1
|
Shimizu F, Nakamori M. Blood-Brain Barrier Disruption in Neuroimmunological Disease. Int J Mol Sci 2024; 25:10625. [PMID: 39408955 PMCID: PMC11476930 DOI: 10.3390/ijms251910625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The blood-brain barrier (BBB) acts as a structural and functional barrier for brain homeostasis. This review highlights the pathological contribution of BBB dysfunction to neuroimmunological diseases, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), autoimmune encephalitis (AE), and paraneoplastic neurological syndrome (PNS). The transmigration of massive lymphocytes across the BBB caused by the activation of cell adhesion molecules is involved in the early phase of MS, and dysfunction of the cortical BBB is associated with the atrophy of gray matter in the late phase of MS. At the onset of NMOSD, increased permeability of the BBB causes the entry of circulating AQP4 autoantibodies into the central nervous system (CNS). Recent reports have shown the importance of glucose-regulated protein (GRP) autoantibodies as BBB-reactive autoantibodies in NMOSD, which induce antibody-mediated BBB dysfunction. BBB breakdown has also been observed in MOGAD, NPSLE, and AE with anti-NMDAR antibodies. Our recent report demonstrated the presence of GRP78 autoantibodies in patients with MOGAD and the molecular mechanism responsible for GRP78 autoantibody-mediated BBB impairment. Disruption of the BBB may explain the symptoms in the brain and cerebellum in the development of PNS, as it induces the entry of pathogenic autoantibodies or lymphocytes into the CNS through autoimmunity against tumors in the periphery. GRP78 autoantibodies were detected in paraneoplastic cerebellar degeneration and Lambert-Eaton myasthenic syndrome, and they were associated with cerebellar ataxia with anti-P/Q type voltage-gated calcium channel antibodies. This review reports that therapies affecting the BBB that are currently available for disease-modifying therapies for neuroimmunological diseases have the potential to prevent BBB damage.
Collapse
Affiliation(s)
- Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan;
| | | |
Collapse
|
2
|
Chang X, Yang ZH, Yan W, Liu ZT, Luo C, Yao DZ. A new model for dynamic mapping of effective connectivity in task fMRI. Brain Res Bull 2024; 212:110938. [PMID: 38641153 DOI: 10.1016/j.brainresbull.2024.110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/21/2024]
Abstract
Whole-brain dynamic functional connectivity is a growing area in neuroimaging research, encompassing data-driven methods for investigating how large-scale brain networks dynamically reorganize during resting states. However, this approach has been rarely applied to functional magnetic resonance imaging (fMRI) data acquired during task performance. In this study, we first combined the psychophysiological interactions (PPI) and sliding-window methods to analyze dynamic effective connectivity of fMRI data obtained from subjects performing the N-back task within the Human Connectome Project dataset. We then proposed a hypothetical model called Condition Activated Specific Trajectory (CAST) to represent a series of spatiotemporal synchronous changes in significantly activated connections across time windows, which we refer to as a trajectory. Our finding demonstrate that the CAST model outperforms other models in terms of intra-group consistency of individual spatial pattern of PPI connectivity, overall representational ability of temporal variability and hierarchy for individual task performance and cognitive traits. This dynamic view afforded by the CAST model reflects the intrinsic nature of coherent brain activities.
Collapse
Affiliation(s)
- Xin Chang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, People's Republic of China
| | - Zhi-Huan Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, People's Republic of China
| | - Wei Yan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, People's Republic of China
| | - Ze-Tao Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, People's Republic of China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, People's Republic of China; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| | - De-Zhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, People's Republic of China; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
3
|
Zierfuss B, Larochelle C, Prat A. Blood-brain barrier dysfunction in multiple sclerosis: causes, consequences, and potential effects of therapies. Lancet Neurol 2024; 23:95-109. [PMID: 38101906 DOI: 10.1016/s1474-4422(23)00377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 12/17/2023]
Abstract
Established by brain endothelial cells, the blood-brain barrier (BBB) regulates the trafficking of molecules, restricts immune cell entry into the CNS, and has an active role in neurovascular coupling (the regulation of cerebral blood flow to support neuronal activity). In the early stages of multiple sclerosis, around the time of symptom onset, inflammatory BBB damage is accompanied by pathogenic immune cell infiltration into the CNS. In the later stages of multiple sclerosis, dysregulation of neurovascular coupling is associated with grey matter atrophy. Genetic and environmental factors associated with multiple sclerosis, including dietary habits, the gut microbiome, and vitamin D concentrations, might contribute directly and indirectly to brain endothelial cell dysfunction. Damage to brain endothelial cells leads to an influx of deleterious molecules into the CNS, accelerating leakage across the BBB. Potential future therapeutic approaches might help to prevent BBB damage (eg, monoclonal antibodies targeting cell adhesion molecules and fibrinogen) and help to repair BBB dysfunction (eg, mesenchymal stromal cells) in people with multiple sclerosis.
Collapse
Affiliation(s)
- Bettina Zierfuss
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Catherine Larochelle
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
| |
Collapse
|
4
|
DuBose NG, DeJonge SR, Jeng B, Motl RW. Vascular dysfunction in multiple sclerosis: Scoping review of current evidence for informing future research directions. Mult Scler Relat Disord 2023; 78:104936. [PMID: 37619375 DOI: 10.1016/j.msard.2023.104936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND The research involving vascular comorbidity in people with multiple sclerosis (MS) could be advanced through investigations applying measurements of vascular function such as pulse wave velocity or flow mediated dilation as mechanistic endpoints in the study of physical comorbidity management in MS across the lifespan. We conducted a scoping review of research on vascular function parameters and outcomes in MS and developed a research agenda for future inquiry. METHODS We searched PubMed from inception through February 2023 for articles involving relevant central and peripheral vascular function data or correlates of vascular function (arterial stiffness, endothelial function, blood pressure parameters, etc.) in conjunction with relevant outcomes (walking function, cognition, etc.) in MS. Studies were limited to English-language and primary research articles. RESULTS Our search and subsequent screening identified 10 relevant articles. Four papers focused on arterial stiffness and reported pulse wave velocity and arterial compliance in MS compared with controls. Two papers focused on endothelial function and reported flow-mediated dilation in MS compared with controls. There was evidence that arterial stiffness and endothelial function were associated with cognition and disease progression in MS, respectively. One paper reported that physical activity was associated with arterial stiffness in MS. There was one protocol paper examining the effect of a home-based exercise program on markers of subclinical atherosclerosis; however, the results are unpublished, and there was no literature beyond this surrounding the impact of lifestyle behavior (e.g., diet) or exercise interventions on vascular function. CONCLUSION There is emerging evidence for vascular dysfunction in MS, and this is associated with cognition and disease progression; we know very little about approaches for managing vascular dysfunction in MS. To that end, we offer an agenda for research on measurements and outcomes of vascular function in relation to MS and disease attributes, along with proposed mechanisms and lifestyle changes that could aid in managing vascular dysfunction.
Collapse
Affiliation(s)
- Noah G DuBose
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, 1919W Taylor St, 650 AHSB (MC517), Chicago, IL 60612, USA.
| | - Sydney R DeJonge
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, 1919W Taylor St, 650 AHSB (MC517), Chicago, IL 60612, USA
| | - Brenda Jeng
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, 1919W Taylor St, 650 AHSB (MC517), Chicago, IL 60612, USA
| | - Robert W Motl
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, 1919W Taylor St, 650 AHSB (MC517), Chicago, IL 60612, USA
| |
Collapse
|
5
|
Zheng P, Pilutti LA, DuBose NG, Motl RW. Vascular function and cognition in persons with multiple sclerosis: Preliminary examination. Mult Scler Relat Disord 2023; 71:104578. [PMID: 36805173 DOI: 10.1016/j.msard.2023.104578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Cognitive dysfunction is one of the most common consequences of multiple sclerosis (MS). Recent studies have noted a high incidence of vascular comorbidity that might be associated with cognitive decline among persons with MS. However, there is a lack of evidence on vascular biomarkers (e.g., arterial stiffness indices) that are associated with cognition in MS. The current study characterized differences in vascular function between persons with MS and healthy controls, and examined the association between vascular and cognitive function in persons with MS compared with healthy controls. RESULTS The MS group had significantly worse cognitive performance and higher cfPWV than healthy controls. There were significant bivariate correlations between the Symbol Digit Modalities Test (SDMT) score with AIx75 (rs = -0.45) and cfPWV (rs = 0.30) in the MS sample, but not in healthy controls. Regression analyses further indicated a nonlinear association between cfPWV and the SDMT in the MS sample (p-values for β coefficients < 0.05; adjusted R2 = 0.10). No significant associations were observed among other cognitive and vascular outcomes. CONCLUSION Our findings suggest significant associations between arterial stiffness and cognitive processing speed in MS. This preliminary examination provides initial, cross-sectional support for future population-based research on cognitive and vascular function in persons with MS. Such results may be clinically important for developing interventions that focus on regulating vascular dysfunction as an early treatment for preventing cognitive impairment in the MS population.
Collapse
Affiliation(s)
- Peixuan Zheng
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, United States.
| | - Lara A Pilutti
- Interdisciplinary School of Health Science, University of Ottawa, Ottawa, Ontario, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Noah G DuBose
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, United States
| | - Robert W Motl
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Jakimovski D, Bergsland N, Dwyer MG, Choedun K, Marr K, Weinstock-Guttman B, Zivadinov R. Cerebral blood flow dependency on systemic arterial circulation in progressive multiple sclerosis. Eur Radiol 2022; 32:6468-6479. [PMID: 35359167 DOI: 10.1007/s00330-022-08731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/06/2022] [Accepted: 03/11/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To determine the relationship between systemic arterial blood flow (SABF) and cerebral perfusion measures in multiple sclerosis (MS) patients. METHODS Cerebral perfusion and SABF were assessed in 118 patients (75 clinically isolated syndrome (CIS)/relapsing-remitting MS and 43 progressive MS) through MRI examination with dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) and Doppler ultrasound, respectively. Measures of mean transit time (MTT) and time-to-peak (TTP), measured in seconds, of the normal-appearing whole brain (NAWB) and gray matter (GM) were calculated. Blood flow through the bilateral common carotid and vertebral arteries (in mL/min) represents the SABF. Whole brain volume (WBV) and body mass index (BMI) were used as additional covariates. RESULTS Higher systolic blood pressure was associated with lower SABF (-0.256, p = 0.006). In the total MS sample, higher SABF was associated with shorter MTT and TTP of the NAWB (r = -0.256, p = 0.007 and r = -0.307, p = 0.001) and GM (r = -0.239, p = 0.012 and r = -0.3, p = 0.001). The SABF and TTP associations were driven by the PMS patients (r = -0.451, p = 0.004 and r = -0.451, p = 0.011). Only in PMS, SABF remained a significant predictor of NAWB (standardized β = -0.394, p = 0.022) and GM TTP (standardized β = -0.351, p = 0.037). MTT and TTP were significantly lower in patients within lower SABF quartiles when compared to the higher quartiles (age-, sex-, BMI-, and WBV-adjusted ANCOVA p < 0.025). CONCLUSIONS The direct relationship between systemic and cerebral blood flow seen in PMS patients may suggest failure in cerebrovascular reactivity mechanisms and insufficient perfusion control. Cerebral blood flow in PMS may be increasingly dependent on the SABF. KEY POINTS • In progressive multiple sclerosis (MS) patients, the systemic arterial blood flow (SABF) is associated with perfusion-based measure of time-to-peak (TTP) of the normal-appearing whole brain (r = -0.451, p = 0.004) and gray matter (r = -0.451, p = 0.004). • Cerebral blood flow in progressive MS is directly dependent on systemic arterial blood flow and may be influenced by blood pressure changes. • Neurovascular unit impairment may play an important role in MS pathophysiology and contribute towards greater clinical disability.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA.
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
- IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
| | - Kunsang Choedun
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
| | - Karen Marr
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
7
|
Vestergaard MB, Frederiksen JL, Larsson HBW, Cramer SP. Cerebrovascular Reactivity and Neurovascular Coupling in Multiple Sclerosis-A Systematic Review. Front Neurol 2022; 13:912828. [PMID: 35720104 PMCID: PMC9198441 DOI: 10.3389/fneur.2022.912828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
The inflammatory processes observed in the central nervous system in multiple sclerosis (MS) could damage the endothelium of the cerebral vessels and lead to a dysfunctional regulation of vessel tonus and recruitment, potentially impairing cerebrovascular reactivity (CVR) and neurovascular coupling (NVC). Impaired CVR or NVC correlates with declining brain health and potentially plays a causal role in the development of neurodegenerative disease. Therefore, we examined studies on CVR or NVC in MS patients to evaluate the evidence for impaired cerebrovascular function as a contributing disease mechanism in MS. Twenty-three studies were included (12 examined CVR and 11 examined NVC). Six studies found no difference in CVR response between MS patients and healthy controls. Five studies observed reduced CVR in patients. This discrepancy can be because CVR is mainly affected after a long disease duration and therefore is not observed in all patients. All studies used CO2 as a vasodilating stimulus. The studies on NVC demonstrated diverse results; hence a conclusion that describes all the published observations is difficult to find. Future studies using quantitative techniques and larger study samples are needed to elucidate the discrepancies in the reported results.
Collapse
Affiliation(s)
- Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Jette L Frederiksen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.,Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Stig P Cramer
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
8
|
Testud B, Delacour C, El Ahmadi AA, Brun G, Girard N, Duhamel G, Heesen C, Häußler V, Thaler C, Has Silemek AC, Stellmann JP. Brain grey matter perfusion in primary progressive multiple sclerosis: Mild decrease over years and regional associations with cognition and hand function. Eur J Neurol 2022; 29:1741-1752. [PMID: 35167161 DOI: 10.1111/ene.15289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Extend and dynamic of neurodegeneration in progressive Multiple Sclerosis (MS) might be reflected by global and regional brain perfusion, an outcome at the intercept between structure and function. Here, we provide a first insight in the evolution of brain perfusion and its association with disability in primary progressive MS (PPMS) over several years. METHODS 77 persons with PPMS were followed over up to 5 years. Visits included a 3T MRI with pulsed Arterial spin labelling (ASL) perfusion, the Timed-25-Foot-Walk, 9-Hole-Peg-Test (NHPT), Symbol-Digit-Modalities-Test (SDMT) and Expanded Disability Status Scale (EDSS). We extracted regional cerebral blood flow surrogates and compared them to 11 controls. Analyses focused in cortical and deep gray matter, the change over time and associations with disability on regional and global level. RESULTS Baseline brain perfusion of patients and controls was comparable for the cortex (p=0.716) and deep grey matter (p=0.095). EDSS disability increased mildly (p=0.023) while brain perfusion decreased during follow up (p<0.001) and with disease duration (p=0.009). Lower global perfusion correlated with higher disability as indicated by EDSS, NHPT and Timed-25-Foot-Walk (p<0.001). The motor task NHPT showed associations with twenty gray matter regions. In contrast, better SDMT performance correlated with lower perfusion (p<0.001) in seven predominantly frontal regions indicating a functional maladaptation. CONCLUSION Decreasing perfusion indicates a putative association with MS disease mechanisms such as neurodegeneration, reduced metabolism, and loss of resilience. A low alteration rate limits its use in clinical practice, but regional association patterns might provide a snapshot of adaptive and maladaptive functional reorganization.
Collapse
Affiliation(s)
- Benoit Testud
- APHM La Timone, CEMEREM, Marseille, France.,Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France.,APHM La Timone, Department of Neuroradiology, Marseille, France
| | - Clara Delacour
- APHM La Timone, Department of Neuroradiology, Marseille, France
| | | | - Gilles Brun
- APHM La Timone, Department of Neuroradiology, Marseille, France
| | - Nadine Girard
- Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France.,APHM La Timone, Department of Neuroradiology, Marseille, France
| | - Guillaume Duhamel
- APHM La Timone, CEMEREM, Marseille, France.,Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Christoph Heesen
- Institute of Neuroimmunology and MS (INIMS), University Medical Centre Hamburg-Eppendorf, Germany.,Department of Neurology, University Medical Centre Hamburg-Eppendorf, Germany
| | - Vivien Häußler
- Institute of Neuroimmunology and MS (INIMS), University Medical Centre Hamburg-Eppendorf, Germany.,Department of Neurology, University Medical Centre Hamburg-Eppendorf, Germany
| | - Christian Thaler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arzu Ceylan Has Silemek
- Institute of Neuroimmunology and MS (INIMS), University Medical Centre Hamburg-Eppendorf, Germany
| | - Jan-Patrick Stellmann
- APHM La Timone, CEMEREM, Marseille, France.,Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France.,Institute of Neuroimmunology and MS (INIMS), University Medical Centre Hamburg-Eppendorf, Germany.,Department of Neurology, University Medical Centre Hamburg-Eppendorf, Germany
| |
Collapse
|
9
|
Hashem M, Shafqat Q, Wu Y, Rho JM, Dunn JF. Abnormal Oxidative Metabolism in the Cuprizone Mouse Model of Demyelination: an in vivo NIRS-MRI Study. Neuroimage 2022; 250:118935. [PMID: 35091079 DOI: 10.1016/j.neuroimage.2022.118935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Disruptions in oxidative metabolism may occur in multiple sclerosis and other demyelinating neurological diseases. The impact of demyelination on metabolic rate is also not understood. It is possible that mitochondrial damage may be associated with many such neurological disorders. To study oxidative metabolism with one model of demyelination, we implemented a novel multimodal imaging technique combining Near-Infrared Spectroscopy (NIRS) and MRI to cuprizone mouse model. The cuprizone model is used to study demyelination and may be associated with inhibition of mitochondrial function. Cuprizone mice showed reduced oxygen extraction fraction (-39.1%, p≤0.001), increased tissue oxygenation (6.4%, p≤0.001), and reduced cerebral metabolic rate of oxygen in cortical gray matter (-62.1%, p≤0.001). These changes resolved after the cessation of cuprizone exposure and partial remyelination. A decrease in hemoglobin concentration (-34.4%, p≤0.001), but no change in cerebral blood flow were also observed during demyelination. The oxidized state of the mitochondrial enzyme, Cytochrome C Oxidase (CCO) increased (46.3%, p≤0.001) while the reduced state decreased (-34.4%, p≤0.05) significantly in cuprizone mice. The total amount of CCO did not change significantly during cuprizone exposure. Total CCO did decline after recovery both in control (-23.1%, p≤0.01) and cuprizone (-28.8%, p≤0.001) groups which may relate to age. A reduction in the magnetization transfer ratio, indicating demyelination, was found in the cuprizone group in the cerebral cortex (-3.2%, p≤0.01) and corpus callosum (-5.5%, p≤0.001). In summary, we were able to detect evidence of altered CCO metabolism during cuprizone exposure, consistent with a mitochondrial defect. We observed increased oxygenation and reduced metabolic rate associated with reduced myelination in the gray and white matter. The novel multimodal imaging technique applied here shows promise for noninvasively assessing parameters associated with oxidative metabolism in both mouse models of neurological disease and for translation to study oxidative metabolism in the human brain.
Collapse
Affiliation(s)
- Mada Hashem
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada, T2N 4N1; Hotchkiss Brain Institute, University of Calgary, Alberta, Canada, T2N 4N1; Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada, T2N 4N1
| | - Qandeel Shafqat
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada, T2N 4N1; Hotchkiss Brain Institute, University of Calgary, Alberta, Canada, T2N 4N1; Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada, T2N 4N1
| | - Ying Wu
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada, T2N 4N1; Hotchkiss Brain Institute, University of Calgary, Alberta, Canada, T2N 4N1; Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada, T2N 4N1
| | - Jong M Rho
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada, T2N 4N1
| | - Jeff F Dunn
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada, T2N 4N1; Hotchkiss Brain Institute, University of Calgary, Alberta, Canada, T2N 4N1; Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada, T2N 4N1.
| |
Collapse
|
10
|
Lefferts WK, Rosenberg AJ, Schroeder EC, Grigoriadis G, Sandroff BM, Motl RW, Baynard T. Assessment of Cerebrovascular Dynamics and Cognitive Function with Acute Aerobic Exercise in Persons with Multiple Sclerosis. Int J MS Care 2021; 23:162-169. [PMID: 34483755 DOI: 10.7224/1537-2073.2020-003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Cognitive dysfunction in multiple sclerosis (MS) may partially stem from inadequate cerebral blood flow. Cerebral blood flow and cognitive function improve with aerobic exercise in healthy adults. The effect of aerobic exercise on cerebrovascular hemodynamics and cognitive performance in persons with MS is unclear. The acute effect of aerobic exercise versus quiet rest on cerebrovascular hemodynamics and cognitive performance in relapsing-remitting MS was examined. Methods Sixteen adults with relapsing-remitting MS underwent cerebrovascular hemodynamics and cognitive performance testing before, 2 minutes after, and 30 minutes after aerobic exercise (20-minute treadmill walking, 60% peak oxygen consumption) and a time-matched seated control. Brachial blood pressure was obtained via an oscillometric cuff. Right middle cerebral artery (MCA) blood velocity was measured via transcranial Doppler and used to calculate mean velocity, pulsatility index (PI), and conductance. Carotid artery stiffness was measured via ultrasonography and tonometry. Cognitive performance (accuracy, reaction time) was assessed using a modified flanker task. Results Exercise elicited significant increases in mean pressure and carotid artery stiffness and decreases in MCA conductance at 2 minutes after exercise, which subsided by 30 minutes (P < .05). Exercise did not significantly alter MCA PI. Flanker reaction time decreased during posttesting in both conditions (P < .05). There were no condition × time interactions for cognitive performance. Conclusions Persons with MS seem resilient to exercise-induced acute changes in MCA PI despite transient carotid stiffening, potentially via reductions in MCA conductance. These data suggest that changes in cognitive performance after acute aerobic exercise are not directly related to transient cerebrovascular responses in persons with MS.
Collapse
|
11
|
Di X, Zhang Z, Biswal BB. Understanding psychophysiological interaction and its relations to beta series correlation. Brain Imaging Behav 2021; 15:958-973. [PMID: 32710336 PMCID: PMC10666061 DOI: 10.1007/s11682-020-00304-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Psychophysiological interaction (PPI) was proposed 20 years ago for study of task modulated connectivity on functional MRI (fMRI) data. A few modifications have since been made, but there remain misunderstandings on the method, as well as on its relations to a similar method named beta series correlation (BSC). Here, we explain what PPI measures and its relations to BSC. We first clarify that the interpretation of a regressor in a general linear model depends on not only itself but also on how other effects are modeled. In terms of PPI, it always reflects differences in connectivity between conditions, when the physiological variable is included as a covariate. Secondly, when there are multiple conditions, we explain how PPI models calculated from direct contrast between conditions could generate identical results as contrasting separate PPIs of each condition (a.k.a. "generalized" PPI). Thirdly, we explicit the deconvolution process that is used for PPI calculation, and how is it related to the trial-by-trial modeling for BSC, and illustrate the relations between PPI and those based upon BSC. In particular, when context sensitive changes in effective connectivity are present, they manifest as changes in correlations of observed trial-by-trial activations or functional connectivity. Therefore, BSC and PPI can detect similar connectivity differences. Lastly, we report empirical analyses using PPI and BSC on fMRI data of an event-related stop signal task to illustrate our points.
Collapse
Affiliation(s)
- Xin Di
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Bharat B Biswal
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA.
| |
Collapse
|
12
|
Sleight E, Stringer MS, Marshall I, Wardlaw JM, Thrippleton MJ. Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review. Front Physiol 2021; 12:643468. [PMID: 33716793 PMCID: PMC7947694 DOI: 10.3389/fphys.2021.643468] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022] Open
Abstract
Cerebrovascular reactivity (CVR) magnetic resonance imaging (MRI) probes cerebral haemodynamic changes in response to a vasodilatory stimulus. CVR closely relates to the health of the vasculature and is therefore a key parameter for studying cerebrovascular diseases such as stroke, small vessel disease and dementias. MRI allows in vivo measurement of CVR but several different methods have been presented in the literature, differing in pulse sequence, hardware requirements, stimulus and image processing technique. We systematically reviewed publications measuring CVR using MRI up to June 2020, identifying 235 relevant papers. We summarised the acquisition methods, experimental parameters, hardware and CVR quantification approaches used, clinical populations investigated, and corresponding summary CVR measures. CVR was investigated in many pathologies such as steno-occlusive diseases, dementia and small vessel disease and is generally lower in patients than in healthy controls. Blood oxygen level dependent (BOLD) acquisitions with fixed inspired CO2 gas or end-tidal CO2 forcing stimulus are the most commonly used methods. General linear modelling of the MRI signal with end-tidal CO2 as the regressor is the most frequently used method to compute CVR. Our survey of CVR measurement approaches and applications will help researchers to identify good practice and provide objective information to inform the development of future consensus recommendations.
Collapse
Affiliation(s)
- Emilie Sleight
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael S. Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom,*Correspondence: Michael S. Stringer
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Sivakolundu DK, West KL, Zuppichini MD, Wilson A, Moog TM, Blinn AP, Newton BD, Wang Y, Stanley T, Guo X, Rypma B, Okuda DT. BOLD signal within and around white matter lesions distinguishes multiple sclerosis and non-specific white matter disease: a three-dimensional approach. J Neurol 2020; 267:2888-2896. [PMID: 32468116 DOI: 10.1007/s00415-020-09923-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) diagnostic criteria are based upon clinical presentation and presence of white matter hyperintensities on two-dimensional magnetic resonance imaging (MRI) views. Such criteria, however, are prone to false-positive interpretations due to the presence of similar MRI findings in non-specific white matter disease (NSWMD) states such as migraine and microvascular disease. The coexistence of age-related changes has also been recognized in MS patients, and this comorbidity further poses a diagnostic challenge. In this study, we investigated the physiologic profiles within and around MS and NSWMD lesions and their ability to distinguish the two disease states. MS and NSWMD lesions were identified using three-dimensional (3D) T2-FLAIR images and segmented using geodesic active contouring. A dual-echo functional MRI sequence permitted near-simultaneous measurement of blood-oxygen-level-dependent signal (BOLD) and cerebral blood flow (CBF). BOLD and CBF were calculated within lesions and in 3D concentric layers surrounding each lesion. BOLD slope, an indicator of lesion metabolic capacity, was calculated as the change in BOLD from a lesion through its surrounding perimeters. We observed sequential BOLD signal reductions from the lesion towards the perimeters for MS, while no such decreases were observed for NSWMD lesions. BOLD slope was significantly lower in MS compared to NSWM lesions, suggesting decreased metabolic activity in MS lesions. Furthermore, BOLD signal within and around lesions significantly distinguished MS and NSWMD lesions. These results suggest that this technique shows promise for clinical utility in distinguishing NSWMD or MS disease states and identifying NSWMD lesions occurring in MS patients.
Collapse
Affiliation(s)
- Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.,Department of Biological Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Kathryn L West
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Mark D Zuppichini
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Andrew Wilson
- Department of Computer Science, University of Texas at Dallas, Dallas, TX, USA
| | - Tatum M Moog
- Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, Department of Neurology & Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Aiden P Blinn
- Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, Department of Neurology & Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Braeden D Newton
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yeqi Wang
- Department of Computer Science, University of Texas at Dallas, Dallas, TX, USA
| | - Thomas Stanley
- Department of Computer Science, University of Texas at Dallas, Dallas, TX, USA
| | - Xiaohu Guo
- Department of Computer Science, University of Texas at Dallas, Dallas, TX, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.,Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Darin T Okuda
- Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, Department of Neurology & Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
West K, Sivakolundu D, Maruthy G, Zuppichini M, Liu P, Thomas B, Spence J, Lu H, Okuda D, Rypma B. Baseline cerebral metabolism predicts fatigue and cognition in Multiple Sclerosis patients. NEUROIMAGE-CLINICAL 2020; 27:102281. [PMID: 32544855 PMCID: PMC7298673 DOI: 10.1016/j.nicl.2020.102281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/03/2020] [Accepted: 05/02/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Cerebral metabolic rate of oxygen (CMRO2), a measure of global oxygen metabolism, reflects resting cellular activity. The mechanisms underlying fatigue and cognitive dysfunction in multiple sclerosis (MS) remain unknown. If fatigue indeed reflects ongoing autoimmune activity and cortical reorganization, and cognitive decline is the result of gray matter atrophy and white matter degeneration, we postulate that changes in CMRO2 should reflect disease activity and predict these symptoms. OBJECTIVE We sought to utilize T2-Relaxation-Under-Spin-Tagging (TRUST) and phase-contrast (PC) MRI to measure global CMRO2 to understand its relationships to white matter microstructure, fatigue and cognitive dysfunction. METHODS We measured venous oxygenation (TRUST) and cerebral blood flow (PC-MRI) in superior sagittal sinus to calculate global CMRO2 and diffusion tensor imaging (DTI) to evaluate white matter microstructure in healthy controls (HC) and MS patients. Participants underwent neuropsychological examinations including Modified Fatigue Impact Scale (MFIS) and Symbol-Digit-Modalities Test (SDMT). RESULTS We observed lower CMRO2 in MS patients compared to HC. After controlling for demographic and disease characteristics (i.e., age, education, disability, lesion volume), CMRO2 predicted increased fatigue (MFIS) and reduced cognitive performance (SDMT) in MS patients. Finally, MS patients with higher CMRO2 have reduced FA in normal-appearing white-matter. CONCLUSION Altogether, these results suggest that increased CMRO2 reflects ongoing demyelination and autoimmune activity which plays an important role in both fatigue and cognitive dysfunction.
Collapse
Affiliation(s)
- Kl West
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA.
| | - Dk Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Gb Maruthy
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Md Zuppichini
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - P Liu
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Bp Thomas
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Js Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - H Lu
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Dt Okuda
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - B Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
15
|
Sivakolundu DK, West KL, Zuppichini M, Turner MP, Abdelkarim D, Zhao Y, Spence JS, Lu H, Okuda DT, Rypma B. The neurovascular basis of processing speed differences in humans: A model-systems approach using multiple sclerosis. Neuroimage 2020; 215:116812. [PMID: 32276075 DOI: 10.1016/j.neuroimage.2020.116812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 12/29/2022] Open
Abstract
Behavioral studies investigating fundamental cognitive abilities provide evidence that processing speed accounts for large proportions of performance variability between individuals. Processing speed decline is a hallmark feature of the cognitive disruption observed in healthy aging and in demyelinating diseases such as multiple sclerosis (MS), neuromyelitis optica, and Wilson's disease. Despite the wealth of evidence suggesting a central role for processing speed in cognitive decline, the neural mechanisms of this fundamental ability remain unknown. Intact neurovascular coupling, acute localized blood flow increases following neural activity, is essential for optimal neural function. We hypothesized that efficient coupling forms the neural basis of processing speed. Because MS features neural-glial-vascular system disruption, we used it as a model to test this hypothesis. To assess the integrity of the coupling system, we measured blood-oxygen-level-dependent (BOLD) signal in healthy controls (HCs) and MS patients using a 3T MRI scanner while they viewed radial checkerboards that flickered periodically at 8 Hz. To assess processing speed and cognitive function, we administered a battery of neuropsychological tests. While MS patients exhibited reduced ΔBOLD with reductions in processing speed, no such relationships were observed in HCs. To further investigate the mechanisms that underlie ΔBOLD-processing speed relationships, we assessed the physiologic components that constitute ΔBOLD signal (i.e., cerebral blood flow, ΔCBF; cerebral metabolic rate of oxygen, ΔCMRO2; neurovascular coupling ratio) in speed-preserved and -impaired MS patients. While ΔCBF and ΔCMRO2 showed no group-differences, the neurovascular coupling ratio was significantly reduced in speed-impaired MS patients compared to speed-preserved MS patients. Together, these results suggest that neurovascular uncoupling might underlie cognitive slowing in MS and might be the central pathogenic mechanism governing processing speed decline.
Collapse
Affiliation(s)
- Dinesh K Sivakolundu
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA; Department of Biological Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Kathryn L West
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Mark Zuppichini
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Monroe P Turner
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Dema Abdelkarim
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Yuguang Zhao
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Jeffrey S Spence
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Darin T Okuda
- Clinical Center for Multiple Sclerosis, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, Department of Neurology & Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bart Rypma
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
16
|
Abdelkarim D, Zhao Y, Turner MP, Sivakolundu DK, Lu H, Rypma B. A neural-vascular complex of age-related changes in the human brain: Anatomy, physiology, and implications for neurocognitive aging. Neurosci Biobehav Rev 2019; 107:927-944. [DOI: 10.1016/j.neubiorev.2019.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/02/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
|