1
|
Tovo PA, Marozio L, Abbona G, Calvi C, Frezet F, Gambarino S, Dini M, Benedetto C, Galliano I, Bergallo M. Pregnancy Is Associated with Impaired Transcription of Human Endogenous Retroviruses and of TRIM28 and SETDB1, Particularly in Mothers Affected by Multiple Sclerosis. Viruses 2023; 15:v15030710. [PMID: 36992419 PMCID: PMC10051116 DOI: 10.3390/v15030710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Accumulating evidence highlights the pathogenetic role of human endogenous retroviruses (HERVs) in eliciting and maintaining multiple sclerosis (MS). Epigenetic mechanisms, such as those regulated by TRIM 28 and SETDB1, are implicated in HERV activation and in neuroinflammatory disorders, including MS. Pregnancy markedly improves the course of MS, but no study explored the expressions of HERVs and of TRIM28 and SETDB1 during gestation. Using a polymerase chain reaction real-time Taqman amplification assay, we assessed and compared the transcriptional levels of pol genes of HERV-H, HERV-K, HERV-W; of env genes of Syncytin (SYN)1, SYN2, and multiple sclerosis associated retrovirus (MSRV); and of TRIM28 and SETDB1 in peripheral blood and placenta from 20 mothers affected by MS; from 27 healthy mothers, in cord blood from their neonates; and in blood from healthy women of child-bearing age. The HERV mRNA levels were significantly lower in pregnant than in nonpregnant women. Expressions of all HERVs were downregulated in the chorion and in the decidua basalis of MS mothers compared to healthy mothers. The former also showed lower mRNA levels of HERV-K-pol and of SYN1, SYN2, and MSRV in peripheral blood. Significantly lower expressions of TRIM28 and SETDB1 also emerged in pregnant vs. nonpregnant women and in blood, chorion, and decidua of mothers with MS vs. healthy mothers. In contrast, HERV and TRIM28/SETDB1 expressions were comparable between their neonates. These results show that gestation is characterized by impaired expressions of HERVs and TRIM28/SETDB1, particularly in mothers with MS. Given the beneficial effects of pregnancy on MS and the wealth of data suggesting the putative contribution of HERVs and epigenetic processes in the pathogenesis of the disease, our findings may further support innovative therapeutic interventions to block HERV activation and to control aberrant epigenetic pathways in MS-affected patients.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: (P.-A.T.); (M.B.)
| | - Luca Marozio
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Giancarlo Abbona
- Pathology Unit, Department Laboratory Medicine, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Cristina Calvi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Federica Frezet
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Stefano Gambarino
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Maddalena Dini
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Benedetto
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: (P.-A.T.); (M.B.)
| |
Collapse
|
2
|
Enhanced Expression of Human Endogenous Retroviruses, TRIM28 and SETDB1 in Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms23115964. [PMID: 35682642 PMCID: PMC9180946 DOI: 10.3390/ijms23115964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are relics of ancestral infections and represent 8% of the human genome. They are no longer infectious, but their activation has been associated with several disorders, including neuropsychiatric conditions. Enhanced expression of HERV-K and HERV-H envelope genes has been found in the blood of autism spectrum disorder (ASD) patients, but no information is available on syncytin 1 (SYN1), SYN2, and multiple sclerosis-associated retrovirus (MSRV), which are thought to be implicated in brain development and immune responses. HERV activation is regulated by TRIM28 and SETDB1, which are part of the epigenetic mechanisms that organize the chromatin architecture in response to external stimuli and are involved in neural cell differentiation and brain inflammation. We assessed, through a PCR realtime Taqman amplification assay, the transcription levels of pol genes of HERV-H, -K, and -W families, of env genes of SYN1, SYN2, and MSRV, as well as of TRIM28 and SETDB1 in the blood of 33 ASD children (28 males, median 3.8 years, 25–75% interquartile range 3.0–6.0 y) and healthy controls (HC). Significantly higher expressions of TRIM28 and SETDB1, as well as of all the HERV genes tested, except for HERV-W-pol, were found in ASD, as compared with HC. Positive correlations were observed between the mRNA levels of TRIM28 or SETDB1 and every HERV gene in ASD patients, but not in HC. Overexpression of TRIM28/SETDB1 and several HERVs in children with ASD and the positive correlations between their transcriptional levels suggest that these may be main players in pathogenetic mechanisms leading to ASD.
Collapse
|
3
|
Makgoo L, Mosebi S, Mbita Z. Molecular Mechanisms of HIV Protease Inhibitors Against HPV-Associated Cervical Cancer: Restoration of TP53 Tumour Suppressor Activities. Front Mol Biosci 2022; 9:875208. [PMID: 35620479 PMCID: PMC9127998 DOI: 10.3389/fmolb.2022.875208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is a Human Papilloma virus-related disease, which is on the rise in a number of countries, globally. Two essential oncogenes, E6 and E7, drive cell transformation and cancer development. These two oncoproteins target two of the most important tumour suppressors, p53 and pRB, for degradation through the ubiquitin ligase pathway, thus, blocking apoptosis activation and deregulation of cell cycle. This pathway can be exploited for anticancer therapeutic interventions, and Human Immunodeficiency Virus Protease Inhibitors (HIV-PIs) have attracted a lot of attention for this anticancer drug development. HIV-PIs have proven effective in treating HPV-positive cervical cancers and shown to restore impaired or deregulated p53 in HPV-associated cervical cancers by inhibiting the 26S proteasome. This review will evaluate the role players, such as HPV oncoproteins involved cervical cancer development and how they are targeted in HIV protease inhibitors-induced p53 restoration in cervical cancer. This review also covers the therapeutic potential of HIV protease inhibitors and molecular mechanisms behind the HIV protease inhibitors-induced p53-dependent anticancer activities against cervical cancer.
Collapse
Affiliation(s)
- Lilian Makgoo
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa
| | - Salerwe Mosebi
- Department of Life and Consumer Sciences, University of South Africa, Florida, South Africa
| | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa
- *Correspondence: Zukile Mbita,
| |
Collapse
|
4
|
Mammalian Ddi2 is a shuttling factor containing a retroviral protease domain that influences binding of ubiquitylated proteins and proteasomal degradation. J Biol Chem 2022; 298:101875. [PMID: 35358511 PMCID: PMC9062259 DOI: 10.1016/j.jbc.2022.101875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/24/2022] Open
Abstract
Although several proteasome subunits have been shown to bind ubiquitin (Ub) chains, many ubiquitylated substrates also associate with 26S proteasomes via “shuttling factors.” Unlike the well-studied yeast shuttling factors Rad23 and Dsk2, vertebrate homologs Ddi2 and Ddi1 lack a Ub-associated domain; therefore, it is unclear how they bind Ub. Here, we show that deletion of Ddi2 leads to the accumulation of Ub conjugates with K11/K48 branched chains. We found using affinity copurifications that Ddi2 binds Ub conjugates through its Ub-like domain, which is also required for Ddi2 binding to proteasomes. Furthermore, in cell extracts, adding Ub conjugates increased the amount of Ddi2 associated with proteasomes, and adding Ddi2 increased the binding of Ub conjugates to purified proteasomes. In addition, Ddi2 also contains a retroviral protease domain with undefined cellular roles. We show that blocking the endoprotease activity of Ddi2 either genetically or with the HIV protease inhibitor nelfinavir increased its binding to Ub conjugates but decreased its binding to proteasomes and reduced subsequent protein degradation by proteasomes leading to further accumulation of Ub conjugates. Finally, nelfinavir treatment required Ddi2 to induce the unfolded protein response. Thus, Ddi2 appears to function as a shuttling factor in endoplasmic reticulum–associated protein degradation and delivers K11/K48-ubiquitylated proteins to the proteasome. We conclude that the protease activity of Ddi2 influences this shuttling factor activity, promotes protein turnover, and helps prevent endoplasmic reticulum stress, which may explain nelfinavir’s ability to enhance cell killing by proteasome inhibitors.
Collapse
|
5
|
Besse L, Besse A, Stolze SC, Sobh A, Zaal EA, van der Ham AJ, Ruiz M, Phuyal S, Büchler L, Sathianathan M, Florea BI, Borén J, Ståhlman M, Huber J, Bolomsky A, Ludwig H, Hannich JT, Loguinov A, Everts B, Berkers CR, Pilon M, Farhan H, Vulpe CD, Overkleeft HS, Driessen C. Treatment with HIV-Protease Inhibitor Nelfinavir Identifies Membrane Lipid Composition and Fluidity as a Therapeutic Target in Advanced Multiple Myeloma. Cancer Res 2021; 81:4581-4593. [PMID: 34158378 DOI: 10.1158/0008-5472.can-20-3323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
The HIV-protease inhibitor nelfinavir has shown broad anticancer activity in various preclinical and clinical contexts. In patients with advanced, proteasome inhibitor (PI)-refractory multiple myeloma, nelfinavir-based therapy resulted in 65% partial response or better, suggesting that this may be a highly active chemotherapeutic option in this setting. The broad anticancer mechanism of action of nelfinavir implies that it interferes with fundamental aspects of cancer cell biology. We combined proteome-wide affinity-purification of nelfinavir-interacting proteins with genome-wide CRISPR/Cas9-based screening to identify protein partners that interact with nelfinavir in an activity-dependent manner alongside candidate genetic contributors affecting nelfinavir cytotoxicity. Nelfinavir had multiple activity-specific binding partners embedded in lipid bilayers of mitochondria and the endoplasmic reticulum. Nelfinavir affected the fluidity and composition of lipid-rich membranes, disrupted mitochondrial respiration, blocked vesicular transport, and affected the function of membrane-embedded drug efflux transporter ABCB1, triggering the integrated stress response. Sensitivity to nelfinavir was dependent on ADIPOR2, which maintains membrane fluidity by promoting fatty acid desaturation and incorporation into phospholipids. Supplementation with fatty acids prevented the nelfinavir-induced effect on mitochondrial metabolism, drug-efflux transporters, and stress-response activation. Conversely, depletion of fatty acids/cholesterol pools by the FDA-approved drug ezetimibe showed a synergistic anticancer activity with nelfinavir in vitro. These results identify the modification of lipid-rich membranes by nelfinavir as a novel mechanism of action to achieve broad anticancer activity, which may be suitable for the treatment of PI-refractory multiple myeloma. SIGNIFICANCE: Nelfinavir induces lipid bilayer stress in cellular organelles that disrupts mitochondrial respiration and transmembrane protein transport, resulting in broad anticancer activity via metabolic rewiring and activation of the unfolded protein response.
Collapse
Affiliation(s)
- Lenka Besse
- Laboratory of Experimental Oncology, Clinic for Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.
| | - Andrej Besse
- Laboratory of Experimental Oncology, Clinic for Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Sara C Stolze
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Amin Sobh
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Esther A Zaal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alwin J van der Ham
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Santosh Phuyal
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Lorina Büchler
- Laboratory of Experimental Oncology, Clinic for Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Marc Sathianathan
- Laboratory of Experimental Oncology, Clinic for Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Bogdan I Florea
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Julia Huber
- Department of Medicine I, Wilhelminen Cancer Research Institute, Klinik Ottakring, Vienna, Austria
| | - Arnold Bolomsky
- Department of Medicine I, Wilhelminen Cancer Research Institute, Klinik Ottakring, Vienna, Austria
| | - Heinz Ludwig
- Department of Medicine I, Wilhelminen Cancer Research Institute, Klinik Ottakring, Vienna, Austria
| | - J Thomas Hannich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alex Loguinov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Hesso Farhan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christopher D Vulpe
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | | | - Christoph Driessen
- Laboratory of Experimental Oncology, Clinic for Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
6
|
Sangenito LS, Menna-Barreto RFS, d'Avila-Levy CM, Branquinha MH, Santos ALS. Repositioning of HIV Aspartyl Peptidase Inhibitors for Combating the Neglected Human Pathogen Trypanosoma cruzi. Curr Med Chem 2019; 26:6590-6613. [PMID: 31187704 DOI: 10.2174/0929867326666190610152934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022]
Abstract
Chagas disease, caused by the flagellate parasite Trypanosoma cruzi, is a wellknown neglected tropical disease. This parasitic illness affects 6-7 million people and can lead to severe myocarditis and/or complications of the digestive tract. The changes in its epidemiology facilitate co-infection with the Human Immunodeficiency Virus (HIV), making even more difficult the diagnosis and prognosis. The parasitic infection is reactivated in T. cruzi/HIV co-infection, with the appearance of unusual manifestations in the chronic phase and the exacerbation of classical clinical signs. The therapeutic arsenal to treat Chagas disease, in all its clinical forms, is restricted basically to two drugs, benznidazole and nifurtimox. Both drugs are extremely toxic and the therapeutic efficacy is still unclear, making the clinical treatment a huge issue to be solved. Therefore, it seems obvious the necessity of new tangible approaches to combat this illness. In this sense, the repositioning of approved drugs appears as an interesting and viable strategy. The discovery of Human Immunodeficiency Virus Aspartyl Peptidase Inhibitors (HIV-PIs) represented a milestone in the treatment of Acquired Immune Deficiency Syndrome (AIDS) and, concomitantly, a marked reduction in both the incidence and prevalence of important bacterial, fungal and parasitic co-infections was clearly observed. Taking all these findings into consideration, the present review summarizes the promising and beneficial data concerning the effects of HIV-PIs on all the evolutionary forms of T. cruzi and in important steps of the parasite's life cycle, which highlight their possible application as alternative drugs to treat Chagas disease.
Collapse
Affiliation(s)
- Leandro S Sangenito
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rubem F S Menna-Barreto
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cláudia M d'Avila-Levy
- Laboratorio de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - André L S Santos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Rodriguez M, Lapierre J, Ojha CR, Pawitwar S, Karuppan MKM, Kashanchi F, El-Hage N. Morphine counteracts the antiviral effect of antiretroviral drugs and causes upregulation of p62/SQSTM1 and histone-modifying enzymes in HIV-infected astrocytes. J Neurovirol 2019; 25:263-274. [PMID: 30746609 DOI: 10.1007/s13365-018-0715-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022]
Abstract
Accelerated neurological disorders are increasingly prominent among the HIV-infected population and are likely driven by the toxicity from long-term use of antiretroviral drugs. We explored potential side effects of antiretroviral drugs in HIV-infected primary human astrocytes and whether opioid co-exposure exacerbates the response. HIV-infected human astrocytes were exposed to the reverse transcriptase inhibitor, emtricitabine, alone or in combination with two protease inhibitors ritonavir and atazanavir (ERA) with and without morphine co-exposure. The effect of the protease inhibitor, lopinavir, alone or in combination with the protease inhibitor, abacavir, and the integrase inhibitor, raltegravir (LAR), with and without morphine co-exposure was also explored. Exposure with emtricitabine alone or ERA in HIV-infected astrocytes caused a significant decrease in viral replication and attenuated HIV-induced inflammatory molecules, while co-exposure with morphine negated the inhibitory effects of ERA, leading to increased viral replication and inflammatory molecules. Exposure with emtricitabine alone or in combination with morphine caused a significant disruption of mitochondrial membrane integrity. Genetic analysis revealed a significant increase in the expression of p62/SQSTM1 which correlated with an increase in the histone-modifying enzyme, ESCO2, after exposure with ERA alone or in combination with morphine. Furthermore, several histone-modifying enzymes such as CIITA, PRMT8, and HDAC10 were also increased with LAR exposure alone or in combination with morphine. Accumulation of p62/SQSTM1 is indicative of dysfunctional lysosomal fusion. Together with the loss of mitochondrial integrity and epigenetic changes, these effects may lead to enhanced viral titer and inflammatory molecules contributing to the neuropathology associated with HIV.
Collapse
Affiliation(s)
- Myosotys Rodriguez
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199, USA.
| | - Jessica Lapierre
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199, USA
| | - Chet Raj Ojha
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199, USA
| | - Shashank Pawitwar
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199, USA
| | - Mohan Kumar Muthu Karuppan
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Nazira El-Hage
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199, USA.
| |
Collapse
|
8
|
Wang X, Zhang R, Tong Y, Ding X, Jin S, Zhao X, Zong J, Chen Z, Billiar TR, Li Q. High-mobility group box 1 protein is involved in the protective effect of Saquinavir on ventilation-induced lung injury in mice. Acta Biochim Biophys Sin (Shanghai) 2017; 49:907-915. [PMID: 28981603 DOI: 10.1093/abbs/gmx085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 01/07/2023] Open
Abstract
Saquinavir (SQV) is the first FDA approved HIV protease inhibitor. Previous studies showed that SQV can limit Toll-like receptor-4 (TLR4)-mediated inflammatory pathway and nuclear factor-κB (NF-κB) activation, thereby playing a protective role in many kinds of diseases. High-mobility group box 1 (HMGB1) has been identified as an inflammatory mediator and it might express its toxicity in a short period of time in ventilator-induced lung injury (VILI). In this study, C57BL/6 mice were randomly divided into four groups (n = 10): control group and control with SQV group (Con + SQV) were spontaneous breath. HTV group (HTV) received high tidal volume ventilation (HTV) for 4 h. HTV with SQV group (HTV + SQV) were pretreated with 5 mg/kg of SQV for 7 days before HTV. Mice were sacrificed after 4 h of HTV. Lung wet/dry weight (W/D) ratio, alveolar-capillary permeability to Evans blue albumin (EBA), cell counts, total proteins in bronchoalveolar lavage fluid (BALF), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) level in BALF and lung tissue, and lung histopathology were examined. Our results showed that HTV caused significant lung injury and NF-κB activation, which was correlated with the increase of TNF-α and IL-6 levels in BALF and plasma. SQV pretreatment significantly attenuated pulmonary inflammatory injury, as well as NF-κB activation. These findings indicate that the protective effect of SQV may be associated with the inhibition of NF-κB activation and HMGB1 expression in mice.
Collapse
Affiliation(s)
- Xin Wang
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Anesthesiology, The First Clinical Medical College of Nanjing Medical University, Nanjing 210029, China
| | - Renlingzi Zhang
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yao Tong
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xibing Ding
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Shuqing Jin
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiang Zhao
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jiaying Zong
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Anesthesiology, The First Clinical Medical College of Nanjing Medical University, Nanjing 210029, China
| | - Zhixia Chen
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Quan Li
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
9
|
Sangenito LS, de Guedes AA, Gonçalves DS, Seabra SH, d'Avila-Levy CM, Santos ALS, Branquinha MH. Deciphering the effects of nelfinavir and lopinavir on epimastigote forms of Trypanosoma cruzi. Parasitol Int 2017; 66:529-536. [PMID: 28377050 DOI: 10.1016/j.parint.2017.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/24/2017] [Accepted: 03/29/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Leandro Stefano Sangenito
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Arthur A de Guedes
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diego S Gonçalves
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Programa de Pós Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil
| | - Sergio H Seabra
- Laboratório de Tecnologia em Cultura de Células, Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, Brazil
| | - Claudia M d'Avila-Levy
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - André L S Santos
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Programa de Pós Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Xia C, Chen R, Chen J, Qi Q, Pan Y, Du L, Xiao G, Jiang S. Combining metformin and nelfinavir exhibits synergistic effects against the growth of human cervical cancer cells and xenograft in nude mice. Sci Rep 2017; 7:43373. [PMID: 28252027 PMCID: PMC5333097 DOI: 10.1038/srep43373] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/23/2017] [Indexed: 12/28/2022] Open
Abstract
Human cervical cancer is the fourth most common carcinoma in women worldwide. However, the emergence of drug resistance calls for continuously developing new anticancer drugs and combination chemotherapy regimens. The present study aimed to investigate the anti-cervical cancer effects of metformin, a first-line therapeutic drug for type 2 diabetes mellitus, and nelfinavir, an HIV protease inhibitor, when used alone or in combination. We found that both metformin and nelfinavir, when used alone, were moderately effective in inhibiting proliferation, inducing apoptosis and suppressing migration and invasion of human cervical cell lines HeLa, SiHa and CaSki. When used in combination, these two drugs acted synergistically to inhibit the growth of human cervical cancer cells in vitro and cervical cancer cell xenograft in vivo in nude mice, and suppress cervical cancer cell migration and invasion. The protein expression of phosphoinositide 3-kinase catalytic subunit PI3K(p110α), which can promote tumor growth, was remarkably downregulated, while the tumor suppressor proteins p53 and p21 were substantially upregulated following the combinational treatment in vitro and in vivo. These results suggest that clinical use of metformin and nelfinavir in combination is expected to have synergistic antitumor efficacy and significant potential for the treatment of human cervical cancer.
Collapse
Affiliation(s)
- Chenglai Xia
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Ruihong Chen
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jinman Chen
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Qianqian Qi
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Yanbin Pan
- Aris Pharmaceuticals Inc., Bristol, PA19007, USA
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Guohong Xiao
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510150, China
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.,Laboratory of Medical Molecular Virology of Ministries of Education and Health, College of Basic Medical Science, Fudan University, Shanghai, 200032, China
| |
Collapse
|
11
|
Al-Assar O, Bittner MI, Lunardi S, Stratford MR, McKenna WG, Brunner TB. The radiosensitizing effects of Nelfinavir on pancreatic cancer with and without pancreatic stellate cells. Radiother Oncol 2016; 119:300-5. [PMID: 27247056 DOI: 10.1016/j.radonc.2016.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/02/2016] [Accepted: 03/10/2016] [Indexed: 12/19/2022]
Abstract
AIMS We have previously shown in a phase I trial that nelfinavir (NFV) is safe with chemoradiation in PDAC with good signs for efficacy. Reverse translationally, we aimed to test the influence of PSCs on nelfinavir mediated radiosensitization to PDAC preclinically, because PDAC is very rich in desmoplasia and PSCs are known to mediate radioresistance. METHODS In a direct co-culture model of several PDAC cell lines with PSC we performed clonogenic assays +/- nelfinavir. This was repeated exposing cells to hypoxic conditions. In xenograft PDAC tumors we tested radiation +/- nelfinavir +/- PSC. RESULTS NFV sensitized both, PDAC only and PDAC cocultured with PSC (PDAC: Panc-1, MiaPaCa-2, PSN-1). In Panc-1 and PSN-1 this effect was larger +PSC compared to -PSC. Human pancreatic stellate cells (hPSC) were also sensitized by NFV which reduced p-FAK levels in hPSC, an effect that we previously found to sensitize specifically PDAC/PSC coculture. Contrarily, LY294002 reduced p-Akt in PSC (hPSC and LTC-14) but had no impact on PSC radiation survival. In vitro, nelfinavir sensitized Panc-1 and PSN-1 under normoxic and hypoxic conditions. In PSN-1 xenografts, +PSC led to faster tumor regrowth after radiation vs -PSC. The regrowth delay effect of nelfinavir after radiation was dramatically larger +PSC vs -PSC (time to reach 250mm(3) 183% vs 22%). CONCLUSION NFV mediated radiosensitization in PDAC with stroma is partly mediated by p-FAK inhibition (Chen et al., 2013). In vitro, NFV sensitizes both normoxic and hypoxic PDAC +/- PSC to a roughly similar extent. The dramatic increased effect of xenograft regrowth inhibition by nelfinavir in tumors with PSC is attributed to vascular normalization (Brunner et al., 2014) rather than direct modification of hypoxia as shown by the tumor regrowth after gemcitabine with NFV.
Collapse
Affiliation(s)
- Osama Al-Assar
- CRUK/MRC Oxford Institute for Radiation Oncology, Heidelberg, Partner Site Freiburg, Germany
| | - Martin-Immanuel Bittner
- CRUK/MRC Oxford Institute for Radiation Oncology, Heidelberg, Partner Site Freiburg, Germany; Dept. of Radiation Oncology Freiburg, Heidelberg, Partner Site Freiburg, Germany
| | - Serena Lunardi
- CRUK/MRC Oxford Institute for Radiation Oncology, Heidelberg, Partner Site Freiburg, Germany
| | - Michael R Stratford
- CRUK/MRC Oxford Institute for Radiation Oncology, Heidelberg, Partner Site Freiburg, Germany
| | - W Gillies McKenna
- CRUK/MRC Oxford Institute for Radiation Oncology, Heidelberg, Partner Site Freiburg, Germany
| | - Thomas B Brunner
- CRUK/MRC Oxford Institute for Radiation Oncology, Heidelberg, Partner Site Freiburg, Germany; Dept. of Radiation Oncology Freiburg, Heidelberg, Partner Site Freiburg, Germany; German Cancer Consortium (DKTK), Heidelberg, Partner Site Freiburg, Germany.
| |
Collapse
|
12
|
Hampson L, Martin-Hirsch P, Hampson IN. An overview of early investigational drugs for the treatment of human papilloma virus infection and associated dysplasia. Expert Opin Investig Drugs 2015; 24:1529-37. [PMID: 26457651 DOI: 10.1517/13543784.2015.1099628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION High-risk HPV (HR-HPV) related invasive cervical cancer (ICC) causes >270,000 deaths per annum world-wide with over 85% of these occurring in low-resource countries. Ablative and excisional treatment modalities are restricted for use with high-grade pre-cancerous cervical disease with HPV infection and low-grade dysplasia mostly managed by a watch-and-wait policy. AREAS COVERED Various pharmacological approaches have been investigated as non-destructive alternatives for the treatment of HR-HPV infection and associated dysplasia. These are discussed dealing with efficacy, ease-of-use (physician or self-applied), systemic or locally applied, side-effects, cost and risks. The main focus is the perceived impact on current clinical practice of a self-applied, effective and safe pharmacological anti-HPV treatment. EXPERT OPINION Current prophylactic HPV vaccines are expensive, HPV type restricted and have little effect in already infected women. Therapeutic vaccines are under development but are also HPV type-restricted. At present, the developed nations use national cytology screening and surgical procedures to treat only women identified with HPV-related high-grade dysplastic disease. However, since HPV testing is rapidly replacing cytology as the test-of-choice, a suitable topically-applied and low-cost antiviral treatment could be an ideal solution for treatment of HPV infection per se with test-of-cure carried out by repeat HPV testing. Cytology would only then be necessary for women who remained HPV positive. Although of significant benefit in the developed countries, combining such a treatment with self-sampled HPV testing could revolutionise the management of this disease in the developing world which lack both the infrastructure and resources to establish national cytology screening programs.
Collapse
Affiliation(s)
- Lynne Hampson
- a Viral Oncology Laboratories, Research Floor, St Mary's Hospital , University of Manchester , Manchester M13 9WL , UK
| | - Pierre Martin-Hirsch
- b Department of Obstetrics and Gynaecology , Royal Preston Hospital , Preston PR2 9HT , UK
| | - Ian N Hampson
- a Viral Oncology Laboratories, Research Floor, St Mary's Hospital , University of Manchester , Manchester M13 9WL , UK
| |
Collapse
|
13
|
Pribis JP, Al-Abed Y, Yang H, Gero D, Xu H, Montenegro MF, Bauer EM, Kim S, Chavan SS, Cai C, Li T, Szoleczky P, Szabo C, Tracey KJ, Billiar TR. The HIV Protease Inhibitor Saquinavir Inhibits HMGB1-Driven Inflammation by Targeting the Interaction of Cathepsin V with TLR4/MyD88. Mol Med 2015; 21:749-757. [PMID: 26349060 DOI: 10.2119/molmed.2015.00197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022] Open
Abstract
Extracellular high-mobility group box 1 (HMGB1) (disulfide form), via activation of toll-like receptor 4 (TLR4)-dependent signaling, is a strong driver of pathologic inflammation in both acute and chronic conditions. Identification of selective inhibitors of HMGB1-TLR4 signaling could offer novel therapies that selectively target proximal endogenous activators of inflammation. A cell-based screening strategy led us to identify first generation HIV-protease inhibitors (PI) as potential inhibitors of HMGB1-TLR4 driven cytokine production. Here we report that the first-generation HIV-PI saquinavir (SQV), as well as a newly identified mammalian protease inhibitor STO33438 (334), potently block disulfide HMGB1-induced TLR4 activation, as assayed by the production of TNF-α by human monocyte-derived macrophages (THP-1). We further report on the identification of mammalian cathepsin V, a protease, as a novel target of these inhibitors. Cellular as well as recombinant protein studies show that the mechanism of action involves a direct interaction between cathepsin V with TLR4 and its adaptor protein MyD88. Treatment with SQV, 334 or the known cathepsin inhibitor SID26681509 (SID) significantly improved survival in murine models of sepsis and reduced liver damage following warm liver ischemia/reperfusion (I/R) models, both characterized by strong HMGB1-TLR4 driven pathology. The current study demonstrates a novel role for cathepsin V in TLR4 signaling and implicates cathepsin V as a novel target for first-generation HIV-PI compounds. The identification of cathepsin V as a target to block HMGB1-TLR4-driven inflammation could allow for a rapid transition of the discovery from the bench to the bedside. Disulfide HMGB1 drives pathologic inflammation in many models by activating signaling through TLR4. Cell-based screening identified the mammalian protease cathepsin V as a novel therapeutic target to inhibit TLR4-mediated inflammation induced by extracellular HMGB1 (disulfide form). We identified two protease inhibitors (PIs) that block cathepsin V and thereby inhibit disulfide HMGB1-induced TLR4 activation: saquinavir (SQV), a first-generation PI targeting viral HIV protease and STO33438 (334), targeting mammalian proteases. We discovered that cathepsin V binds TLR4 under basal and HMGB1-stimulated conditions, but dissociates in the presence of SQV over time. Thus cathepsin V is a novel target for first-generation HIV PIs and represents a potential therapeutic target of pathologic inflammation.
Collapse
Affiliation(s)
- John P Pribis
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yousef Al-Abed
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America.,Department of Medicinal Chemistry, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Huan Yang
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Domokos Gero
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hongbo Xu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,The Third Xiangya Hospital, Central South University, Hunan, China
| | - Marcelo F Montenegro
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Eileen M Bauer
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sodam Kim
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Changchun Cai
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Tunliang Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,The Third Xiangya Hospital, Central South University, Hunan, China
| | - Petra Szoleczky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kevin J Tracey
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
14
|
Xiang T, Du L, Pham P, Zhu B, Jiang S. Nelfinavir, an HIV protease inhibitor, induces apoptosis and cell cycle arrest in human cervical cancer cells via the ROS-dependent mitochondrial pathway. Cancer Lett 2015; 364:79-88. [DOI: 10.1016/j.canlet.2015.04.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/24/2015] [Accepted: 04/24/2015] [Indexed: 01/03/2023]
|
15
|
Abstract
PURPOSE OF REVIEW To summarize contemporary observations regarding the effects of highly active antiretroviral therapy (HAART) on the brain. RECENT FINDINGS The effects of HAART on the structure and function of the brain during HIV/AIDS is currently a subject of intense interest because the brain is one of the most drug-impenetrable organs that is infected by HIV-1 and as such represents an important reservoir for replication-competent virus. The effects of HAART on neurocognitive impairment caused by HIV-1 infection remain uncertain with both beneficial and adverse outcomes reported with different HAART regimens. Similarly, the effects of individual HAART regimens on viral quantity in cerebrospinal fluid as a surrogate indicator of brain virus burden are variable. Indeed, the situation is further complicated by the ranking of antiretroviral therapies (ARTs) by their central nervous system penetration-effectiveness score on the basis of ART concentrations in cerebrospinal fluid. Experimental studies have also yielded equivocal findings depending on the model and individual ART. At the same time, a burgeoning body of experimental data has demonstrated neurotoxic effects of several ARTs, including nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs) and protease inhibitors (PIs). SUMMARY HAART selection strategies are currently guided by efficacy, resistance testing, toxicity, potential drug interactions and theoretical brain penetration. As improved strategies are developed to target the viral reservoir within the brain, greater knowledge of the effects of ARTs on neural tissues will be needed to operationalize their use in a rational manner that maximizes antiretroviral efficacy and minimizes the neurotoxic complications.
Collapse
|
16
|
Bertrand L, Toborek M. Dysregulation of Endoplasmic Reticulum Stress and Autophagic Responses by the Antiretroviral Drug Efavirenz. Mol Pharmacol 2015; 88:304-15. [PMID: 25987489 DOI: 10.1124/mol.115.098590] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/15/2015] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence demonstrates that the antiretroviral drugs (ARVds) used for human immunodeficiency virus (HIV) treatment have toxic effects that result in various cellular and tissue pathologies; however, their impact on the cells composing the blood-brain barrier is poorly understood. The current study focused on ARVds, used either in combination or alone, on the induction of endoplasmic reticulum (ER) stress responses in human brain endothelial cells. Among studied drugs (efavirenz, tenofovir, emtricitabine, lamivudine, and indinavir), only efavirenz increased ER stress via upregulation and activation of protein kinase-like ER kinase PERK and inositol requiring kinase 1α (IRE1α). At the same time, efavirenz diminished autophagic activity, a surprising result because typically the induction of ER stress is linked to enhanced autophagy. These results were confirmed in microvessels of HIV transgenic mice chronically administered with efavirenz. In a series of further experiments, we identified that efavirenz dysregulated ER stress and autophagy by blocking the activity of the Beclin-1/Atg14/PI3KIII complex in regard to synthesis of phosphatidylinositol 3-phosphate, a process that is linked to the formation of autophagosomes. Because autophagy is a protective mechanism involved in the removal of dysfunctional proteins and organelles, its inhibition can contribute to the toxicity of efavirenz or the development of neurodegenerative disease in HIV patients treated with this drug.
Collapse
Affiliation(s)
- Luc Bertrand
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida
| |
Collapse
|
17
|
A case of nephrotic syndrome, showing evidence of response to saquinavir. Case Rep Nephrol 2015; 2015:512549. [PMID: 25802775 PMCID: PMC4329738 DOI: 10.1155/2015/512549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/06/2015] [Accepted: 01/11/2015] [Indexed: 11/17/2022] Open
Abstract
The treatment of primary nephrotic syndrome such as minimal change nephropathy, membranous nephropathy, and focal segmental glomerulosclerosis nephropathy remains challenging. Whilst most cases of idiopathic nephrotic syndrome respond to steroid therapy and experience a limited number of relapses prior to complete remission, some cases suffer from frequent relapses and become steroid dependent or are primarily steroid resistant. Treatment options are limited to immunosuppressive drugs with significant side effect profiles. New modalities targeting novel pathways in the pathogenesis of nephrotic syndrome are actively sought. Here we report the case of a patient with steroid dependent focal segmental glomerulosclerosis (FSGS) nephrotic syndrome with a favourable response to a novel proteasome inhibitor saquinavir.
Collapse
|
18
|
Abstract
OBJECTIVE To review the mechanisms of anti-cancer activity of nelfinavir and other protease inhibitors (PIs) based on evidences reported in the published literature. METHODS We extensively reviewed the literature concerning nelfinavir (NFV) as an off target anti-cancer drug and other PIs. A classification of PIs based on anti-cancer mode of action was proposed. Controversies regarding nelfinavir mode of action were also addressed. CONCLUSIONS The two main mechanisms involved in anti-cancer activity are endoplasmic reticulum stress-unfolded protein response pathway and Akt inhibition. However there are many other effects, partially dependent and independent of those mentioned, that may be useful in cancer treatment, including MMP-9 and MMP-2 inhibition, down-regulation of CDK-2, VEGF, bFGF, NF-kB, STAT-3, HIF-1 alfa, IGF, EGFR, survivin, BCRP, androgen receptor, proteasome, fatty acid synthase (FAS), decrease in cellular ATP concentration and upregulation of TRAIL receptor DR5, Bax, increased radiosensitivity, and autophagy. The end result of all these effects is slower growth, decreased angiogenesis, decreased invasion and increased apoptosis, which means reduced proliferation and increased cancer cells death. PIs may be classified according to their anticancer activity at clinically achievable doses, in AKT inhibitors, ER stressors and Akt inhibitors/ER stressors. Beyond the phase I trials that have been recently completed, adequately powered and well-designed clinical trials are needed in the various cancer type settings, and specific trials where NFV is tested in association with other known anti-cancer pharmaceuticals should be sought, in order to find an appropriate place for NFV in cancer treatment. The analysis of controversies on the molecular mechanisms of NFV hints to the possibility that NFV works in a different way in tumor cells and in hepatocytes and adipocytes.
Collapse
Affiliation(s)
- Tomas Koltai
- Centro de Diagnostico y Tratamiento de la Obra Social del Personal de la Alimentación, Talar de Pacheco, Buenos Aires, 1618, Argentina
| |
Collapse
|
19
|
Mechanisms of HIV protein degradation into epitopes: implications for vaccine design. Viruses 2014; 6:3271-92. [PMID: 25196483 PMCID: PMC4147695 DOI: 10.3390/v6083271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 12/02/2022] Open
Abstract
The degradation of HIV-derived proteins into epitopes displayed by MHC-I or MHC-II are the first events leading to the priming of HIV-specific immune responses and to the recognition of infected cells. Despite a wealth of information about peptidases involved in protein degradation, our knowledge of epitope presentation during HIV infection remains limited. Here we review current data on HIV protein degradation linking epitope production and immunodominance, viral evolution and impaired epitope presentation. We propose that an in-depth understanding of HIV antigen processing and presentation in relevant primary cells could be exploited to identify signatures leading to efficient or inefficient epitope presentation in HIV proteomes, and to improve the design of immunogens eliciting immune responses efficiently recognizing all infected cells.
Collapse
|
20
|
Batman G, Oliver AW, Zehbe I, Richard C, Hampson L, Hampson IN. Lopinavir up-regulates expression of the antiviral protein ribonuclease L in human papillomavirus-positive cervical carcinoma cells. Antivir Ther 2011; 16:515-25. [PMID: 21685539 DOI: 10.3851/imp1786] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND We have previously shown that the HIV protease inhibitor lopinavir has selective toxicity against human papillomavirus (HPV)-positive cervical carcinoma cells via an unknown mechanism. METHODS SiHa cervical carcinoma cells were stably transfected with the proteasome sensor vector pZsProSensor-1 to confirm lopinavir inhibits the proteasome in these cells. The Panorama Xpress profiler 725 antibody array was then used to analyse specific changes in protein expression in lopinavir-treated versus control untreated SiHa cells followed by PCR and western blotting. Colorimetric growth assays of lopinavir-treated E6/E7 immortalised versus control human keratinocytes were performed. Targeted small interfering RNA gene silencing followed by growth assay comparison of lopinavir-treated/untreated SiHa cells was also used. RESULTS Lopinavir induced an increase in the fluorescence of pZsProSensor-1 transfected SiHa cells, indicative of proteasomal inhibition. Ribonuclease L (RNASEL) protein was shown to be up-regulated in lopinavir-treated SiHa cells, which was confirmed by PCR and western blot. Targeted silencing of RNASEL reduced the sensitivity of SiHa cells to lopinavir. Selective toxicity against E6/E7 immortalised keratinocytes versus control cells was also seen with lopinavir and was associated with up-regulated RNASEL expression. CONCLUSIONS These data are consistent with the toxicity of lopinavir against HPV-positive cervical carcinoma cells being related to its ability to block viral proteasome activation and induce an up-regulation of the antiviral protein RNASEL. This is supported by the drug's selective toxicity and up-regulation of RNASEL in E6/E7 immortalised keratinocytes combined with the increased resistance to lopinavir observed in SiHa cells following silencing of RNASEL gene expression.
Collapse
Affiliation(s)
- Gavin Batman
- Gynaecological Oncology Laboratories, School of Cancer & Enabling Sciences, University of Manchester, St Mary's Hospital, Manchester, UK
| | | | | | | | | | | |
Collapse
|
21
|
Qayum N, Muschel RJ, Im JH, Balathasan L, Koch CJ, Patel S, McKenna WG, Bernhard EJ. Tumor vascular changes mediated by inhibition of oncogenic signaling. Cancer Res 2009; 69:6347-54. [PMID: 19622766 DOI: 10.1158/0008-5472.can-09-0657] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many inhibitors of the epidermal growth factor receptor (EGFR)-RAS-phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway are in clinical use or under development for cancer therapy. Here, we show that treatment of mice bearing human tumor xenografts with inhibitors that block EGFR, RAS, PI3K, or AKT resulted in prolonged and durable enhancement of tumor vascular flow, perfusion, and decreased tumor hypoxia. The vessels in the treated tumors had decreased tortuosity and increased internodal length accounting for the functional alterations. Inhibition of tumor growth cannot account for these results, as the drugs were given at doses that did not alter tumor growth. The tumor cell itself was an essential target, as HT1080 tumors that lack EGFR did not respond to an EGFR inhibitor but did respond with vascular alterations to RAS or PI3K inhibition. We extended these observations to spontaneously arising tumors in MMTV-neu mice. These tumors also responded to PI3K inhibition with decreased tumor hypoxia, increased vascular flow, and morphologic alterations of their vessels, including increased vascular maturity and acquisition of pericyte markers. These changes are similar to the vascular normalization that has been described after the antiangiogenic treatment of xenografts. One difficulty in the use of vascular normalization as a therapeutic strategy has been its limited duration. In contrast, blocking tumor cell RAS-PI3K-AKT signaling led to persistent vascular changes that might be incorporated into clinical strategies based on improvement of vascular flow or decreased hypoxia. These results indicate that vascular alterations must be considered as a consequence of signaling inhibition in cancer therapy.
Collapse
Affiliation(s)
- Naseer Qayum
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chiappini E, Galli L, Tovo PA, Gabiano C, Lisi C, Giaquinto C, Rampon O, Gattinara GC, De Marco G, Osimani P, Manzionna M, Miniaci A, Pintor C, Rosso R, Esposito S, Viganò A, Dodi I, Maccabruni A, Fundarò C, de Martino M. Cancer rates after year 2000 significantly decrease in children with perinatal HIV infection: a study by the Italian Register for HIV Infection in Children. J Clin Oncol 2007; 25:97-101. [PMID: 17194910 DOI: 10.1200/jco.2006.06.6506] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To evaluate the impact of highly active antiretroviral therapy (HAART) on cancer incidence in HIV-infected children throughout a 20-year period. PATIENTS AND METHODS An observational population study was conducted on 1,190 perinatally HIV-infected children enrolled onto the Italian Register for HIV Infection in Children from 1985 to 2004 and never lost to follow-up (total observation time, 10,037.66 years). Cancer rates were calculated in the pre-HAART (1985 to 1995), early HAART (1996 to 1999), and late HAART (2000 to 2004) periods and compared using Poisson regression adjusted for age. The proportion of HAART-treated children increased from 4.1% in 1996 to 60.4% in 1999 and to 81.5% in 2004. In the same time frame, the proportion of children receiving HAART for at least 2 years increased from 3.1% to 77.0%. RESULTS Overall, 35 cancers occurred. Cancer rates were 4.49 (95% CI, 2.37 to 6.64), 4.09 (95% CI, 1.68 to 6.50), and 0.76 (95% CI, 0.00 to 1.80) per 1,000 children per year in 1985 to 1995, 1996 to 1999, and 2000 to 2004, respectively. Notably, there was no significant difference comparing the periods from 1985 to 1995 and 1996 to 1999 (P = .081). By contrast, cancer rates were significantly lower in the period from 2000 to 2004 than in 1996 to 1999 (P < .0001). Results were confirmed by separately analyzing data from children observed from birth (P = .418 for 1985 to 1995 v 1996 to 1999; P = .001 for 1996 to 1999 v 2000 to 2004). CONCLUSION Dramatically reduced cancer rates were observed only in the late HAART period in parallel to the increasing proportion of children receiving HAART therapy.
Collapse
Affiliation(s)
- Elena Chiappini
- Department of Pediatrics, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hampson L, Kitchener HC, Hampson IN. Specific HIV Protease Inhibitors Inhibit the Ability of Hpv16 E6 to Degrade P53 and Selectively Kill E6-Dependent Cervical Carcinoma Cells In Vitro. Antivir Ther 2005. [DOI: 10.1177/135965350601100607] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although HIV protease inhibitor (PI) drugs predominantly target HIV proteases 1 and 2, it is also known that part of their efficacy is due to selective inhibition of the proteasome. The pathogenicity of high-risk human papilloma virus (HPV) is dependent on expression of viral E6 proteins which inappropriately activate the 26S proteasome to degrade p53 and other cellular proteins that are detrimental to viral replication. Comparison of the ability of the PIs indinavir, ritonavir, amprenavir, lopinavir, atazanavir, nelfinavir and saquinavir to inhibit E6-mediated proteasomal degradation of mutant p53 in E6-transfected C33A cells showed that 15μM lopinavir, 1 mM indinavir or 125 μM ritonavir treatment for 24 h produced a stable increase in the level of nuclear p53 in these cells with minimal cell death. After 4 h exposure of HPV16+ve SiHa cells to 15 μM lopinavir, a transient increase in wild-type p53 expression was observed associated with a 7% reduction in the chymotryptic activity of the 20S proteasome and apoptosis after 24 h. Comparison of growth rates of PI treated SiHa, CaSki, C33A, C33A-E6 and non-transformed NIH/3T3 cells showed that SiHa were the most sensitive, whereas NIH/3T3 were least affected. In conclusion, these data show that specific HIV PIs such as lopinavir and possibly indinavir, can induce selective toxicity of HPV-transformed cervical carcinoma cells expressing wild-type p53 and may form the basis of a topically applied alternative to surgery for the treatment of HPV-related premalignant lesions of the cervix.
Collapse
Affiliation(s)
- Lynne Hampson
- University of Manchester Gynaecological Oncology Laboratories, Human Development, St Mary's Hospital, Manchester M13 OJH
| | - Henry C Kitchener
- University of Manchester Gynaecological Oncology Laboratories, Human Development, St Mary's Hospital, Manchester M13 OJH
| | - Ian N Hampson
- University of Manchester Gynaecological Oncology Laboratories, Human Development, St Mary's Hospital, Manchester M13 OJH
| |
Collapse
|