1
|
Gressenberger P, Posch F, Adelsmayr G, Nagy E, Kaufmann-Bühler AK, Steiner J, Janisch M, Reiter C, Eibisberger M, Janek E, Softic N, Fuchsjäger M, Gütl K, Jud P, Silbernagel G, Raggam RB, Brodmann M, Gary T, Schmid J. Lipoprotein (a) is not associated with thrombus burden derived from CT pulmonary angiography in patients with acute pulmonary embolism. Sci Rep 2024; 14:25962. [PMID: 39472600 PMCID: PMC11522666 DOI: 10.1038/s41598-024-77669-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Lipoprotein (a) [Lp(a)] is suspected to have antifibrinolytic effects, however, its relevance for the severity of venous thromboembolic events remains unclear. We studied the association of Lp(a) levels with thrombus load in pulmonary embolism (PE). 90 patients (40% female, median age 70 [56-79] years) at our tertiary care hospital with a diagnosis of acute PE, available Lp(a) levels and CT pulmonary angiography (CT-PA) performed between April 2017 and December 2019 were included. All CT-PA scans were reanalyzed and thrombus load was determined via Qanadli CT obstruction index (CTOI) and most proximal thrombus location. Median Lp(a) levels were 11.4 [9.3-29.1] mg/dL, median D-dimer levels were 4.6 [2.1-9.8] mg/L, median CTOI was 23 [8-50], central PE was present in 27 (30%) patients. Lp(a) did not correlate with CTOI (r = 0.02, p = 0.922) and was not associated with thrombus location (p = 0.369). CTOI significantly correlated with D-dimer (r = 0.43, p < 0.001) and right to left ventricular diameter ratio (r=-0.49, p = < 0.001). Our findings showed that Lp(a) is not associated with thrombus burden in PE, which suggests that a relevant effect of Lp(a) on the extent of venous thromboembolism is unlikely.
Collapse
Affiliation(s)
- Paul Gressenberger
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Florian Posch
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gabriel Adelsmayr
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, Graz, 8036, Austria.
| | - Eszter Nagy
- Division of Paediatric Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Ann-Katrin Kaufmann-Bühler
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, Graz, 8036, Austria
| | - Jakob Steiner
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, Graz, 8036, Austria
| | - Michael Janisch
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Clemens Reiter
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Martin Eibisberger
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Elmar Janek
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, Graz, 8036, Austria
| | - Nina Softic
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, Graz, 8036, Austria
| | - Michael Fuchsjäger
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, Graz, 8036, Austria
| | - Katharina Gütl
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp Jud
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Günther Silbernagel
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Reinhard B Raggam
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Marianne Brodmann
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Thomas Gary
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Johannes Schmid
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, Graz, 8036, Austria.
| |
Collapse
|
2
|
Rayes J, Brill A. Hot under the clot: venous thrombogenesis is an inflammatory process. Blood 2024; 144:477-489. [PMID: 38728383 DOI: 10.1182/blood.2023022522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT Venous thrombosis (VT) is a serious medical condition in which a blood clot forms in deep veins, often causing limb swelling and pain. Current antithrombotic therapies carry significant bleeding risks resulting from targeting essential coagulation factors. Recent advances in this field have revealed that the cross talk between the innate immune system and coagulation cascade is a key driver of VT pathogenesis, offering new opportunities for potential therapeutic interventions without inducing bleeding complications. This review summarizes and discusses recent evidence from preclinical models on the role of inflammation in VT development. We highlight the major mechanisms by which endothelial cell activation, Weibel-Palade body release, hypoxia, reactive oxygen species, inflammasome, neutrophil extracellular traps, and other immune factors cooperate to initiate and propagate VT. We also review emerging clinical data describing anti-inflammatory approaches as adjuncts to anticoagulation in VT treatment. Finally, we identify key knowledge gaps and future directions that could maximize the benefit of anti-inflammatory therapies in VT. Identifying and targeting the inflammatory factors driving VT, either at the endothelial cell level or within the clot, may pave the way for new therapeutic possibilities for improving VT treatment and reducing thromboembolic complications without increasing bleeding risk.
Collapse
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Villanueva B, Cerdà P, Torres-Iglesias R, Rocamora JL, Figueras A, Viñals F, Riera-Mestre A. Potential angiogenic biomarkers in hereditary hemorrhagic telangiectasia and other vascular diseases. Eur J Intern Med 2023; 115:10-17. [PMID: 37225595 DOI: 10.1016/j.ejim.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Biomarkers are new tools framed in precision and personalized medicine. Hereditary hemorrhagic telangiectasia (HHT) is a rare genetic vascular disease with disturbances in the angiogenic pathways. Descriptive evidence supports that some angiogenesis-related molecules are differently detected in HHT patients compared to healthy subjects. These molecules are also related to diagnosis, prognosis, complications and therapy monitoring in other common vascular diseases. Despite the need for improving knowledge before applying them in daily clinical practice, there are good candidates to be considered as potential biomarkers in HHT and other vascular diseases. In the present review, the authors aim to summarize and discuss current evidence regarding the main putative angiogenic biomarkers by describing the biological role of each biomarker, the evidence related to HHT and their potential use in this and other common vascular diseases from a clinical point-of-view.
Collapse
Affiliation(s)
- B Villanueva
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - P Cerdà
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - R Torres-Iglesias
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - J L Rocamora
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - A Figueras
- Program Against Cancer Therapeutic Resistance, Institut Catala d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain; Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - F Viñals
- Program Against Cancer Therapeutic Resistance, Institut Catala d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain; Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - A Riera-Mestre
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
4
|
SARS-CoV-2 infection- induced growth factors play differential roles in COVID-19 pathogenesis. Life Sci 2022; 304:120703. [PMID: 35700841 PMCID: PMC9188443 DOI: 10.1016/j.lfs.2022.120703] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022]
Abstract
Aims Biologically active molecules cytokines and growth factors (GFs) are critical regulators of tissue injury/repair and emerge as key players in COVID-19 pathophysiology. However, specific disease stage of GFs dysregulation and, whether these GFs have associations with thromboembolism and tissue injury/repair in COVID-19 remain vague. Main methods GF profiling in hospitalized moderate (non-ICU) and critically ill (ICU) COVID-19 patients was performed through legendPlex assay. Key findings Investigation revealed profound elevation of VEGF, PDGFs, EGF, TGF-α, FGF-basic, and erythropoietin (EPO) in moderate cases and decline or trend of decline with disease advancement. We found strong positive correlations of plasma VEGF, PDGFs, and EPO with endothelial dysfunction markers P-selectin and sCD40L. Interestingly, the HGF and G-CSF were upregulated at the moderate stage and remained elevated at the severe stage of COVID-19. Moreover, strong negative correlations of PDGFs (r2 = 0.238, P = 0.006), EPO (r2 = 0.18, P = 0.01) and EGF (r2 = 0.172, P = 0.02) and positive correlation of angiopoietin-2 (r2 = 0.267, P = 0.003) with D-dimer, a marker of thromboembolism, was observed. Further, plasma PDGFs (r2 = 0.199, P = 0.01), EPO (r2 = 0.115, P = 0.02), and EGF (r2 = 0.108, P = 0.07) exhibited negative correlations with tissue injury marker, myoglobin. Significance Taken together, unlike cytokines, most of the assessed GFs were upregulated at the moderate stage of COVID-19. The induction of GFs likely occurs due to endothelial dysfunction and may counter the adverse effects of cytokine storms which is reflected by inverse correlations of PDGFs, EPO, and EGF with thromboembolism and tissue injury markers. The findings suggest that the assessed GFs play differential roles in the pathogenesis of COVID-19.
Collapse
|
5
|
Sobrero M, Montecucco F, Carbone F. Circulating MicroRNAs for Diagnosis of Acute Pulmonary Embolism: Still a Long Way to Go. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4180215. [PMID: 35047634 PMCID: PMC8763471 DOI: 10.1155/2022/4180215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022]
Abstract
Venous thromboembolism (VTE) represents the third most frequent cause of acute cardiovascular syndrome. Among VTE, acute pulmonary embolism (APE) is the most life-threatening complication. Due to the low specificity of symptoms clinical diagnosis of APE may be sometimes very difficult. Accordingly, the latest European guidelines only suggest clinical prediction tests for diagnosis of APE, eventually associated with D-dimer, a biomarker burdened by a very low specificity. A growing body of evidence is highlighting the role of miRNAs in hemostasis and thrombosis. Due to their partial inheritance and susceptibility to the environmental factors, miRNAs are increasingly described as active modifiers of the classical Virchow's triad. Clinical evidence on deep venous thrombosis reported specific miRNA signatures associated to thrombosis development, organization, recanalization, and resolution. Conversely, data of miRNA profiling as a predictor/diagnostic marker of APE are still preliminary. Here, we have summarized clinical evidence on the potential role of miRNA in diagnosis of APE. Despite some intriguing insight, miRNA assay is still far from any potential clinical application. Especially, the small sample size of cohorts likely represents the major limitation of published studies, so that extensive analysis of miRNA profiles with a machine learning approach are warranted in the next future. In addition, the cost-benefit ratio of miRNA assay still has a negative impact on their clinical application and routinely test.
Collapse
Affiliation(s)
- Matteo Sobrero
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| |
Collapse
|
6
|
Zilinyi RS, Sethi SS. Improving risk stratification in acute pulmonary embolism: How do we target our therapies more effectively? Vasc Med 2021; 26:561-562. [PMID: 34159862 DOI: 10.1177/1358863x211021917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Robert S Zilinyi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sanjum S Sethi
- Department of Medicine, Division of Cardiology, Center for Interventional Vascular Therapy, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|