a moderate-to-strong correlation with all neuropsychological tests and successfully differentiated between the CI and cognitively normal groups with 80% sensitivity and 83% specificity. The marker had a large area under the curve and a high Youden index (0.82 and 0.63, respectively) and comparability with established cognitive markers. Therefore, the normalized CCA may serve as a reliable marker for CI in MS and can be easily implemented in clinical practice, providing a supportive diagnostic tool for CI in MS.
Collapse
Affiliation(s)
- Shun Akaike
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan; (S.A.); (Y.T.)
| | - Tomoko Okamoto
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan; (S.A.); (Y.T.)
| | - Ryoji Kurosawa
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan; (S.A.); (Y.T.)
| | - Nozomi Onodera
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan; (S.A.); (Y.T.)
| | - Youwei Lin
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan; (S.A.); (Y.T.)
| | - Wakiro Sato
- Department of Immunology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Takashi Yamamura
- Department of Immunology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan; (S.A.); (Y.T.)
| |
Collapse
|
8
|
Rocca MA, Margoni M, Battaglini M, Eshaghi A, Iliff J, Pagani E, Preziosa P, Storelli L, Taoka T, Valsasina P, Filippi M. Emerging Perspectives on MRI Application in Multiple Sclerosis: Moving from Pathophysiology to Clinical Practice. Radiology 2023; 307:e221512. [PMID: 37278626 PMCID: PMC10315528 DOI: 10.1148/radiol.221512] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/28/2022] [Accepted: 01/17/2023] [Indexed: 06/07/2023]
Abstract
MRI plays a central role in the diagnosis of multiple sclerosis (MS) and in the monitoring of disease course and treatment response. Advanced MRI techniques have shed light on MS biology and facilitated the search for neuroimaging markers that may be applicable in clinical practice. MRI has led to improvements in the accuracy of MS diagnosis and a deeper understanding of disease progression. This has also resulted in a plethora of potential MRI markers, the importance and validity of which remain to be proven. Here, five recent emerging perspectives arising from the use of MRI in MS, from pathophysiology to clinical application, will be discussed. These are the feasibility of noninvasive MRI-based approaches to measure glymphatic function and its impairment; T1-weighted to T2-weighted intensity ratio to quantify myelin content; classification of MS phenotypes based on their MRI features rather than on their clinical features; clinical relevance of gray matter atrophy versus white matter atrophy; and time-varying versus static resting-state functional connectivity in evaluating brain functional organization. These topics are critically discussed, which may guide future applications in the field.
Collapse
Affiliation(s)
- Maria Assunta Rocca
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Monica Margoni
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Marco Battaglini
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Arman Eshaghi
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Jeffrey Iliff
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Elisabetta Pagani
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Paolo Preziosa
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Loredana Storelli
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Toshiaki Taoka
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Paola Valsasina
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Massimo Filippi
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| |
Collapse
|
9
|
Degraeve B, Sequeira H, Mecheri H, Lenne B. Corpus callosum damage to account for cognitive, affective, and social-cognitive dysfunctions in multiple sclerosis: A model of callosal disconnection syndrome? Mult Scler 2023; 29:160-168. [PMID: 35475386 DOI: 10.1177/13524585221091067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The corpus callosum (CC) is the major commissure interconnecting the two hemispheres and is particularly affected in multiple sclerosis (MS). In the present review, we aimed to investigate the role played by callosal damages in the pathogenesis of MS-related dysfunctions and examine whether a model of callosal disconnection syndrome is a valid model for MS. For this purpose, we will first review structural and functional evidence of callosal pathology in MS. Second, we will account for the potential role of CC abnormalities in MS-related dysfunctions. Finally, we will report data concurring with a "multiple disconnection hypothesis" that has been proposed to explain those dysfunctions, and we will examine evidence pointing toward MS as a "callosal disconnection syndrome." We will end by discussing the contribution of this interpretation to the understanding of MS and MS-related deficits.
Collapse
Affiliation(s)
| | - Henrique Sequeira
- UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, CNRS, University of Lille, Lille, France
| | - Halima Mecheri
- ETHICS (EA7446), Lille Catholic University, FLSH, Lille, France
| | - Bruno Lenne
- ETHICS (EA7446), Lille Catholic University, FLSH, Lille, France; Neurology Department, Groupement des hôpitaux de l'institut catholique de Lille (GHICL), Lille, France
| |
Collapse
|
10
|
Russo AW, Stockel KE, Tobyne SM, Ngamsombat C, Brewer K, Nummenmaa A, Huang SY, Klawite EC. Associations between corpus callosum damage, clinical disability, and surface-based homologous inter-hemispheric connectivity in multiple sclerosis. Brain Struct Funct 2022; 227:2909-2922. [PMID: 35536387 PMCID: PMC9850837 DOI: 10.1007/s00429-022-02498-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/11/2022] [Indexed: 01/22/2023]
Abstract
Axonal damage in the corpus callosum is prevalent in multiple sclerosis (MS). Although callosal damage is associated with disrupted functional connectivity between hemispheres, it is unclear how this relates to cognitive and physical disability. We investigated this phenomenon using advanced measures of microstructural integrity in the corpus callosum and surface-based homologous inter-hemispheric connectivity (sHIC) in the cortex. We found that sHIC was significantly decreased in primary motor, somatosensory, visual, and temporal cortical areas in a group of 36 participants with MS (29 relapsing-remitting, 4 secondary progressive MS, and 3 primary-progressive MS) compared with 42 healthy controls (cluster level, p < 0.05). In participants with MS, global sHIC correlated with fractional anisotropy and restricted volume fraction in the posterior segment of the corpus callosum (r = 0.426, p = 0.013; r = 0.399, p = 0.020, respectively). Lower sHIC, particularly in somatomotor and posterior cortical areas, was associated with cognitive impairment and higher disability scores on the Expanded Disability Status Scale (EDSS). We demonstrated that higher levels of sHIC attenuated the effects of posterior callosal damage on physical disability and cognitive dysfunction, as measured by the EDSS and Brief Visuospatial Memory Test-Revised (interaction effect, p < 0.05). We also observed a positive association between global sHIC and years of education (r = 0.402, p = 0.018), supporting the phenomenon of "brain reserve" in MS. Our data suggest that preserved sHIC helps prevent cognitive and physical decline in MS.
Collapse
Affiliation(s)
- Andrew W. Russo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, US
| | | | - Sean M. Tobyne
- Department of Neurology, Massachusetts General Hospital, Boston, MA, US
| | - Chanon Ngamsombat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, No. 149, 13th Street, Charlestown, Boston, MA 02129, US
| | - Kristina Brewer
- Department of Neurology, Massachusetts General Hospital, Boston, MA, US
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, No. 149, 13th Street, Charlestown, Boston, MA 02129, US
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, No. 149, 13th Street, Charlestown, Boston, MA 02129, US
| | - Eric C. Klawite
- Department of Neurology, Massachusetts General Hospital, Boston, MA, US
| |
Collapse
|
11
|
Voskuhl RR, MacKenzie-Graham A. Chronic experimental autoimmune encephalomyelitis is an excellent model to study neuroaxonal degeneration in multiple sclerosis. Front Mol Neurosci 2022; 15:1024058. [PMID: 36340686 PMCID: PMC9629273 DOI: 10.3389/fnmol.2022.1024058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/30/2022] [Indexed: 08/19/2023] Open
Abstract
Animal models of multiple sclerosis (MS), specifically experimental autoimmune encephalomyelitis (EAE), have been used extensively to develop anti-inflammatory treatments. However, the similarity between MS and one particular EAE model does not end at inflammation. MS and chronic EAE induced in C57BL/6 mice using myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 share many neuropathologies. Beyond both having white matter lesions in spinal cord, both also have widespread neuropathology in the cerebral cortex, hippocampus, thalamus, striatum, cerebellum, and retina/optic nerve. In this review, we compare neuropathologies in each of these structures in MS with chronic EAE in C57BL/6 mice, and find evidence that this EAE model is well suited to study neuroaxonal degeneration in MS.
Collapse
Affiliation(s)
- Rhonda R. Voskuhl
- UCLA MS Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|
12
|
Saab G, Munoz DG, Rotstein DL. Chronic Cognitive Impairment in AQP4+ NMOSD With Improvement in Cognition on Eculizumab: A Report of Two Cases. Front Neurol 2022; 13:863151. [PMID: 35645973 PMCID: PMC9136286 DOI: 10.3389/fneur.2022.863151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Cognitive impairment may be associated with aquaporin-4 antibody positive (AQP4+) NMOSD, particularly where there is prominent cerebral, corpus callosum, or thalamic involvement. It is unclear to what extent this phenomenon may be treatable after months to years. We describe two cases of AQP4+ NMOSD with cognitive impairment persisting over more than 6 months, where cognition improved after eculizumab was initiated. In the first case, a 51-year-old woman presented with a 2-month history of cognitive decline and ataxia, and diffuse involvement of the corpus callosum on MRI. AQP4 antibody testing returned positive. Cognitive impairment persisted on therapy with mycophenolate, then rituximab. She was switched to eculizumab from rituximab 18 months after disease onset because of breakthrough optic neuritis; memory and cognitive function improved on eculizumab. In the second case, a 26-year-old woman initially presented with visual, auditory and tactile hallucinations, and impairment in activities of daily living, and was given a diagnosis of schizophrenia. Nine months later she was hospitalized for increasing confusion. MRI showed leukoencephalopathy and diffuse involvement of the corpus callosum with multiple enhancing callosal lesions. AQP4 antibody testing was positive and CSF testing for other antibodies of autoimmune encephalitis was negative. She had some improvement in cognition with high dose corticosteroids but remained significantly impaired. On follow-up, her repeat MRI showed a small new right inferomedial frontal enhancing lesion although she did not complain of any new cognitive issues, her MOCA score was 21/30, and she was started on eculizumab. Two months after eculizumab initiation she and her family reported cognitive improvement and MOCA score was 25/30. Common features of these two cases included extensive callosal involvement and an element of ongoing gadolinium enhancement on MRI. Our experience suggests the possibility that cognitive impairment may be amenable to immunotherapy in certain cases of NMOSD.
Collapse
Affiliation(s)
- Georges Saab
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- St. Michael's Hospital, Toronto, ON, Canada
| | - David G. Munoz
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- St. Michael's Hospital, Toronto, ON, Canada
| | - Dalia L. Rotstein
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- St. Michael's Hospital, Toronto, ON, Canada
- *Correspondence: Dalia L. Rotstein
| |
Collapse
|
13
|
Figueira GMA, Soares PV, Silveira RCD, Figueira FFA. "Stable" vs. "silent progressive multiple sclerosis": a real-world retrospective clinical imaging Brazilian study. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:405-409. [PMID: 35195220 DOI: 10.1590/0004-282x-anp-2020-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/16/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Clinical and imaging are required to characterize activity and progression in MS. The parameters for activity are well defined but not those for progression. The ideal aim for long-term treatment is that neither clinical nor imaging signs of disease should be present, and also no brain atrophy. OBJECTIVES To conduct a comparative clinical-imaging study focusing on MRI brain volumetry. METHODS 174 consecutive relapsing-remitting MS patients (McDonald 2001) were studied, focusing on activity and progression. Annual clinical evaluations (relapse rate and EDSS) and MRI data, along with the annualized evolution of the corpus callosum index (CCI), were compared. RESULTS Out of 174 patients, 148 were considered clinically "stable" based on EDSS. However, 33 (22.2%) out of this group showed annualized reductions in CCI of more than 0.5%, which was the cutoff for defining significant brain atrophy. CONCLUSIONS Among apparently "stable" relapsing-remitting MS patients, 1/5 showed significant brain atrophy over a follow-up period of at least 7 years. We consider it reasonable to suggest that MRI volume sequences should be included in follow-up protocols, so as to provide information on the real treatment response status.
Collapse
Affiliation(s)
| | - Paula Vallegas Soares
- Hospital São Francisco na Providência de Deus, Departamento de Neurologia, Rio de Janeiro RJ, Brazil
| | | | | |
Collapse
|
14
|
Cordani C, Preziosa P, Valsasina P, Meani A, Pagani E, Morozumi T, Rocca MA, Filippi M. MRI of Transcallosal White Matter Helps to Predict Motor Impairment in Multiple Sclerosis. Radiology 2021; 302:639-649. [PMID: 34846201 DOI: 10.1148/radiol.2021210922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Altered callosal integrity has been associated with motor deficits in patients with multiple sclerosis (MS), but its contribution to disability has, to the knowledge of the authors, not been investigated by using multiparametric MRI approaches. Purpose To investigate structural and functional interhemispheric MRI substrates of global disability at different milestones and upper limb motor impairment in MS. Materials and Methods In this cross-sectional study, healthy control patients and patients with MS (between January 1, 2008, and December 31, 2016) were retrospectively selected from our hospital database. Clinical assessment included Expanded Disability Status Scale (EDSS), nine-hole peg test, and digital finger tapping test. By using structural and resting-state functional MRI sequences, probabilistic tractography of hand corticospinal tract fibers, and transcallosal fibers between hand-motor cortices (hereafter, referred to as hand-M1), supplementary motor areas (SMAs), premotor cortices (PMCs), and voxel-mirror homotopic connectivity (VMHC) were analyzed. Random forest analyses identified the MRI predictors of clinical disability at different milestones (EDSS scores of 3.0, 4.0, 6.0) and upper limb motor impairment (nine-hole peg test and finger tapping test z scores < healthy control patients 5th percentile). Results One-hundred thirty healthy control patients (median age, 39 years; interquartile range, 31-50 years; 70 women) and 340 patients with MS (median age, 43 years; interquartile range, 33-51 years; 213 women) were studied. EDSS 3.0 predictors (n = 159) were global measures of atrophy and lesions together with damage measures of corticospinal tracts and transcallosal fibers between PMCs and SMAs (accuracy, 86%; P = .001-.01). For EDSS 4.0 (n = 131), similar predictors were found in addition to damage in transcallosal fibers between hand-M1 (accuracy, 89%; P = .001-.049). No MRI predictors were found for EDSS 6.0 (n = 70). Nine-hole peg test (right, n = 161; left, n = 166) and finger tapping test (right, n = 117; left, n = 111) impairments were predicted by damage in transcallosal fibers between SMAs and PMCs (accuracy range, 69%-77%; P = .001-.049). VMHC abnormalities did not explain clinical outcomes. Conclusion Structural, not functional, abnormalities at MRI in transcallosal premotor and motor white matter fibers predicted severity of global disability and upper limb motor impairment in patients with multiple sclerosis. The informative role of such predictors appeared less evident at higher disability levels. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Barkhof and Pontillo in this issue.
Collapse
Affiliation(s)
- Claudio Cordani
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., P.P., P.V., A.M., E.P., T.M., M.A.R., M.F.), Neurology Unit (P.P., M.A.R., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; and Vita-Salute San Raffaele University, Milan, Italy (M.A.R., M.F.)
| | - Paolo Preziosa
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., P.P., P.V., A.M., E.P., T.M., M.A.R., M.F.), Neurology Unit (P.P., M.A.R., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; and Vita-Salute San Raffaele University, Milan, Italy (M.A.R., M.F.)
| | - Paola Valsasina
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., P.P., P.V., A.M., E.P., T.M., M.A.R., M.F.), Neurology Unit (P.P., M.A.R., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; and Vita-Salute San Raffaele University, Milan, Italy (M.A.R., M.F.)
| | - Alessandro Meani
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., P.P., P.V., A.M., E.P., T.M., M.A.R., M.F.), Neurology Unit (P.P., M.A.R., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; and Vita-Salute San Raffaele University, Milan, Italy (M.A.R., M.F.)
| | - Elisabetta Pagani
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., P.P., P.V., A.M., E.P., T.M., M.A.R., M.F.), Neurology Unit (P.P., M.A.R., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; and Vita-Salute San Raffaele University, Milan, Italy (M.A.R., M.F.)
| | - Tetsu Morozumi
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., P.P., P.V., A.M., E.P., T.M., M.A.R., M.F.), Neurology Unit (P.P., M.A.R., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; and Vita-Salute San Raffaele University, Milan, Italy (M.A.R., M.F.)
| | - Maria Assunta Rocca
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., P.P., P.V., A.M., E.P., T.M., M.A.R., M.F.), Neurology Unit (P.P., M.A.R., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; and Vita-Salute San Raffaele University, Milan, Italy (M.A.R., M.F.)
| | - Massimo Filippi
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., P.P., P.V., A.M., E.P., T.M., M.A.R., M.F.), Neurology Unit (P.P., M.A.R., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; and Vita-Salute San Raffaele University, Milan, Italy (M.A.R., M.F.)
| |
Collapse
|
15
|
Kalinowska-Lyszczarz A, Tillema JM, Tobin WO, Guo Y, Fitz-Gibbon PD, Weigand SD, Giraldo-Chica M, Port JD, Lucchinetti CF. Long-term clinical, MRI, and cognitive follow-up in a large cohort of pathologically confirmed, predominantly tumefactive multiple sclerosis. Mult Scler 2021; 28:441-452. [PMID: 34212755 DOI: 10.1177/13524585211024162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Limited studies have described long-term outcomes in pathology confirmed multiple sclerosis (MS). OBJECTIVES To describe long-term clinical-radiographic-cognitive outcomes in a prospectively followed cohort of patients with pathologically confirmed CNS demyelinating disease, consistent with MS. METHODS Subjects underwent clinical assessment, standardized 3T-MRI brain, and cognitive battery. RESULTS Seventy-five patients were included. Biopsied lesion size was ⩾ 2 cm in 62/75. At follow-up, median duration since biopsy was 11 years. Median EDSS was 3 and lesion burden was large (median 10 cm3). At follow-up, 57/75 met MS criteria, 17/75 had clinically isolated syndrome, and 1 radiographic changes only. Disability scores were comparable to a prevalence cohort in Olmsted County (p < 0.001, n = 218). Cognitive outcomes below age-normed standards included psychomotor, attention, working memory, and executive function domains. Total lesion volume and index lesion-related severity correlated with EDSS and cognitive performance. Volumetric cortical/subcortical GM correlated less than lesion metrics to cognitive outcomes. CONCLUSION Despite early aggressive course in pathologically confirmed MS, its long-term course was comparable to typical MS in our study. Cognitive impairment in this group seemed to correlate strongest to index lesion severity and total lesion volume. It remains to be established how the aggressive nature of the lesion, biopsy, and treatment affect clinical/cognitive outcomes.
Collapse
Affiliation(s)
- Alicja Kalinowska-Lyszczarz
- Department of Neurology, Mayo Clinic, Rochester, MN, USA/Department of Neurology, Poznań University of Medical Sciences, Poznań, Poland
| | | | - W Oliver Tobin
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Stephen D Weigand
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - John D Port
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
16
|
Doskas T, Vavougios GD, Karampetsou P, Kormas C, Synadinakis E, Stavrogianni K, Sionidou P, Serdari A, Vorvolakos T, Iliopoulos I, Vadikolias Κ. Neurocognitive impairment and social cognition in multiple sclerosis. Int J Neurosci 2021; 132:1229-1244. [PMID: 33527857 DOI: 10.1080/00207454.2021.1879066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE/AIM OF THE STUDY The impairment of neurocognitive functions occurs in all subtypes of multiple sclerosis, even from the earliest stages of the disease. Commonly reported manifestations of cognitive impairment include deficits in attention, conceptual reasoning, processing efficiency, information processing speed, memory (episodic and working), verbal fluency (language), and executive functions. Multiple sclerosis patients also suffer from social cognition impairment, which affects their social functioning. The objective of the current paper is to assess the effect of neurocognitive impairment and its potential correlation with social cognition performance and impairment in multiple sclerosis patients. MATERIALS AND METHODS An overview of the available-to-date literature on neurocognitive impairment and social cognition performance in multiple sclerosis patients by disease subtype was performed. RESULTS It is not clear if social cognition impairment occurs independently or secondarily to neurocognitive impairment. There are associations of variable strengths between neurocognitive and social cognition deficits and their neural basis is increasingly investigated. CONCLUSIONS The prompt detection of neurocognitive predictors of social cognition impairment that may be applicable to all multiple sclerosis subtypes and intervention are crucial to prevent further neural and social cognition decline in multiple sclerosis patients.
Collapse
Affiliation(s)
- Triantafyllos Doskas
- Department of Neurology, Athens Naval Hospital, Athens, Greece.,Department of Neurology, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | | | | | | | | | | | | | - Aspasia Serdari
- Department of Psychiatry, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Theofanis Vorvolakos
- Department of Psychiatry, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Ioannis Iliopoulos
- Department of Neurology, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | | |
Collapse
|
17
|
Platten M, Brusini I, Andersson O, Ouellette R, Piehl F, Wang C, Granberg T. Deep Learning Corpus Callosum Segmentation as a Neurodegenerative Marker in Multiple Sclerosis. J Neuroimaging 2021; 31:493-500. [PMID: 33587820 DOI: 10.1111/jon.12838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Corpus callosum atrophy is a sensitive biomarker of multiple sclerosis (MS) neurodegeneration but typically requires manual 2D or volumetric 3D-based segmentations. We developed a supervised machine learning algorithm, DeepnCCA, for corpus callosum segmentation and relate callosal morphology to clinical disability using conventional MRI scans collected in clinical routine. METHODS In a prospective study of 553 MS patients with 704 acquisitions, 200 unique 2D T2 -weighted MRI scans were delineated to develop, train, and validate DeepnCCA. Comparative FreeSurfer segmentations were obtained in 504 3D T1 -weighted scans. Both FreeSurfer and DeepnCCA outputs were correlated with clinical disability. Using principal component analysis of the DeepnCCA output, the morphological changes were explored in relation to clinical disease burden. RESULTS DeepnCCA and manual segmentations had high similarity (Dice coefficients 98.1 ± .11%, 89.3 ± .76%, for intracranial and corpus callosum area, respectively through 10-fold cross-validation). DeepnCCA had numerically stronger correlations with cognitive and physical disability as compared to FreeSurfer: Expanded disability status scale (EDSS) ±6 months (r = -.22 P = .002; r = -.17, P = .013), future EDSS (r = -.26, P<.001; r = -.17, P = .012), and future symbol digit modalities test (r = .26, P = .001; r = .24, P = .003). The corpus callosum became thinner with increasing cognitive and physical disability. Increasing physical disability, additionally, significantly correlated with a more angled corpus callosum. CONCLUSIONS DeepnCCA (https://github.com/plattenmichael/DeepnCCA/) is an openly available tool that can provide fast and accurate corpus callosum measurements applicable to large MS cohorts, potentially suitable for monitoring disease progression and therapy response.
Collapse
Affiliation(s)
- Michael Platten
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Irene Brusini
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden.,Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Olle Andersson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Russell Ouellette
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.,Center for Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Chunliang Wang
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
18
|
Rajan S, Brettschneider J, Collingwood JF. Regional segmentation strategy for DTI analysis of human corpus callosum indicates motor function deficit in mild cognitive impairment. J Neurosci Methods 2020; 345:108870. [PMID: 32687851 DOI: 10.1016/j.jneumeth.2020.108870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The corpus callosum is the largest white matter tract in the human brain, involved in inter-hemispheric transfer and integration of lateralised visual, sensory-motor, language, and cognitive information. Microstructural alterations are implicated in ageing as well as various neurological conditions. NEW METHOD Cross-sectional diffusion-weighted images of 107 healthy adults were used to create a linear regression model of the ageing corpus callosum and its sub-regions to evaluate the impact of analysis by sub-region, and to test for deviations from healthy ageing parameters in 28 subjects with mild cognitive impairment (MCI). Alterations in diffusion properties including fractional anisotropy, mean, radial and axial diffusivities were investigated as a function of age. RESULTS Changes in DTI parameters showed age-dependent regional differences, likely arising from axonal diameter variation across cross-sectional regions of interest in the corpus callosum. Patterns suggestive of degeneration with healthy ageing were observed in all regions. Diffusion parameters in sub-regions projecting to pre-motor, primary, and supplementary motor areas of the brain differed for MCI versus healthy controls, and MCI subjects were more likely than healthy controls to experience a reduction in motor skills. COMPARISON WITH EXISTING METHODS Statistical analyses of the corpus callosum by five manually-defined sub-regions, instead of a single manually-defined region of interest, revealed region-specific changes in microstructure in healthy ageing and MCI, and accounted for clinically-evaluated differences in motor skills between cohorts. CONCLUSION This method will support future studies of corpus callosum, enabling identification and measurement of white matter changes that are undetectable with the single ROI approach.
Collapse
Affiliation(s)
- Surya Rajan
- School of Engineering, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
19
|
Fujimori J, Uryu K, Fujihara K, Wattjes MP, Suzuki C, Nakashima I. Measurements of the corpus callosum index and fractional anisotropy of the corpus callosum and their cutoff values are useful to assess global brain volume loss in multiple sclerosis. Mult Scler Relat Disord 2020; 45:102388. [PMID: 32659734 DOI: 10.1016/j.msard.2020.102388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Recent studies suggest that parameters of the corpus callosum (CC), such as the CC index (CCI) and fractional anisotropy (FA) of the CC, may be related to the degree of brain volume loss (BVL) in MS patients; however, cutoff values that determine the degree of BVL have not been set. METHODS Seventy-five MS patients and 21 healthy controls (HCs) underwent volumetric MRI examinations. MS patients were also evaluated for T2 lesion load, the CCI, and FA of the CC. Among the 75 MS patients, 20 had undergone cognitive assessments with the Symbol Digit Modalities Test (SDMT). After 75 MS patients were categorized into mild, moderate, or severe BVL subgroups according to our previous report, we performed receiver operating characteristic analysis to determine the cutoff values of CCI and FA, categorizing the MS patients into the three subgroups. RESULTS The volume of the CC was significantly reduced in MS patients compared to that in HCs. The CCI and FA were significantly associated with EDSS, disease duration, clinical phenotype, T2-lesion load, and whole brain volume. The FA was significantly correlated with the SDMT score. We identified optimal cutoff values for the CCI and FA of 0.32 (85% sensitivity, 92% specificity) and 0.39 (100% sensitivity, 92% specificity), respectively, which discriminated the severe BVL group from others, and 0.385 (84% sensitivity, 74% specificity) and 0.45 (81% sensitivity, 89% specificity), respectively, which discriminated the mild BVL group from others. CONCLUSION The CCI and FA cutoff values may be useful for evaluating the degree of MS brain atrophy in clinical practice.
Collapse
Affiliation(s)
- Juichi Fujimori
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Kengo Uryu
- School of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology, Fukushima Medical University School of Medicine and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan
| | - Mike P Wattjes
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Chihiro Suzuki
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ichiro Nakashima
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
20
|
Sugijono SE, Mulyadi R, Firdausia S, Prihartono J, Estiasari R. Corpus callosum index correlates with brain volumetry and disability in multiple sclerosis patients. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2020; 25:193-199. [PMID: 32683399 PMCID: PMC8015480 DOI: 10.17712/nsj.2020.3.20190093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/15/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To analyze the correlation between corpus callosum index (CCI), brain volumetry, and disability in multiple sclerosis (MS) patients. The brain volumetry consists of the corpus callosum, cortical gray matter, subcortical gray matter, and white matter volumes. METHODS This was a retrospective cross-sectional study from October 2018 to February 2019 of 30 patients with MS aged 20 to 61 years old. Brain volumetry was performed using FreeSurfer software. The CCI were measured manually using conventional best mid-sagittal T1W brain MRI. The anterior, posterior, and medium segments were measured and divided to its greatest anteroposterior diameter. Higher CCI values indicated greater corpus callosum volumes. Clinical evaluation was comprised of MS subtype, age of onset, relapse frequency and Expanded Disability Status Scale (EDSS). RESULTS Thirty MS patients with median of age 22 years were included. Relapsing-remitting (RRMS) subtype were 73.3%. Very significant correlations were shown between the CCI and corpus callosum volume (CCV) (r=0.79; p<0.0001) and cerebral white matter volume (r=0.81; p<0.0001). Significant correlations were shown between the CCI and cortical gray matter volume (r=0.64; p<0.0001) and subcortical gray matter volume (r=0.69; p<0.0001). The CCI was positively correlated with age of onset and inversely with EDSS. The CCV and CCI were smaller in secondary progressive MS (SPMS). CONCLUSION The CCI is easy and fast to obtain in conventional MRI and significantly correlated with brain volumetry, age of onset and disability in MS patients.
Collapse
Affiliation(s)
- Stefanus E. Sugijono
- From the Department of Radiology (Sugijono), Division of Neuroradiology (Mulyadi), Department of Radiology, Department of Neurology (Firdausia, Estiasari), Department of Community Medicine (Prihartono), Faculty of Medicine, University of Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | - Rahmad Mulyadi
- From the Department of Radiology (Sugijono), Division of Neuroradiology (Mulyadi), Department of Radiology, Department of Neurology (Firdausia, Estiasari), Department of Community Medicine (Prihartono), Faculty of Medicine, University of Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | - Salsabila Firdausia
- From the Department of Radiology (Sugijono), Division of Neuroradiology (Mulyadi), Department of Radiology, Department of Neurology (Firdausia, Estiasari), Department of Community Medicine (Prihartono), Faculty of Medicine, University of Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | - Joedo Prihartono
- From the Department of Radiology (Sugijono), Division of Neuroradiology (Mulyadi), Department of Radiology, Department of Neurology (Firdausia, Estiasari), Department of Community Medicine (Prihartono), Faculty of Medicine, University of Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | - Riwanti Estiasari
- From the Department of Radiology (Sugijono), Division of Neuroradiology (Mulyadi), Department of Radiology, Department of Neurology (Firdausia, Estiasari), Department of Community Medicine (Prihartono), Faculty of Medicine, University of Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| |
Collapse
|
21
|
Sullivan GM, Knutsen AK, Peruzzotti-Jametti L, Korotcov A, Bosomtwi A, Dardzinski BJ, Bernstock JD, Rizzi S, Edenhofer F, Pluchino S, Armstrong RC. Transplantation of induced neural stem cells (iNSCs) into chronically demyelinated corpus callosum ameliorates motor deficits. Acta Neuropathol Commun 2020; 8:84. [PMID: 32517808 PMCID: PMC7285785 DOI: 10.1186/s40478-020-00960-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple Sclerosis (MS) causes neurologic disability due to inflammation, demyelination, and neurodegeneration. Immunosuppressive treatments can modify the disease course but do not effectively promote remyelination or prevent long term neurodegeneration. As a novel approach to mitigate chronic stage pathology, we tested transplantation of mouse induced neural stem cells (iNSCs) into the chronically demyelinated corpus callosum (CC) in adult mice. Male C57BL/6 mice fed 0.3% cuprizone for 12 weeks exhibited CC atrophy with chronic demyelination, astrogliosis, and microglial activation. Syngeneic iNSCs were transplanted into the CC after ending cuprizone and perfused for neuropathology 2 weeks later. Magnetic resonance imaging (MRI) sequences for magnetization transfer ratio (MTR), diffusion-weighted imaging (T2), and diffusion tensor imaging (DTI) quantified CC pathology in live mice before and after iNSC transplantation. Each MRI technique detected progressive CC pathology. Mice that received iNSCs had normalized DTI radial diffusivity, and reduced astrogliosis post-imaging. A motor skill task that engages the CC is Miss-step wheel running, which demonstrated functional deficits from cuprizone demyelination. Transplantation of iNSCs resulted in marked recovery of running velocity. Neuropathology after wheel running showed that iNSC grafts significantly increased host oligodendrocytes and proliferating oligodendrocyte progenitors, while modulating axon damage. Transplanted iNSCs differentiated along astrocyte and oligodendrocyte lineages, without myelinating, and many remained neural stem cells. Our findings demonstrate the applicability of neuroimaging and functional assessments for pre-clinical interventional trials during chronic demyelination and detect improved function from iNSC transplantation. Directly reprogramming fibroblasts into iNSCs facilitates the future translation towards exogenous autologous cell therapies.
Collapse
|
22
|
Structural changes in the brain of patients with relapsing-remitting multiple sclerosis compared to controls: a MRI-based stereological study. Ir J Med Sci 2020; 189:1421-1427. [PMID: 32436171 DOI: 10.1007/s11845-020-02253-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/05/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is an inflammatory autoimmune disorder of the central nervous system characterized by demyelination, inflammation, gliosis, and axonal loss. Nowadays, increasing scientific reports have focused on neurodegenerative processes and structural changes of the disease underlying pathogenesis. AIM The aim of this study is a structural analysis of brain magnetic resonance images (MRIs) in patients with relapsing-remitting multiple sclerosis (RRMS) comparing with normal individuals. METHODS This case-control study was carried out on MRIs of 20 patients with RRMS and 20 healthy controls in Zahedan, Iran. MR images with 4-mm slice thickness and 0.5-mm intervals in three anatomical planes (coronal, sagittal, axial) were acquired. Then, stereological parameters, including volume and volume density of different parts of the brain, based on Cavalries' point counting method were measured in both groups. Data analyses were performed using Mann-Whitney U and Pearson's correlation tests. RESULTS The results of the study showed that there were no significant differences in total brain, hemispheres, gray matter, and basal nuclei volume and volume density between the two groups (p ˃ 0.05). However, the left hemisphere, cerebellum, lateral ventricles, brainstem, corpus callosum, and white matter volume in RRMS patients were significantly lower than those in controls (p ˂ 0.05). CONCLUSION The findings showed that quantitative assessments based on stereological method on brain MRIs facilitate clarifying neuropathology of the disease. Also, it can be helpful as a simple index for following up the clinical situation and assessing therapeutic efficiency in MS patients. It may provide a precise treatment approach and justification of symptoms in patients with MS.
Collapse
|
23
|
Naeeni Davarani M, Arian Darestani A, Hassani-Abharian P, Vaseghi S, Zarrindast MR, Nasehi M. RehaCom rehabilitation training improves a wide-range of cognitive functions in multiple sclerosis patients. APPLIED NEUROPSYCHOLOGY-ADULT 2020; 29:262-272. [PMID: 32368936 DOI: 10.1080/23279095.2020.1747070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease that impairs cognitive performance. Attention, response control, working memory, and processing speed are highly impaired in MS. On the other hand, RehaCom is a computerized software that improves cognitive dysfunctions. In this study, we aimed to investigate the effect of RehaCom on attention, response control, processing speed, working memory, visuospatial skills, and verbal/non-verbal executive functions in MS patients. Sixty patients were selected randomly and divided into control (n = 30) and experimental (n = 30) groups. Integrated Auditory Visual-2 (IVA-2), Paced Auditory Serial Addition Test (PASAT), Symbol Digit Modalities Test (SDMT), Judgment of Line Orientation (JLO) and The Delis-Kaplan Executive Function System (DKEFS) were used to assess cognitive functions. Patients in the experimental group were treated by RehaCom for 5 weeks (two 60-min sessions per week). Cognitive performance of all patients in both groups was assessed at weeks 5 and 10 (post-test and follow-up stages, respectively). The results showed that RehaCom treatment improved all studied cognitive functions at the post-test stage. This effect also remained at the follow-up stage for some cognitive functions. In conclusion, treatment with RehaCom may have significant therapeutic effects on cognitive dysfunctions in MS patients.
Collapse
Affiliation(s)
- Mahsa Naeeni Davarani
- Department of Psychology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Arian Darestani
- Department of Psychology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Peyman Hassani-Abharian
- Department of Rehabilitation, Brain and Cognition Clinic, Tehran, Iran.,Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Salar Vaseghi
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
24
|
Engl C, Tiemann L, Grahl S, Bussas M, Schmidt P, Pongratz V, Berthele A, Beer A, Gaser C, Kirschke JS, Zimmer C, Hemmer B, Mühlau M. Cognitive impairment in early MS: contribution of white matter lesions, deep grey matter atrophy, and cortical atrophy. J Neurol 2020; 267:2307-2318. [PMID: 32328718 PMCID: PMC7359155 DOI: 10.1007/s00415-020-09841-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 12/02/2022]
Abstract
Background Cognitive impairment (CI) is a frequent and debilitating symptom in MS. To better understand the neural bases of CI in MS, this magnetic resonance imaging (MRI) study aimed to identify and quantify related structural brain changes and to investigate their relation to each other. Methods We studied 51 patients with CI and 391 patients with cognitive preservation (CP). We analyzed three-dimensional T1-weighted and FLAIR scans at 3 Tesla. We determined mean cortical thickness as well as volumes of cortical grey matter (GM), deep GM including thalamus, cerebellar cortex, white matter, corpus callosum, and white matter lesions (WML). We also analyzed GM across the whole brain by voxel-wise and surface-based techniques. Results Mean disease duration was 5 years. Comparing MS patients with CI and CP, we found higher volumes of WML, lower volumes of deep and cortical GM structures, and lower volumes of the corpus callosum (all corrected p values < 0.05). Effect sizes were largest for WML and thalamic volume (standardized ß values 0.25 and − 0.25). By logistic regression analysis including both WML and thalamic volume, we found a significant effect only for WML volume. Inclusion of the interaction term of WML and thalamic volume increased the model fit and revealed a highly significant interaction of WML and thalamic volume. Moreover, voxel-wise and surface-based comparisons of MS patients with CI and CP showed regional atrophy of both deep and cortical GM independent of WML volume and overall disability, but effect sizes were lower. Conclusion Although several mechanisms contribute to CI already in the early stage of MS, WML seem to be the main driver with thalamic atrophy primarily intensifying this effect.
Collapse
Affiliation(s)
- Christina Engl
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany.,TUM Neuroimaging Center, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany
| | - Laura Tiemann
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany.,TUM Neuroimaging Center, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany
| | - Sophia Grahl
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany.,TUM Neuroimaging Center, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany
| | - Matthias Bussas
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany.,TUM Neuroimaging Center, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany
| | - Paul Schmidt
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany.,TUM Neuroimaging Center, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany
| | - Viola Pongratz
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany.,TUM Neuroimaging Center, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany
| | - Achim Berthele
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany
| | - Annkathrin Beer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany.,TUM Neuroimaging Center, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany
| | - Christian Gaser
- Department of Psychiatry and Department of Neurology, Jena University Hospital, Jena, Germany
| | - Jan S Kirschke
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Mark Mühlau
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany. .,TUM Neuroimaging Center, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81541, Munich, Germany.
| |
Collapse
|
25
|
Petracca M, Schiavi S, Battocchio M, El Mendili MM, Fleysher L, Daducci A, Inglese M. Streamline density and lesion volume reveal a postero–anterior gradient of corpus callosum damage in multiple sclerosis. Eur J Neurol 2020; 27:1076-1082. [DOI: 10.1111/ene.14214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/26/2019] [Accepted: 02/14/2020] [Indexed: 11/29/2022]
Affiliation(s)
- M. Petracca
- Department of Neurology Icahn School of Medicine at Mount Sinai New York NY USA
| | - S. Schiavi
- Department of Computer Science University of Verona Verona Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology Genetics, Maternal and Child Health and Center of Excellence for Biomedical Research University of Genoa Genoa Italy
| | - M. Battocchio
- Department of Computer Science University of Verona Verona Italy
| | - M. M. El Mendili
- Department of Neurology Icahn School of Medicine at Mount Sinai New York NY USA
| | - L. Fleysher
- Department of Radiology Icahn School of Medicine at Mount Sinai New York NY USA
| | - A. Daducci
- Department of Computer Science University of Verona Verona Italy
| | - M. Inglese
- Department of Neurology Icahn School of Medicine at Mount Sinai New York NY USA
- Department of Neurosciences, Rehabilitation, Ophthalmology Genetics, Maternal and Child Health and Center of Excellence for Biomedical Research University of Genoa Genoa Italy
- Ospedale Policlinico San Martino – IRCCS Genoa Italy
| |
Collapse
|
26
|
Cappelle S, Pareto D, Tintoré M, Vidal-Jordana A, Alyafeai R, Alberich M, Sastre-Garriga J, Auger C, Montalban X, Rovira À. A validation study of manual atrophy measures in patients with Multiple Sclerosis. Neuroradiology 2020; 62:955-964. [PMID: 32246177 DOI: 10.1007/s00234-020-02401-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/10/2020] [Indexed: 01/18/2023]
Abstract
PURPOSE Manual measures such as corpus callosum index, normalized corpus callosum area, and width of the third ventricle are potential biomarkers for brain atrophy. In this work, we investigate their suitability to assess the neurodegenerative component of multiple sclerosis (MS) by comparing them to volumetric measures and expanded disability status scale (EDSS). METHODS Fifty-eight patients with a clinically isolated syndrome, 48 MS patients treated with interferon β, and 26 treated with natalizumab underwent a brain MRI at baseline and after 1 year. Manual measures were evaluated by two observers using Jim v.6.0 at both time points. Volumetric tools (SIENA/x and Freesurfer) were used to calculate normalized brain volume, brain parenchymal fraction, annualized percentage of brain volume change, corpus callosum volume, ventricle volume, and volume of the third ventricle. Statistical analyses were performed with SPSS v.13. RESULTS Usage of corpus callosum volume and third ventricle volume to validate normalized corpus callosum area and width of the third ventricle, respectively, showed very good correlations (r = 0.85, r = 0.83; p < 0.01). Width of the third ventricle, corpus callosum index, and normalized corpus callosum area correlations were significant with EDSS in all patients and moderate to strong with normalized brain volume and brain parenchymal fraction in natalizumab-treated patients (respectively r = - 0.54, r = - 0.61; r = 0.55, r = 0.67; and r = 0.58, r = 0.67; with p < 0.05). CONCLUSION Width of the third ventricle and normalized corpus callosum area seem the more robust manual measures regarding correlation with volumetric measures and EDSS, especially in patients with more advanced disease.
Collapse
Affiliation(s)
- Sarah Cappelle
- Section of Neuroradiology and Magnetic Resonance Unit, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Radiology, University Hospital Leuven, Leuven, Belgium
| | - Deborah Pareto
- Section of Neuroradiology and Magnetic Resonance Unit, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Mar Tintoré
- Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Angela Vidal-Jordana
- Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rumaiza Alyafeai
- Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manel Alberich
- Section of Neuroradiology and Magnetic Resonance Unit, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Auger
- Section of Neuroradiology and Magnetic Resonance Unit, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Division of Neurology, St Michael's Hospital, University of Toronto, Toronto, Canada
| | - Àlex Rovira
- Section of Neuroradiology and Magnetic Resonance Unit, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
27
|
Claesson TB, Putaala J, Shams S, Salli E, Gordin D, Liebkind R, Forsblom C, Summanen PA, Tatlisumak T, Groop PH, Martola J, Thorn LM. Comparison of Manual Cross-Sectional Measurements and Automatic Volumetry of the Corpus Callosum, and Their Clinical Impact: A Study on Type 1 Diabetes and Healthy Controls. Front Neurol 2020; 11:27. [PMID: 32063882 PMCID: PMC7000520 DOI: 10.3389/fneur.2020.00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Background and purpose: Degenerative change of the corpus callosum might serve as a clinically useful surrogate marker for net pathological cerebral impact of diabetes type 1. We compared manual and automatic measurements of the corpus callosum, as well as differences in callosal cross-sectional area between subjects with type 1 diabetes and healthy controls. Materials and methods: This is a cross-sectional study on 188 neurologically asymptomatic participants with type 1 diabetes and 30 healthy age- and sex-matched control subjects, recruited as part of the Finnish Diabetic Nephropathy Study. All participants underwent clinical work-up and brain MRI. Callosal area was manually measured and callosal volume quantified with FreeSurfer. The measures were normalized using manually measured mid-sagittal intracranial area and volumetric intracranial volume, respectively. Results: Manual and automatic measurements correlated well (callosal area vs. volume: ρ = 0.83, p < 0.001 and mid-sagittal area vs. intracranial volume: ρ = 0.82, p < 0.001). We found no significant differences in the callosal measures between cases and controls. In type 1 diabetes, the lowest quartile of normalized callosal area was associated with higher insulin doses (p = 0.029) and reduced insulin sensitivity (p = 0.033). In addition, participants with more than two cerebral microbleeds had smaller callosal area (p = 0.002). Conclusion: Manually measured callosal area and automatically segmented are interchangeable. The association seen between callosal size with cerebral microbleeds and insulin resistance is indicative of small vessel disease pathology in diabetes type 1.
Collapse
Affiliation(s)
- Tor-Björn Claesson
- Department of Radiology, Visby Regional Hospital, Visby, Sweden.,Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Radiology, Helsinki University Central Hospital, Helsinki, Finland
| | - Jukka Putaala
- Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland
| | - Sara Shams
- Department of Radiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Radiology, Stanford University, Stanford, CA, United States
| | - Eero Salli
- HUS Helsinki Medical Imaging Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Daniel Gordin
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Finland Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Joslin Diabetes Center, Harvard Medical School, Boston, MA, United States
| | - Ron Liebkind
- Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Finland Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Paula A Summanen
- Department of Ophthalmology, Helsinki University Hospital, Helsinki, Finland
| | - Turgut Tatlisumak
- Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland.,Department of Clinical Neuroscience/Neurology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Finland Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Juha Martola
- Department of Radiology, Helsinki University Central Hospital, Helsinki, Finland.,Department of Radiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Radiology, Stanford University, Stanford, CA, United States
| | - Lena M Thorn
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Finland Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Cognitive dysfunction and brain atrophy in Susac syndrome. J Neurol 2019; 267:994-1003. [DOI: 10.1007/s00415-019-09664-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
|
29
|
Platten M, Martola J, Fink K, Ouellette R, Piehl F, Granberg T. MRI-Based Manual versus Automated Corpus Callosum Volumetric Measurements in Multiple Sclerosis. J Neuroimaging 2019; 30:198-204. [PMID: 31750599 DOI: 10.1111/jon.12676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/13/2019] [Accepted: 10/26/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Corpus callosum atrophy is a neurodegenerative biomarker in multiple sclerosis (MS). Manual delineations are gold standard but subjective and labor intensive. Novel automated methods are promising but require validation. We aimed to compare the robustness of manual versus automatic corpus callosum segmentations based on FreeSurfer. METHODS Nine MS patients (6 females, age 38 ± 13 years, disease duration 7.3 ± 5.2 years) were scanned twice with repositioning using 3-dimensional T1 -weighted magnetic resonance imaging on three scanners (two 1.5 T and one 3.0 T), that is, six scans/patient, on the same day. Normalized corpus callosum areas were measured independently by a junior doctor and neuroradiologist. The cross-sectional and longitudinal streams of FreeSurfer were used to segment the corpus callosum volume. RESULTS Manual measurements had high intrarater (junior doctor .96 and neuroradiologist .96) and interrater agreement (.94), by intraclass correlation coefficient (P < .001). The coefficient of variation was lowest for longitudinal FreeSurfer (.96% within scanners; 2.0% between scanners) compared to cross-sectional FreeSurfer (3.7%, P = .001; 3.8%, P = .058) and the neuroradiologist (2.3%, P = .005; 2.4%, P = .33). Longitudinal FreeSurfer was also more accurate than cross-sectional (Dice scores 83.9 ± 7.5% vs. 78.9 ± 8.4%, P < .01 relative to manual segmentations). The corpus callosum measures correlated with physical disability (longitudinal FreeSurfer r = -.36, P < .01; neuroradiologist r = -.32, P < .01) and cognitive disability (longitudinal FreeSurfer r = .68, P < .001; neuroradiologist r = .64, P < .001). CONCLUSIONS FreeSurfer's longitudinal stream provides corpus callosum measures with better repeatability than current manual methods and with similar clinical correlations. However, due to some limitations in accuracy, caution is warranted when using FreeSurfer with clinical data.
Collapse
Affiliation(s)
- Michael Platten
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Division of Neuroradiology, Department of Radiology, Karolinska University Hospital, Stockholm, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Juha Martola
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Katharina Fink
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Center for Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Russell Ouellette
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Division of Neuroradiology, Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.,Center for Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Division of Neuroradiology, Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
30
|
Tolf A, Fagius J, Carlson K, Åkerfeldt T, Granberg T, Larsson E, Burman J. Sustained remission in multiple sclerosis after hematopoietic stem cell transplantation. Acta Neurol Scand 2019; 140:320-327. [PMID: 31297793 DOI: 10.1111/ane.13147] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/24/2019] [Accepted: 07/03/2019] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To determine whether treatment with autologous hematopoietic stem cell transplantation (HSCT) can induce sustained complete remission in patients with multiple sclerosis (MS). MATERIAL AND METHODS Case series of patients with relapsing-remitting MS (n = 10) treated at a single center between 2004 and 2007 and followed up for 10 years. The patients were treated with a BEAM/ATG conditioning regimen (n = 9) or a cyclophosphamide/ATG conditioning regimen (n = 1) followed by infusion of unmanipulated autologous hematopoietic stem cells. The primary endpoint was sustained complete remission. Sustained complete remission was defined as "no evidence of disease activity-4," sustained for a period of at least 5 years without any ongoing disease-modifying treatment. Furthermore, MS was considered as "resolved" if intrathecal IgG production and cerebrospinal fluid neurofilament light levels were normalized as well. RESULTS Five out of 10 patients were in sustained complete remission at the end of the study. In three of them, MS was resolved. CONCLUSIONS Our data demonstrate that sustained complete remission after autologous HSCT for MS is possible.
Collapse
Affiliation(s)
- Andreas Tolf
- Department of Neuroscience Uppsala University Uppsala Sweden
| | - Jan Fagius
- Department of Neuroscience Uppsala University Uppsala Sweden
| | - Kristina Carlson
- Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Torbjörn Åkerfeldt
- Section of Clinical Chemistry and Pharmacology Uppsala University Hospital Uppsala Sweden
| | - Tobias Granberg
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
- Division of Neuroradiology, Department of Radiology Karolinska University Hospital Stockholm Sweden
| | - Elna‐Marie Larsson
- Department of Surgical Sciences/Radiology Uppsala University Uppsala Sweden
| | - Joachim Burman
- Department of Neuroscience Uppsala University Uppsala Sweden
| |
Collapse
|
31
|
Patterns of regional brain volume loss in multiple sclerosis: a cluster analysis. J Neurol 2019; 267:395-405. [DOI: 10.1007/s00415-019-09595-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/23/2022]
|
32
|
Abstract
Cognitive impairment is increasingly recognized to be a core feature of multiple sclerosis (MS), with important implications for the everyday life of individuals with MS and for disease management. Unfortunately, the exact mechanisms that underlie this cognitive impairment are poorly understood and there are no effective therapeutic options for this aspect of the disease. During MS, focal brain inflammatory lesions, together with pathological changes of both CNS grey matter and normal-appearing white matter, can interfere with cognitive functions. Moreover, inflammation may alter the crosstalk between the immune and the nervous systems, modulating the induction of synaptic plasticity and neurotransmission. In this Review, we examine the CNS structures and cognitive domains that are affected by the disease, with a specific focus on hippocampal involvement in MS and experimental autoimmune encephalomyelitis, an experimental model of MS. We also discuss the hypothesis that, during MS, immune-mediated alterations of synapses' ability to express long-term plastic changes may contribute to the pathogenesis of cognitive impairment by interfering with the dynamics of neuronal networks.
Collapse
|
33
|
Huang SY, Fan Q, Machado N, Eloyan A, Bireley JD, Russo AW, Tobyne SM, Patel KR, Brewer K, Rapaport SF, Nummenmaa A, Witzel T, Sherman JC, Wald LL, Klawiter EC. Corpus callosum axon diameter relates to cognitive impairment in multiple sclerosis. Ann Clin Transl Neurol 2019; 6:882-892. [PMID: 31139686 PMCID: PMC6529828 DOI: 10.1002/acn3.760] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/16/2019] [Accepted: 02/27/2019] [Indexed: 11/24/2022] Open
Abstract
Objective To evaluate alterations in apparent axon diameter and axon density obtained by high‐gradient diffusion MRI in the corpus callosum of MS patients and the relationship of these advanced diffusion MRI metrics to neurologic disability and cognitive impairment in MS. Methods Thirty people with MS (23 relapsing‐remitting MS [RRMS], 7 progressive MS [PMS]) and 23 healthy controls were scanned on a human 3‐tesla (3T) MRI scanner equipped with 300 mT/m maximum gradient strength using a comprehensive multishell diffusion MRI protocol. Data were fitted to a three‐compartment geometric model of white matter to estimate apparent axon diameter and axon density in the midline corpus callosum. Neurologic disability and cognitive function were measured using the Expanded Disability Status Scale (EDSS), Multiple Sclerosis Functional Composite (MSFC), and Minimal Assessment of Cognitive Function in MS battery. Results Apparent axon diameter was significantly larger and axon density reduced in the normal‐appearing corpus callosum (NACC) of MS patients compared to healthy controls, with similar trends seen in PMS compared to RRMS. Larger apparent axon diameter in the NACC of MS patients correlated with greater disability as measured by the EDSS (r = 0.555, P = 0.007) and poorer performance on the Symbol Digits Modalities Test (r = ‐0.593, P = 0.008) and Brief Visuospatial Memory Test–Revised (r = −0.632, P < 0.01), tests of interhemispheric processing speed and new learning and memory, respectively. Interpretation Apparent axon diameter in the corpus callosum obtained from high‐gradient diffusion MRI is a potential imaging biomarker that may be used to understand the development and progression of cognitive impairment in MS.
Collapse
Affiliation(s)
- Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital Charlestown Massachusetts
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital Charlestown Massachusetts
| | - Natalya Machado
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Ani Eloyan
- Department of Biostatistics School of Public Health Brown University Providence Rhode Island
| | - John D Bireley
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Andrew W Russo
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Sean M Tobyne
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Kevin R Patel
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Kristina Brewer
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Sarah F Rapaport
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital Charlestown Massachusetts
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital Charlestown Massachusetts
| | - Janet C Sherman
- Psychology Assessment Center Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital Charlestown Massachusetts
| | - Eric C Klawiter
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| |
Collapse
|
34
|
de Souza RSM, Rosa M, Escobar TDC, Gasparetto EL, Nakamura-Palacios EM. Anterior to Midposterior Corpus Callosum Subregions Are Volumetrically Reduced in Male Alcoholics but Only the Anterior Segment Is Associated to Alcohol Use. Front Psychiatry 2019; 10:196. [PMID: 31024358 PMCID: PMC6460345 DOI: 10.3389/fpsyt.2019.00196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/19/2019] [Indexed: 11/17/2022] Open
Abstract
Alcohol consumption seems to affect corpus callosum morphometry irrespectively of an alcohol use disorder (AUD) diagnosis. The present study examined the relationship between corpus callosum (CC) subregion volumes and alcohol use patterns in AUD and non-AUD subjects. Twenty-two male AUD patients and 23 healthy matched non-AUD subjects were recruited from March 2016 to July 2017. Volumetric data were acquired through Magnetic Resonance and analyzed by the FreeSurfer software. AUD subjects were in abstinence for 45.1 days ± 36.8 (SD), consumed higher amounts of alcohol and presented higher AUDIT scores than controls (p < 0.0001). A multivariate analysis corrected by age and tobacco use indicated that AUD patients presented smaller CC volumes compared to non-AUD subjects (p < 0.01), except for the posterior subregion. A multiple regression analysis corrected by age and tobacco use including CC volumes from all subjects and the amount of daily alcohol ingestion as variables indicated that anterior CC volume was negatively (p < 0.001) associated to alcohol consumption. This study demonstrated that CC subregions were smaller in AUD subjects, as expected, and that the volume of the anterior segment was inversely associated to increasing daily amounts of alcohol, indicating greater frontal region vulnerability to harmful alcohol effects.
Collapse
Affiliation(s)
- Rodrigo Stênio Moll de Souza
- Department of Internal Medicine, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil.,University Hospital Cassiano Antônio de Moraes, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil.,Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,BRAEN-Brazilian Research Group on Brain and Cognitive Engineering, Federal University of Espírito Santo, Vitória, Brazil
| | - Marcos Rosa
- Department of Internal Medicine, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Thayssa Dalla Costa Escobar
- University Hospital Cassiano Antônio de Moraes, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil.,BRAEN-Brazilian Research Group on Brain and Cognitive Engineering, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Ester Miyuki Nakamura-Palacios
- BRAEN-Brazilian Research Group on Brain and Cognitive Engineering, Federal University of Espírito Santo, Vitória, Brazil.,Laboratory of Cognitive Sciences and Neuropsychopharmacology, Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| |
Collapse
|
35
|
Sedighi B, Ghaseminejad A, Abna Z, Hassani B. Optical Coherence Tomography and Corpus Callosum Index in Cognitive Assessment of Multiple Sclerosis Patients. CASPIAN JOURNAL OF NEUROLOGICAL SCIENCES 2018. [DOI: 10.29252/cjns.4.14.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
36
|
Multimodal assessment of normal-appearing corpus callosum is a useful marker of disability in relapsing–remitting multiple sclerosis: an MRI cluster analysis study. J Neurol 2018; 265:2243-2250. [DOI: 10.1007/s00415-018-8980-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/17/2018] [Indexed: 02/08/2023]
|
37
|
Conventional and advanced MRI in multiple sclerosis. Rev Neurol (Paris) 2018; 174:391-397. [DOI: 10.1016/j.neurol.2018.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 12/28/2022]
|
38
|
Ouellette R, Bergendal Å, Shams S, Martola J, Mainero C, Kristoffersen Wiberg M, Fredrikson S, Granberg T. Lesion accumulation is predictive of long-term cognitive decline in multiple sclerosis. Mult Scler Relat Disord 2018; 21:110-116. [PMID: 29550717 DOI: 10.1016/j.msard.2018.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/14/2018] [Accepted: 03/01/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the long-term progression of cognitive dysfunction and its neuroanatomical correlates and predictors in multiple sclerosis (MS). METHODS A cohort of 37 MS patients reflecting five decades of disease duration and all subtypes was followed over 17.5 years. Matched controls were recruited at the last follow-up. Global cognitive functioning was assessed using a principal component cognitive index based on comprehensive neuropsychological testing. During the last 8.5 years of the study, brain MRI was performed to analyze normalized volumetrics of three global tissue compartments (white and gray matter, lesions) and strategic regions (corpus callosum, thalamus, hippocampus). RESULTS Cognitive decline progressed continuously throughout the study paralleled by atrophy and lesion accumulation. The cognitive index partly correlated with Expanded Disability Status Scale (ρ = -0.47, p < 0.001) and was mainly associated with the lesion fraction (β = -0.48, p < 0.001) and callosal fraction (β = 0.39, p = 0.002) in multiple linear regression analysis. The lesion fraction was an independent predictor of the cognitive performance 8.5 years later (β = -0.35, p = 0.008). Symbol Digit Modalities Test was most frequently abnormal (40%), while Rey-Osterrieth Complex Figure Test was more sensitive to detect cognitive decline. CONCLUSIONS Cognitive impairment progresses continuously in MS, associated with atrophy and lesion accumulation, suggesting that interventions targeting these processes could be beneficial at all disease stages. Widespread cognitive functions are more profoundly affected, associated with lesions and corpus callosal atrophy, supporting the idea of an underlying disconnection mechanism for cognitive decline in MS.
Collapse
Affiliation(s)
- Russell Ouellette
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Åsa Bergendal
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Medical Imaging and Technology, Stockholm, Sweden; Karolinska University Hospital, Department of Medical Psychology, Stockholm, Sweden
| | - Sara Shams
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Medical Imaging and Technology, Stockholm, Sweden; Karolinska University Hospital, Department of Radiology, Stockholm, Sweden
| | - Juha Martola
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Medical Imaging and Technology, Stockholm, Sweden; Karolinska University Hospital, Department of Radiology, Stockholm, Sweden
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Maria Kristoffersen Wiberg
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Medical Imaging and Technology, Stockholm, Sweden; Karolinska University Hospital, Department of Radiology, Stockholm, Sweden
| | - Sten Fredrikson
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden; Karolinska University Hospital, Department of Neurology, Stockholm, Sweden
| | - Tobias Granberg
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Medical Imaging and Technology, Stockholm, Sweden; Karolinska University Hospital, Department of Radiology, Stockholm, Sweden; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Grzegorski T, Losy J. Cognitive impairment in multiple sclerosis - a review of current knowledge and recent research. Rev Neurosci 2018; 28:845-860. [PMID: 28787275 DOI: 10.1515/revneuro-2017-0011] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/19/2017] [Indexed: 11/15/2022]
Abstract
Multiple sclerosis (MS) is a chronic, progressive disease of the central nervous system that is characterised by inflammatory damage to the myelin sheath. Though often neglected, cognitive impairment is a common feature of MS that affects 43-70% of patients. It has a sophisticated neuroanatomic and pathophysiologic background and disturbs such vital cognitive domains as speed of information processing, memory, attention, executive functions and visual perceptual functions. In recent years there has been growing interest in neuroimaging findings with regard to cognitive impairment in MS. The possible options of managing cognitive dysfunction in MS are pharmacologic interventions, cognitive rehabilitation and exercise training; however, not enough evidence has been presented in this field. The aim of our article is to provide current knowledge on cognitive impairment in MS based on the most recent scientific results and conclusions with regard to affected cognitive domains, neuropsychological assessment, underlying mechanisms of this disturbance, neuroimaging findings and therapeutic options.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Studies of large longitudinal cohorts of patients with multiple sclerosis (MS) have emphasized the prognostic value of conventional MRI markers, at least during early stages. Advanced imaging metrics derived from quantitative MRI and PET provide relevant information about microstructural damage within and outside visible lesions that may be more sensitive to predict long-term disability. Here, we summarize the most recent findings regarding the prognostic value of imaging markers throughout MS stages. RECENT FINDINGS In clinically isolated syndrome, the presence of at least one brain or spinal cord T2 lesion strongly increases the risk of conversion to clinically definite MS (hazard ratio ranging from 5 to 11). Similarly, the occurrence of new white matter lesions is strongly predictive of subsequent relapse rate and response to current disease modifying therapies. Beyond white matter lesions, volumetric changes in the grey matter and normal-appearing tissue damage are more sensitive prognostic markers for physical and cognitive disability, especially in progressive MS. SUMMARY Although white matter lesion number and volume still remains the imaging metric used in daily clinical practice, further development of advanced imaging predictors of long-term disability should allow a better stratification of patients in future clinical trials aimed at promoting repair or neuroprotection.
Collapse
|
41
|
Uher T, Vaneckova M, Krasensky J, Sobisek L, Tyblova M, Volna J, Seidl Z, Bergsland N, Dwyer MG, Zivadinov R, De Stefano N, Sormani MP, Havrdova EK, Horakova D. Pathological cut-offs of global and regional brain volume loss in multiple sclerosis. Mult Scler 2017; 25:541-553. [PMID: 29143562 DOI: 10.1177/1352458517742739] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Volumetric MRI surrogate markers of disease progression are lacking. OBJECTIVE To establish cut-off values of brain volume loss able to discriminate between healthy controls and MS patients. METHODS In total, 386 patients after first demyelinating event suggestive of MS (CIS), 964 relapsing-remitting MS (RRMS) patients, 63 secondary-progressive MS (SPMS) patients and 58 healthy controls were included in this longitudinal study. A total of 11,438 MRI scans performed on the same MRI scanner with the same protocol were analysed. Annualised percentage changes of whole brain, grey matter, thalamus and corpus callosum volumes were estimated. We investigated cut-offs able to discriminate between healthy controls and MS patients. RESULTS At a predefined specificity of 90%, the annualised percentage change cut-off of corpus callosum volume (-0.57%) was able to distinguish between healthy controls and patients with the highest sensitivity (51% in CIS, 48% in RRMS and 42% in SPMS patients). Lower sensitivities (22%-49%) were found for cut-offs of whole brain, grey matter and thalamic volume loss. Among CIS and RRMS patients, cut-offs were associated with greater accumulation of disability. CONCLUSION We identified cut-offs of annualised global and regional brain volume loss rates able to discriminate between healthy controls and MS patients.
Collapse
Affiliation(s)
- Tomas Uher
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Manuela Vaneckova
- Department of Radiodiagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jan Krasensky
- Department of Radiodiagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Lukas Sobisek
- Department of Statistics and Probability, University of Economics-Prague, Prague, Czech Republic
| | - Michaela Tyblova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Volna
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdenek Seidl
- Department of Radiodiagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA/IRCCS 'S. Maria Nascente', Don Carlo Gnocchi Foundation, Milan, Italy
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA/Translational Imaging Center, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
42
|
Kimura Y, Sato N, Ota M, Maikusa N, Maekawa T, Sone D, Enokizono M, Sugiyama A, Imabayashi E, Matsuda H, Okamoto T, Yamamura T, Sugimoto H. A structural MRI study of cholinergic pathways and cognition in multiple sclerosis. eNeurologicalSci 2017; 8:11-16. [PMID: 29260029 PMCID: PMC5730909 DOI: 10.1016/j.ensci.2017.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 11/17/2022] Open
Abstract
Background White matter hyperintensities (WMH) in the cholinergic pathways are associated with cognitive performance in Alzheimer's disease. This study aimed to evaluate the relationship between the volume reduction of cholinergic pathways and cognitive function in patients with multiple sclerosis (MS). Methods Thirty-two MS patients underwent a brain MRI and cognitive measurements including the Mini-Mental State Examination (MMSE) and the Japanese version of the Montreal Cognitive Assessment (MoCA-J). The extent of WMH within the cholinergic pathways was assessed using the Cholinergic Pathways Hyperintensities Scale (CHIPS). Computerized WMH volumes were also obtained. FreeSurfer was used to measure regional volumes including the cortical and subcortical volumes. The correlations among the CHIPS, the WMH volume, and the clinical data were assessed, in addition to the correlations between the cognitive scores and regional volumes measured by FreeSurfer. Results The CHIPS score and the WMH volume were strongly positively correlated with each other (r = 0.87, P < 0.001). The CHIPS score had significantly negative correlations with the MMSE (r = - 0.49, P = 0.003) and the MoCA-J (r = - 0.47, P = 0.005) results. The WMH volume had significantly negative correlations with the MMSE (r = - 0.54, P = 0.001) and the MoCA-J (r = - 0.57, P < 0.001) results. In the analysis by FreeSurfer, both the MMSE and MoCA-J scores had significant positive correlations only with the volume of the corpus callosum. Conclusions The CHIPS score tended to be less sensitive to the WMH volume in cognitive function evaluation, although the difference did not reach the level of statistical significance. Thus the CHIPS method may not be as effective in MS patients.
Collapse
Affiliation(s)
- Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Norihide Maikusa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Tomoko Maekawa
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Daichi Sone
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Mikako Enokizono
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Atsuhiko Sugiyama
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Etsuko Imabayashi
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Tomoko Okamoto
- Department of Neurology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hideharu Sugimoto
- Department of Radiology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
43
|
Chan D, Binks S, Nicholas JM, Frost C, Cardoso MJ, Ourselin S, Wilkie D, Nicholas R, Chataway J. Effect of high-dose simvastatin on cognitive, neuropsychiatric, and health-related quality-of-life measures in secondary progressive multiple sclerosis: secondary analyses from the MS-STAT randomised, placebo-controlled trial. Lancet Neurol 2017; 16:591-600. [PMID: 28600189 PMCID: PMC5507768 DOI: 10.1016/s1474-4422(17)30113-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/06/2017] [Accepted: 04/03/2017] [Indexed: 12/17/2022]
Abstract
Background In the 24-month MS-STAT phase 2 trial, we showed that high-dose simvastatin significantly reduced the annualised rate of whole brain atrophy in patients with secondary progressive multiple sclerosis (SPMS). We now describe the results of the MS-STAT cognitive substudy, in which we investigated the treatment effect on cognitive, neuropsychiatric, and health-related quality-of-life (HRQoL) outcome measures. Methods We did a secondary analysis of MS-STAT, a 24-month, double-blind, controlled trial of patients with SPMS done at three neuroscience centres in the UK between Jan 28, 2008, and Nov 4, 2011. Patients were randomly assigned (1:1) to either 80 mg simvastatin (n=70) or placebo (n=70). The cognitive assessments done were the National Adult Reading Test, Wechsler Abbreviated Scale of Intelligence, Graded Naming Test, Birt Memory and Information Processing Battery (BMIPB), Visual Object and Space Perception battery (cube analysis), Frontal Assessment Battery (FAB), and Paced Auditory Serial Addition Test. Neuropsychiatric status was assessed using the Hamilton Depression Rating Scale and the Neuropsychiatric Inventory Questionnaire. HRQoL was assessed using the self-reported 36-Item Short Form Survey (SF-36) version 2. Assessments were done at study entry, 12 months, and 24 months. Patients, treating physicians, and outcome assessors were masked to treatment allocation. Analyses were by intention to treat. MS-STAT is registered with ClinicalTrials.gov, number NCT00647348. Findings Baseline assessment revealed impairments in 60 (45%) of 133 patients on the test of frontal lobe function (FAB), and in between 13 (10%) and 43 (33%) of 130 patients in tests of non-verbal and verbal memory (BMIPB). Over the entire trial, we noted significant worsening on tests of verbal memory (T score decline of 5·7 points, 95% CI 3·6–7·8; p<0·0001) and non-verbal memory (decline of 6·8 points, 4·8–8·7; p<0·0001). At 24 months, the FAB score was 1·2 points higher in the simvastatin-treated group than in the placebo group (95% CI 0·2–2·3). The simvastatin group also had a 2·5 points better mean physical component score of the SF-36 (95% CI 0·3–4·8; p=0·028). A treatment effect was not noted for any other outcomes. Interpretation To our knowledge, this SPMS cohort is the largest studied to date with comprehensive longitudinal cognitive, neuropsychiatric, and HRQoL assessments. We found evidence of a positive effect of simvastatin on frontal lobe function and a physical quality-of-life measure. Although we found no effect of simvastatin on the other outcome measures, these potential effects warrant confirmation and underline the importance of fully assessing cognition and quality of life in progressive multiple sclerosis treatment trials. Funding The Moulton Foundation, the Berkeley Foundation, the Multiple Sclerosis Trials Collaboration, the Rosetrees Trust, a personal contribution from A W Pidgley CBE, and the National Institute for Health Research University College London Hospitals Biomedical Research Centre and University College London.
Collapse
Affiliation(s)
- Dennis Chan
- Brighton and Sussex Medical School, Brighton, UK; Department of Clinical Neurosciences, University of Cambridge, UK
| | - Sophie Binks
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | | | - Chris Frost
- London School of Hygiene and Tropical Medicine, London, UK
| | - M Jorge Cardoso
- Centre for Medical Image Computing, University College London, London, UK
| | - Sebastien Ourselin
- Centre for Medical Image Computing, University College London, London, UK
| | | | | | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, UK.
| |
Collapse
|
44
|
Papathanasiou A, Messinis L, Zampakis P, Papathanasopoulos P. Corpus callosum atrophy as a marker of clinically meaningful cognitive decline in secondary progressive multiple sclerosis. Impact on employment status. J Clin Neurosci 2017; 43:170-175. [PMID: 28601572 DOI: 10.1016/j.jocn.2017.05.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/22/2017] [Indexed: 11/16/2022]
Abstract
Cognitive impairment in Multiple Sclerosis (MS) is more frequent and pronounced in secondary progressive MS (SPMS). Cognitive decline is an important predictor of employment status in patients with MS. Magnetic Resonance Imaging (MRI) markers have been used to associate tissue damage with cognitive dysfunction. The aim of the study was to designate the MRI marker that predicts cognitive decline in SPMS and explore its effect on employment status. 30 SPMS patients and 30 healthy participants underwent neuropsychological assessment using the Trail Making Test (TMT) parts A and B, semantic and phonological verbal fluency task and a computerized cognitive screening battery (Central Nervous System Vital Signs). Employment status was obtained as a quality of life measure. Brain MRI was performed in all participants. We measured total lesion volume, third ventricle width, thalamic and corpus callosum atrophy. The frequency of cognitive decline for our SPMS patients was 80%. SPMS patients differed significantly from controls in all neuropsychological measures. Corpus callosum area was correlated with cognitive flexibility, processing speed, composite memory, executive functions, psychomotor speed, reaction time and phonological verbal fluency task. Processing speed and composite memory were the most sensitive markers for predicting employment status. Corpus callosum area was the most sensitive MRI marker for memory and processing speed. Corpus callosum atrophy predicts a clinically meaningful cognitive decline, affecting employment status in our SPMS patients.
Collapse
Affiliation(s)
- Athanasios Papathanasiou
- Department of Neurology, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK; Neuropsychology Section, Department of Neurology, University of Patras Medical School, Patras 265 04, Greece.
| | - Lambros Messinis
- Neuropsychology Section, Department of Neurology, University of Patras Medical School, Patras 265 04, Greece
| | - Petros Zampakis
- Department of Radiology, University of Patras Medical School, Patras 265 04, Greece
| | | |
Collapse
|
45
|
Cilingir V, Batur M, Bulut MD, Milanlioglu A, Yılgor A, Batur A, Yasar T, Tombul T. The association between retinal nerve fibre layer thickness and corpus callosum index in different clinical subtypes of multiple sclerosis. Neurol Sci 2017; 38:1223-1232. [PMID: 28396954 DOI: 10.1007/s10072-017-2947-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/01/2017] [Indexed: 01/13/2023]
Abstract
The objective of this paper is to evaluate the association between physical disability in multiple sclerosis (MS) patients, the thickness of the retinal nerve fibre layer (RNFL) and corpus callosum volumes, as expressed by the corpus callosum index (CCI). This study was based on a cohort of 212 MS patients and 52 healthy control subjects, who were age and gender matched. The MS patients included 144 women and 177 relapsing-remitting MS (RRMS) patients. Peripapillary and volumetric optical coherence tomography (OCT) scans of the macula were performed using spectral-domain OCT technology. All magnetic resonance imaging (MRI) scans were performed using 1.5-T systems. CCI and RNFL were lower in MS than healthy control subjects (0.341 versus 0.386, p < 0.01 and 92.1 versus 105.0, p < 0.01). In addition, CCI correlated with RNFL (r = 0.464, p < 0.01). This was also true for the subgroup of patients with no history of optic neuritis (ON). There is a correlation between the thickness of the RNFL and CCI values in MS patients with no history of ON, which suggests that OCT might be a suitable marker for neurodegeneration in MS clinical trials.
Collapse
Affiliation(s)
- Vedat Cilingir
- Faculty of Medicine Neurology Department, Yuzuncu Yil University, 65000, Kampus Van, Turkey.
| | - Muhammed Batur
- Faculty of Medicine Ophthalmology Department, Yuzuncu Yil University, Van, Turkey
| | - Mehmet Deniz Bulut
- Faculty of Medicine Radiology Department, Yuzuncu Yil University, Van, Turkey
| | - Aysel Milanlioglu
- Faculty of Medicine Neurology Department, Yuzuncu Yil University, 65000, Kampus Van, Turkey
| | - Abdullah Yılgor
- Faculty of Medicine Neurology Department, Yuzuncu Yil University, 65000, Kampus Van, Turkey
| | - Abdussamet Batur
- Faculty of Medicine Radiology Department, Yuzuncu Yil University, Van, Turkey
| | - Tekin Yasar
- Faculty of Medicine Ophthalmology Department, Yuzuncu Yil University, Van, Turkey
| | - Temel Tombul
- Faculty of Medicine Neurology Department, Yuzuncu Yil University, 65000, Kampus Van, Turkey
| |
Collapse
|
46
|
Vågberg M, Granåsen G, Svenningsson A. Brain Parenchymal Fraction in Healthy Adults-A Systematic Review of the Literature. PLoS One 2017; 12:e0170018. [PMID: 28095463 PMCID: PMC5240949 DOI: 10.1371/journal.pone.0170018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/26/2016] [Indexed: 01/18/2023] Open
Abstract
Brain atrophy is an important feature of many neurodegenerative disorders. It can be described in terms of change in the brain parenchymal fraction (BPF). In order to interpret the BPF in disease, knowledge on the BPF in healthy individuals is required. The aim of this study was to establish a normal range of values for the BPF of healthy individuals via a systematic review of the literature. The databases PubMed and Scopus were searched and 95 articles, including a total of 9269 individuals, were identified including the required data. We present values of BPF from healthy individuals stratified by age and post-processing method. The mean BPF correlated with mean age and there were significant differences in age-adjusted mean BPF between methods. This study contributes to increased knowledge about BPF in healthy individuals, which may assist in the interpretation of BPF in the setting of disease. We highlight the differences between post-processing methods and the need for a consensus gold standard.
Collapse
Affiliation(s)
- Mattias Vågberg
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Gabriel Granåsen
- Epidemiology and Global Health Unit, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Anders Svenningsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
47
|
Cognitive impairment and structural brain changes in patients with clinically isolated syndrome at high risk for multiple sclerosis. J Neurol 2016; 264:482-493. [DOI: 10.1007/s00415-016-8368-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/10/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
|
48
|
Gabilondo I, Rilo O, Ojeda N, Pena J, Gómez-Gastiasoro A, Mendibe Bilbao M, Rodríguez-Antigüedad A, Cabrera A, Diez I, Ibarretxe-Bilbao N. The influence of posterior visual pathway damage on visual information processing speed in multiple sclerosis. Mult Scler 2016; 23:1276-1288. [DOI: 10.1177/1352458516676642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: The injury of visual pathway and abnormalities of visual processing speed (VPS) are frequent in MS, but their association remains unexplored. Objective: To evaluate the impact of posterior visual pathway structural and functional integrity on VPS of MS patients. Methods: Cross-sectional study of 30 MS patients and 28 controls, evaluating the association of a VPS tests composite (Salthouse Perceptual Comparison test, Trail Making Test A and Symbol Digit Modalities Test) with 3T MRI visual cortex thickness, optic radiations (OR) diffusion tensor imaging indexes, and medial visual component (MVC) functional connectivity (FC) (MVC-MVC FC (iFC) and MVC-brain FC (eFC)) by linear regression, removing the effect of premorbid IQ, fatigue, and depression. Results: V2 atrophy, lower OR fractional anisotropy (FA) and MVC FC significantly influenced VPS in MS (at none or lesser extent in controls), even after removing the effect of Expanded Disability Status Scale and previous optic neuritis (V2 ( r2 = 0.210): β = +0.366, p = 0.046; OR FA ( r2 = 0.243): β = +0.378, p = 0.034; MVC iFC, for example, left cuneus ( r2 = 0.450): β = −0.613, p < 0.001; MVC eFC, for example, right precuneus-postcentral gyrus ( r2 = 0.368): β = −0.466, p = 0.002). Conclusion: Posterior visual pathway integrity, structural (V2 thickness and OR FA) and functional (MVC FC), may explain respectively up to 24% and 45% of VPS variability in MS.
Collapse
Affiliation(s)
- Iñigo Gabilondo
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, Universidad de Deusto, Bilbao, Spain/Neurodegenerative Diseases Group, BioCruces Health Research Institute, Barakaldo, Spain
| | - Oiane Rilo
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, Universidad de Deusto, Bilbao, Spain
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, Universidad de Deusto, Bilbao, Spain
| | - Javier Pena
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, Universidad de Deusto, Bilbao, Spain
| | - Ainara Gómez-Gastiasoro
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, Universidad de Deusto, Bilbao, Spain
| | | | | | - Alberto Cabrera
- Research and Innovation Department, Magnetic Resonance Imaging Unit, Osatek SA, Bilbao, Spain
| | - Ibai Diez
- Computational Neuroimaging Group, Quantitative Biomedicine Unit, BioCruces Health Research Institute, Barakaldo, Spain
| | - Naroa Ibarretxe-Bilbao
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, Universidad de Deusto, Bilbao, Spain
| |
Collapse
|
49
|
Granberg T, Hashim F, Andersen O, Sundal C, Karrenbauer VD. Hereditary diffuse leukoencephalopathy with spheroids - a volumetric and radiological comparison with multiple sclerosis patients and healthy controls. Eur J Neurol 2016; 23:817-22. [DOI: 10.1111/ene.12948] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/13/2015] [Indexed: 02/02/2023]
Affiliation(s)
- T. Granberg
- Division of Medical Imaging and Technology; Department of Clinical Science; Intervention and Technology; Karolinska Institutet; Stockholm Sweden
- Department of Radiology; Karolinska University Hospital; Stockholm Sweden
| | - F. Hashim
- Division of Medical Imaging and Technology; Department of Clinical Science; Intervention and Technology; Karolinska Institutet; Stockholm Sweden
- Department of Radiology; Karolinska University Hospital; Stockholm Sweden
| | - O. Andersen
- The Sahlgrenska Academy; Department of Neuroscience and Physiology; Section of Clinical Neuroscience and Rehabilitation; University of Gothenburg; Gothenburg Sweden
| | - C. Sundal
- The Sahlgrenska Academy; Department of Neuroscience and Physiology; Section of Clinical Neuroscience and Rehabilitation; University of Gothenburg; Gothenburg Sweden
- Department of Neurology; Haukeland University Hospital; Bergen Norway
| | - V. D. Karrenbauer
- Department of Clinical Neuroscience; Karolinska Institutet; Stockholm Sweden
- Department of Neurology; Karolinska University Hospital; Stockholm Sweden
| |
Collapse
|
50
|
Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques. Neuropsychol Rev 2015; 25:224-49. [PMID: 26280751 DOI: 10.1007/s11065-015-9290-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/16/2015] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.
Collapse
|