1
|
Hammill AM, Boscolo E. Capillary malformations. J Clin Invest 2024; 134:e172842. [PMID: 38618955 PMCID: PMC11014659 DOI: 10.1172/jci172842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Capillary malformation (CM), or port wine birthmark, is a cutaneous congenital vascular anomaly that occurs in 0.1%-2% of newborns. Patients with a CM localized on the forehead have an increased risk of developing a neurocutaneous disorder called encephalotrigeminal angiomatosis or Sturge-Weber syndrome (SWS), with complications including seizure, developmental delay, glaucoma, and vision loss. In 2013, a groundbreaking study revealed causative activating somatic mutations in the gene (GNAQ) encoding guanine nucleotide-binding protein Q subunit α (Gαq) in CM and SWS patient tissues. In this Review, we discuss the disease phenotype, the causative GNAQ mutations, and their cellular origin. We also present the endothelial Gαq-related signaling pathways, the current animal models to study CM and its complications, and future options for therapeutic treatment. Further work remains to fully elucidate the cellular and molecular mechanisms underlying the formation and maintenance of the abnormal vessels.
Collapse
Affiliation(s)
- Adrienne M. Hammill
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Elisa Boscolo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Abstract
Sturge-Weber syndrome (SWS) is a rare, noninherited neurovascular disorder characterized by abnormal vasculature in the brain, skin, and eye. Patients with SWS characteristically have facial capillary malformation, also known as port-wine birthmark, a leptomeningeal vascular malformation seen on contrast-enhanced magnetic resonance imaging images, abnormal blood vessels in the eye, and glaucoma. Patients with SWS have impaired perfusion to the brain and are at high risk of venous stroke and stroke-like episodes, seizures, and both motor and cognitive difficulties. While the activating R183Q GNAQ somatic mutation is the most common somatic mutation underlying SWS, recent research also implicates that GNA11 and GNB2 somatic mutations are related to SWS. Recent retrospective studies suggest the use of low-dose aspirin and vitamin D in treatment for SWS and prospective drug trials have supported the usefulness of cannabidiol and Sirolimus. Presymptomatic treatment with low-dose aspirin and antiepileptic drugs shows promising results in delaying seizure onset in some patients. This review focuses on the latest progress in the field of research for Sturge-Weber syndrome and highlights directions for future research.
Collapse
Affiliation(s)
- SangEun Yeom
- Department of Neurology and Developmental Medicine, Hugo Moser Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Anne M. Comi
- Department of Neurology and Developmental Medicine, Hugo Moser Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Abstract
One in ten infants are born with a vascular birthmark each year. Some vascular birthmarks, such as infantile hemangiomas, are common, while vascular malformations, such as capillary, lymphatic, venous, and arteriovenous malformations, are less so. Diagnosing uncommon vascular birthmarks can be challenging, given the phenotypic heterogeneity and overlap amongst these lesions. Both sporadic and germline variants have been detected in various genes associated with vascular birthmarks. Identification of these genetic variants offers insight into both diagnosis and underlying molecular pathways and can be fundamental in the discovery of novel therapeutic approaches. The PIK3/AKT/mTOR and RAS/MEK/ERK signaling pathways, which mediate cell growth and angiogenesis, are activated secondary to genetic variations in vascular malformations. Somatic variants in TEK (TIE2) and PIK3CA cause venous malformations. Variants in PIK3CA also cause lymphatic malformations as well as a number of overgrowth syndromes associated with vascular anomalies. Variants in GNAQ and GNA11 have been identified in both so-called "congenital" hemangiomas and capillary malformations. RASA1 and EPHB4 variants are associated with capillary malformation-arteriovenous malformation syndrome. This review discusses the genetics of vascular birthmarks including the various phenotypes, genetic variants, pathogenesis, associated syndromes, and new diagnostic techniques.
Collapse
Affiliation(s)
- Priya Mahajan
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, Texas
| | - Katie L Bergstrom
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, Texas
| | - Thuy L Phung
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Denise W Metry
- Department of Dermatology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas.
| |
Collapse
|
4
|
Genetics and Vascular Biology of Brain Vascular Malformations. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Huang L, Bichsel C, Norris A, Thorpe J, Pevsner J, Alexandrescu S, Pinto A, Zurakowski D, Kleiman RJ, Sahin M, Greene AK, Bischoff J. Endothelial GNAQ p.R183Q Increases ANGPT2 (Angiopoietin-2) and Drives Formation of Enlarged Blood Vessels. Arterioscler Thromb Vasc Biol 2022; 42:e27-e43. [PMID: 34670408 PMCID: PMC8702487 DOI: 10.1161/atvbaha.121.316651] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Capillary malformation (CM) occurs sporadically and is associated with Sturge-Weber syndrome. The somatic mosaic mutation in GNAQ (c.548G>A, p.R183Q) is enriched in endothelial cells (ECs) in skin CM and Sturge-Weber syndrome brain CM. Our goal was to investigate how the mutant Gαq (G-protein αq subunit) alters EC signaling and disrupts capillary morphogenesis. Approach and Results: We used lentiviral constructs to express p.R183Q or wild-type GNAQ in normal human endothelial colony forming cells (EC-R183Q and EC-WT, respectively). EC-R183Q constitutively activated PLC (phospholipase C) β3, a downstream effector of Gαq. Activated PLCβ3 was also detected in human CM tissue sections. Bulk RNA sequencing analyses of mutant versus wild-type EC indicated constitutive activation of PKC (protein kinase C), NF-κB (nuclear factor kappa B) and calcineurin signaling in EC-R183Q. Increased expression of downstream targets in these pathways, ANGPT2 (angiopoietin-2) and DSCR (Down syndrome critical region protein) 1.4 were confirmed by quantitative PCR and immunostaining of human CM tissue sections. The Gαq inhibitor YM-254890 as well as siRNA targeted to PLCβ3 reduced mRNA expression levels of these targets in EC-R183Q while the pan-PKC inhibitor AEB071 reduced ANGPT2 but not DSCR1.4. EC-R183Q formed enlarged blood vessels in mice, reminiscent of those found in human CM. shRNA knockdown of ANGPT2 in EC-R183Q normalized the enlarged vessels to sizes comparable those formed by EC-WT. CONCLUSIONS Gαq-R183Q, when expressed in ECs, establishes constitutively active PLCβ3 signaling that leads to increased ANGPT2 and a proangiogenic, proinflammatory phenotype. EC-R183Q are sufficient to form enlarged CM-like vessels in mice, and suppression of ANGPT2 prevents the enlargement. Our study provides the first evidence that endothelial Gαq-R183Q is causative for CM and identifies ANGPT2 as a contributor to CM vascular phenotype.
Collapse
Affiliation(s)
- Lan Huang
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Colette Bichsel
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Alexis Norris
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jeremy Thorpe
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jonathan Pevsner
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Anna Pinto
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine Research, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Robin J. Kleiman
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Mustafa Sahin
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Arin K. Greene
- Department of Plastic and Oral Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Vascular Anomalies Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
6
|
Wu Y, Peng C, Huang L, Xu L, Ding X, Liu Y, Zeng C, Sun H, Guo W. Somatic GNAQ R183Q mutation is located within the sclera and episclera in patients with Sturge-Weber syndrome. Br J Ophthalmol 2021; 106:1006-1011. [PMID: 33707187 PMCID: PMC9234408 DOI: 10.1136/bjophthalmol-2020-317287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/16/2021] [Accepted: 02/11/2021] [Indexed: 12/19/2022]
Abstract
Aims To determine the correspondence between GNAQ R183Q (c.548G>A) mutation in abnormal scleral tissue of patients with Sturge-Weber syndrome (SWS) secondary glaucoma and explore the role of GNAQ R183Q in glaucoma pathogenesis. Methods Episcleral tissues were obtained from 8 patients: SWS secondary glaucoma (n=5) and primary congenital glaucoma (PCG, n=3). Scleral tissues were obtained from 7 patients: SWS secondary glaucoma (n=2), PCG (n=1) and juvenile open-angle glaucoma (n=4). GNAQ R183Q mutation was detected in scleral tissue by droplet digital PCR. Tissue sections from SWS were examined by immunohistochemistry to determine the expression of p-ERK. Results The GNAQ R183Q mutation was present in 100% of the SWS abnormal sclera. Five cases were SWS patient-derived episcleral tissue, and the mutant allelic frequencies range from 6.9% to 12.5%. The other two were deep scleral tissues and the mutant frequencies were 1.5% and 5.3%. No mutations in GNAQ R183 codon were found in the sclera of PCG and juvenile open-angle glaucoma. Increased expression of p-ERK and p-JNK was detected in the endothelial cells of SWS abnormal scleral blood vessels. Conclusions GNAQ R183Q occurred in all abnormal scleral tissue of SWS secondary glaucoma. Increased expression of p-ERK and p-JNK in endothelial cells of blood vessels was detected in the abnormal scleral tissue. This study suggests GNAQ R183Q may regulate episcleral vessels of patients with SWS through abnormal activation of ERK and JNK, providing new genetic evidence of pathogenesis of glaucoma in SWS, and the dysplasia of scleral tissue in anterior segment may be used as an early diagnostic method or treatment targets to prevent the development and progression of glaucoma in patients with SWS.
Collapse
Affiliation(s)
- Yue Wu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Cheng Peng
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Lulu Huang
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Li Xu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xuming Ding
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yixin Liu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Changjuan Zeng
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hao Sun
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Wenyi Guo
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
7
|
Abstract
The complex development of the brain vascular system can be broken down by embryonic stages and anatomic locations, which are tightly regulated by different factors and pathways in time and spatially. The adult brain is relatively quiescent in angiogenesis. However, under disease conditions, such as trauma, stroke, or tumor, angiogenesis can be activated in the adult brain. Disruption of any of the factors or pathways may lead to malformed vessel development. In this chapter, we will discuss factors and pathways involved in normal brain vasculogenesis and vascular maturation, and the pathogenesis of several brain vascular malformations.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Sonali S Shaligram
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, CA, United States
| | - Hua Su
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Capillary malformations, the most common type of vascular malformation, are caused by a somatic mosaic mutation in GNAQ, which encodes the Gαq subunit of heterotrimeric G-proteins. How the single amino acid change - predicted to activate Gαq - causes capillary malformations is not known but recent advances are helping to unravel the mechanisms. RECENT FINDINGS The GNAQ R183Q mutation is present not only in endothelial cells isolated from skin and brain capillary malformations but also in brain tissue underlying the capillary malformation, raising questions about the origin of capillary malformation-causing cells. Insights from computational analyses shed light on the mechanisms of constitutive activation and new basic science shows Gαq plays roles in sensing shear stress and in regulating cerebral blood flow. SUMMARY Several studies confirm the GNAQ R183Q mutation in 90% of nonsyndromic and Sturge-Weber syndrome (SWS) capillary malformations. The mutation is enriched in endothelial cells and blood vessels isolated from skin, brain, and choroidal capillary malformations, but whether the mutation resides in other cell types must be determined. Further, the mechanisms by which the R183Q mutation alters microvascular architecture and blood flow must be uncovered to develop new treatment strategies for SWS in particular, a devastating disease for which there is no cure.
Collapse
|
9
|
Borst AJ, Nakano TA, Blei F, Adams DM, Duis J. A Primer on a Comprehensive Genetic Approach to Vascular Anomalies. Front Pediatr 2020; 8:579591. [PMID: 33194911 PMCID: PMC7604490 DOI: 10.3389/fped.2020.579591] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
The field of vascular anomalies has grown tremendously in the last few decades with the identification of key molecular pathways and genetic mutations that drive the formation and progression of vascular anomalies. Understanding these pathways is critical for the classification of vascular anomalies, patient care, and development of novel therapeutics. The goal of this review is to provide a basic understanding of the classification of vascular anomalies and knowledge of their underlying molecular pathways. Here we provide an organizational framework for phenotype/genotype correlation and subsequent development of a diagnostic and treatment roadmap. With the increasing importance of genetics in the diagnosis and treatment of vascular anomalies, we highlight the importance of clinical geneticists as part of a comprehensive multidisciplinary vascular anomalies team.
Collapse
Affiliation(s)
- Alexandra J Borst
- Vascular Anomalies Program, Monroe Carrell Jr. Children's Hospital, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Taizo A Nakano
- Vascular Anomalies Center, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Francine Blei
- Vascular Anomalies Program, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Denise M Adams
- Vascular Anomalies Center, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Jessica Duis
- Vascular Anomalies Center, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|