1
|
Pauli J, Reisenauer T, Winski G, Sachs N, Chernogubova E, Freytag H, Otto C, Reeps C, Eckstein HH, Scholz CJ, Maegdefessel L, Busch A. Apolipoprotein E (ApoE) Rescues the Contractile Smooth Muscle Cell Phenotype in Popliteal Artery Aneurysm Disease. Biomolecules 2023; 13:1074. [PMID: 37509110 PMCID: PMC10377618 DOI: 10.3390/biom13071074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Popliteal artery aneurysm (PAA) is the most frequent peripheral aneurysm, primarily seen in male smokers with a prevalence below 1%. This exploratory study aims to shed light on cellular mechanisms involved in PAA progression. Sixteen human PAA and eight non-aneurysmatic popliteal artery samples, partially from the same patients, were analyzed by immunohistochemistry, fluorescence imaging, Affymetrix mRNA expression profiling, qPCR and OLink proteomics, and compared to atherosclerotic (n = 6) and abdominal aortic aneurysm (AAA) tissue (n = 19). Additionally, primary cell culture of PAA-derived vascular smooth muscle cells (VSMC) was established for modulation and growth analysis. Compared to non-aneurysmatic popliteal arteries, VSMCs lose the contractile phenotype and the cell proliferation rate increases significantly in PAA. Array analysis identified APOE higher expressed in PAA samples, co-localizing with VSMCs. APOE stimulation of primary human PAA VSMCs significantly reduced cell proliferation. Accordingly, contractile VSMC markers were significantly upregulated. A single case of osseous mechanically induced PAA with a non-diseased VSMC profile emphasizes these findings. Carefully concluded, PAA pathogenesis shows similar features to AAA, yet the mechanisms involved might differ. APOE is specifically higher expressed in PAA tissue and could be involved in VSMC phenotype rescue.
Collapse
Affiliation(s)
- Jessica Pauli
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 10785 Berlin, Germany
| | - Tessa Reisenauer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Greg Winski
- Molecular Vascular Medicine Group, Center for Molecular Medicine, Karolinska Institute, 17177 Stockholm, Sweden
- Perioperative Medicine and Intensive Care, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Nadja Sachs
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 10785 Berlin, Germany
| | - Ekaterina Chernogubova
- Molecular Vascular Medicine Group, Center for Molecular Medicine, Karolinska Institute, 17177 Stockholm, Sweden
| | - Hannah Freytag
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Christoph Otto
- Department of General, Visceral, Transplantation, Vascular & Pediatric Surgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Christian Reeps
- Division of Vascular and Endovascular Surgery, Department for Visceral, Thoracic and Vascular Surgery, Medical Faculty Carl Gustav Carus and University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 10785 Berlin, Germany
| | | | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 10785 Berlin, Germany
- Molecular Vascular Medicine Group, Center for Molecular Medicine, Karolinska Institute, 17177 Stockholm, Sweden
| | - Albert Busch
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- Division of Vascular and Endovascular Surgery, Department for Visceral, Thoracic and Vascular Surgery, Medical Faculty Carl Gustav Carus and University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
2
|
Jadidi M, Razian SA, Anttila E, Doan T, Adamson J, Pipinos M, Kamenskiy A. Comparison of morphometric, structural, mechanical, and physiologic characteristics of human superficial femoral and popliteal arteries. Acta Biomater 2021; 121:431-443. [PMID: 33227490 PMCID: PMC7855696 DOI: 10.1016/j.actbio.2020.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 01/03/2023]
Abstract
Peripheral arterial disease differentially affects the superficial femoral (SFA) and the popliteal (PA) arteries, but their morphometric, structural, mechanical, and physiologic differences are poorly understood. SFAs and PAs from 125 human subjects (age 13-92, average 52±17 years) were compared in terms of radii, wall thickness, and opening angles. Structure and vascular disease were quantified using histology, mechanical properties were determined with planar biaxial extension, and constitutive modeling was used to calculate the physiologic stress-stretch state, elastic energy, and the circumferential physiologic stiffness. SFAs had larger radii than PAs, and both segments widened with age. Young SFAs were 5% thicker, but in old subjects the PAs were thicker. Circumferential (SFA: 96→193°, PA: 105→139°) and longitudinal (SFA: 139→306°, PA: 133→320°) opening angles increased with age in both segments. PAs were more diseased than SFAs and had 11% thicker intima. With age, intimal thickness increased 8.5-fold, but medial thickness remained unchanged (620μm) in both arteries. SFAs had 30% more elastin than the PAs, and its density decreased ~50% with age. SFAs were more compliant than PAs circumferentially, but there was no difference longitudinally. Physiologic circumferential stress and stiffness were 21% and 11% higher in the SFA than in the PA across all ages. The stored elastic energy decreased with age (SFA: 1.4→0.4kPa, PA: 2.5→0.3kPa). While the SFA and PA demonstrate appreciable differences, most of them are due to vascular disease. When pathology is the same, so are the mechanical properties, but not the physiologic characteristics that remain distinct due to geometrical differences.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sayed Ahmadreza Razian
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Eric Anttila
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tyler Doan
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Josiah Adamson
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Margarita Pipinos
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
3
|
Jadidi M, Razian SA, Habibnezhad M, Anttila E, Kamenskiy A. Mechanical, structural, and physiologic differences in human elastic and muscular arteries of different ages: Comparison of the descending thoracic aorta to the superficial femoral artery. Acta Biomater 2021; 119:268-283. [PMID: 33127484 PMCID: PMC7738395 DOI: 10.1016/j.actbio.2020.10.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/28/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022]
Abstract
Elastic and muscular arteries differ in structure, function, and mechanical properties, and may adapt differently to aging. We compared the descending thoracic aortas (TA) and the superficial femoral arteries (SFA) of 27 tissue donors (average 41±18 years, range 13-73 years) using planar biaxial testing, constitutive modeling, and bidirectional histology. Both TAs and SFAs increased in size with age, with the outer radius increasing more than the inner radius, but the TAs thickened 6-fold and widened 3-fold faster than the SFAs. The circumferential opening angle did not change in the TA, but increased 2.4-fold in the SFA. Young TAs were relatively isotropic, but the anisotropy increased with age due to longitudinal stiffening. SFAs were 51% more compliant longitudinally irrespective of age. Older TAs and SFAs were stiffer, but the SFA stiffened 5.6-fold faster circumferentially than the TA. Physiologic stresses decreased with age in both arteries, with greater changes occurring longitudinally. TAs had larger circumferential, but smaller longitudinal stresses than the SFAs, larger cardiac cycle stretch, 36% lower circumferential stiffness, and 8-fold more elastic energy available for pulsation. TAs contained elastin sheets separated by smooth muscle cells (SMCs), collagen, and glycosaminoglycans, while the SFAs had SMCs, collagen, and longitudinal elastic fibers. With age, densities of elastin and SMCs decreased, collagen remained constant due to medial thickening, and the glycosaminoglycans increased. Elastic and muscular arteries demonstrate different morphological, mechanical, physiologic, and structural characteristics and adapt differently to aging. While the aortas remodel to preserve the Windkessel function, the SFAs maintain higher longitudinal compliance.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Mahmoud Habibnezhad
- Department of Computer Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Eric Anttila
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|