1
|
Klein F, Kohl SH, Lührs M, Mehler DMA, Sorger B. From lab to life: challenges and perspectives of fNIRS for haemodynamic-based neurofeedback in real-world environments. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230087. [PMID: 39428887 PMCID: PMC11513164 DOI: 10.1098/rstb.2023.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 10/22/2024] Open
Abstract
Neurofeedback allows individuals to monitor and self-regulate their brain activity, potentially improving human brain function. Beyond the traditional electrophysiological approach using primarily electroencephalography, brain haemodynamics measured with functional magnetic resonance imaging (fMRI) and more recently, functional near-infrared spectroscopy (fNIRS) have been used (haemodynamic-based neurofeedback), particularly to improve the spatial specificity of neurofeedback. Over recent years, especially fNIRS has attracted great attention because it offers several advantages over fMRI such as increased user accessibility, cost-effectiveness and mobility-the latter being the most distinct feature of fNIRS. The next logical step would be to transfer haemodynamic-based neurofeedback protocols that have already been proven and validated by fMRI to mobile fNIRS. However, this undertaking is not always easy, especially since fNIRS novices may miss important fNIRS-specific methodological challenges. This review is aimed at researchers from different fields who seek to exploit the unique capabilities of fNIRS for neurofeedback. It carefully addresses fNIRS-specific challenges and offers suggestions for possible solutions. If the challenges raised are addressed and further developed, fNIRS could emerge as a useful neurofeedback technique with its own unique application potential-the targeted training of brain activity in real-world environments, thereby significantly expanding the scope and scalability of haemodynamic-based neurofeedback applications.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Franziska Klein
- Biomedical Devices and Systems Group, R&D Division Health, OFFIS—Institute for Information Technology, Oldenburg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
| | - Simon H. Kohl
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, Jülich, Germany
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Michael Lührs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Innovation B.V., Research Department, Maastricht, The Netherlands
| | - David M. A. Mehler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Institute of Translational Psychiatry, Medical Faculty, University of Münster, Münster, Germany
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Kruse EA, Saxena A, Shovestul BJ, Dudek EM, Reda S, Dong J, Venkataraman A, Lamberti JS, Dodell-Feder D. Training individuals with schizophrenia to gain volitional control of the theory of mind network with real-time fMRI: A pilot study. Schizophr Res Cogn 2024; 38:100329. [PMID: 39290206 PMCID: PMC11406017 DOI: 10.1016/j.scog.2024.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Individuals diagnosed with schizophrenia spectrum disorders (SSDs) often demonstrate alterations in the Theory of Mind Network (ToM-N). Here, in this proof-of-concept, single-arm pilot study, we investigate whether participants with an SSD (N = 7) were able to learn to volitionally control regions of the ToM-N (dorso/middle/ventromedial prefrontal cortex [D/M/VMPFC], left temporoparietal junction [LTPJ], precuneus [PC], right superior temporal sulcus [RSTS], and right temporoparietal junction [RTPJ]) using real-time fMRI neurofeedback (rtfMRI-NF). Region-of-interest analyses demonstrate that after neurofeedback training, participants were able to gain volitional control in the following ToM-N brain regions during the transfer task, where no active feedback was given: right temporoparietal junction, precuneus, and dorso/ventromedial prefrontal cortex (neurofeedback effect Fs > 6.17, ps < .05). These findings suggest that trained volitional control over the ToM-N is tentatively feasible with rtfMRI neurofeedback in SSD, although findings need to be replicated with more robust designs that include a control group and larger samples.
Collapse
Affiliation(s)
- Elizabeth A Kruse
- Department of Psychology, University of Rochester, United States of America
| | - Abhishek Saxena
- Department of Psychology, University of Rochester, United States of America
| | | | - Emily M Dudek
- Department of Psychology, University of Houston, United States of America
| | - Stephanie Reda
- Department of Psychology, University of Rochester, United States of America
| | - Jojo Dong
- Department of Psychology, University of Rochester, United States of America
| | - Arun Venkataraman
- School of Medicine and Dentistry, University of Rochester Medical Center, United States of America
| | - J Steven Lamberti
- Department of Psychiatry, University of Rochester Medical Center, United States of America
| | - David Dodell-Feder
- Department of Psychology, University of Rochester, United States of America
- Department of Neuroscience, University of Rochester Medical Center, United States of America
| |
Collapse
|
3
|
Huang MX, Yu Q, Li YY. [A prospective randomized controlled study of neurofeedback combined with learning style profile intervention training in children with high-functioning autism]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:1066-1071. [PMID: 39467676 PMCID: PMC11527408 DOI: 10.7499/j.issn.1008-8830.2405054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/27/2024] [Indexed: 10/30/2024]
Abstract
OBJECTIVES To explore the application of neurofeedback (NFB) combined with learning style profile (LSP) intervention training in children with high-functioning autism (HFA). METHODS A prospective study was conducted to select 86 children with HFA admitted to the hospital from February 2022 to February 2024. They were divided into two groups according to the random number table method, with 43 cases in each group. In this double-blind study, the control group was given LSP intervention training, and the observation group was given NFB intervention on the basis of the treatment used in the control group. Both groups were treated for 6 months. The scores of Autism Behavior Checklist (ABC), Autism Treatment Evaluation Checklist (ATEC), Social Responsiveness Scale (SRS), and Pediatric Quality of Life (PedsQL) were compared between the two groups before intervention and at 6 months after intervention. The relationship of PedsQL score with ABC, ATEC, and SRS scores was analyzed in children with HFA. RESULTS After 6 months of intervention, the scores of ABC, ATEC, and SRS in the observation group were significantly lower than those in the control group, while the PedsQL score in the observation group was significantly higher than that in the control group (P<0.05). The PedsQL score was negatively correlated with the ABC, ATEC, and SRS scores in children with HFA (r=-0.238, -0.381, -0.219 respectively; P<0.001). CONCLUSIONS NFB combined with LSP can effectively improve the clinical symptoms and social ability, control the development of the disease, and improve the quality of life in children with HFA.
Collapse
Affiliation(s)
- Ming-Xin Huang
- Department of Psychology, Tianjing Children's Hospital/Children's Hospital, Tianjin University, Tianjing 300134, China
| | - Qing Yu
- Department of Psychology, Tianjing Children's Hospital/Children's Hospital, Tianjin University, Tianjing 300134, China
| | - Yuan-Yuan Li
- Department of Psychology, Tianjing Children's Hospital/Children's Hospital, Tianjin University, Tianjing 300134, China
| |
Collapse
|
4
|
Wider W, Mutang JA, Chua BS, Pang NTP, Jiang L, Fauzi MA, Udang LN. Mapping the evolution of neurofeedback research: a bibliometric analysis of trends and future directions. Front Hum Neurosci 2024; 18:1339444. [PMID: 38799297 PMCID: PMC11116792 DOI: 10.3389/fnhum.2024.1339444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction This study conducts a bibliometric analysis on neurofeedback research to assess its current state and potential future developments. Methods It examined 3,626 journal articles from the Web of Science (WoS) using co-citation and co-word methods. Results The co-citation analysis identified three major clusters: "Real-Time fMRI Neurofeedback and Self-Regulation of Brain Activity," "EEG Neurofeedback and Cognitive Performance Enhancement," and "Treatment of ADHD Using Neurofeedback." The co-word analysis highlighted four key clusters: "Neurofeedback in Mental Health Research," "Brain-Computer Interfaces for Stroke Rehabilitation," "Neurofeedback for ADHD in Youth," and "Neural Mechanisms of Emotion and Self-Regulation with Advanced Neuroimaging. Discussion This in-depth bibliometric study significantly enhances our understanding of the dynamic field of neurofeedback, indicating its potential in treating ADHD and improving performance. It offers non-invasive, ethical alternatives to conventional psychopharmacology and aligns with the trend toward personalized medicine, suggesting specialized solutions for mental health and rehabilitation as a growing focus in medical practice.
Collapse
Affiliation(s)
- Walton Wider
- Faculty of Business and Communications, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Jasmine Adela Mutang
- Faculty of Psychology and Education, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Bee Seok Chua
- Faculty of Psychology and Education, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Nicholas Tze Ping Pang
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Leilei Jiang
- Faculty of Education and Liberal Arts, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Muhammad Ashraf Fauzi
- Faculty of Industrial Management, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, Pahang, Malaysia
| | - Lester Naces Udang
- Faculty of Liberal Arts, Shinawatra University, Pathumthani, Thailand
- College of Education, University of the Philippines, Diliman, Philippines
| |
Collapse
|
5
|
Pereira DJ, Morais S, Sayal A, Pereira J, Meneses S, Areias G, Direito B, Macedo A, Castelo-Branco M. Neurofeedback training of executive function in autism spectrum disorder: distinct effects on brain activity levels and compensatory connectivity changes. J Neurodev Disord 2024; 16:14. [PMID: 38605323 PMCID: PMC11008042 DOI: 10.1186/s11689-024-09531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Deficits in executive function (EF) are consistently reported in autism spectrum disorders (ASD). Tailored cognitive training tools, such as neurofeedback, focused on executive function enhancement might have a significant impact on the daily life functioning of individuals with ASD. We report the first real-time fMRI neurofeedback (rt-fMRI NF) study targeting the left dorsolateral prefrontal cortex (DLPFC) in ASD. METHODS Thirteen individuals with autism without intellectual disability and seventeen neurotypical individuals completed a rt-fMRI working memory NF paradigm, consisting of subvocal backward recitation of self-generated numeric sequences. We performed a region-of-interest analysis of the DLPFC, whole-brain comparisons between groups and, DLPFC-based functional connectivity. RESULTS The ASD and control groups were able to modulate DLPFC activity in 84% and 98% of the runs. Activity in the target region was persistently lower in the ASD group, particularly in runs without neurofeedback. Moreover, the ASD group showed lower activity in premotor/motor areas during pre-neurofeedback run than controls, but not in transfer runs, where it was seemingly balanced by higher connectivity between the DLPFC and the motor cortex. Group comparison in the transfer run also showed significant differences in DLPFC-based connectivity between groups, including higher connectivity with areas integrated into the multidemand network (MDN) and the visual cortex. CONCLUSIONS Neurofeedback seems to induce a higher between-group similarity of the whole-brain activity levels (including the target ROI) which might be promoted by changes in connectivity between the DLPFC and both high and low-level areas, including motor, visual and MDN regions.
Collapse
Affiliation(s)
- Daniela Jardim Pereira
- Neurorradiology Functional Area, Imaging Department, Coimbra Hospital and University Center, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Morais
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Psychiatry Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Alexandre Sayal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Siemens Healthineers Portugal, Lisboa, Portugal
| | - João Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Sofia Meneses
- Psychology Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Graça Areias
- Psychology Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Bruno Direito
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- IATV-Instituto do Ambiente, Tecnologia e Vida (IATV), Coimbra, Portugal
| | - António Macedo
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Siemens Healthineers Portugal, Lisboa, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
6
|
Konrad K, Gerloff C, Kohl SH, Mehler DMA, Mehlem L, Volbert EL, Komorek M, Henn AT, Boecker M, Weiss E, Reindl V. Interpersonal neural synchrony and mental disorders: unlocking potential pathways for clinical interventions. Front Neurosci 2024; 18:1286130. [PMID: 38529267 PMCID: PMC10962391 DOI: 10.3389/fnins.2024.1286130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/30/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Interpersonal synchronization involves the alignment of behavioral, affective, physiological, and brain states during social interactions. It facilitates empathy, emotion regulation, and prosocial commitment. Mental disorders characterized by social interaction dysfunction, such as Autism Spectrum Disorder (ASD), Reactive Attachment Disorder (RAD), and Social Anxiety Disorder (SAD), often exhibit atypical synchronization with others across multiple levels. With the introduction of the "second-person" neuroscience perspective, our understanding of interpersonal neural synchronization (INS) has improved, however, so far, it has hardly impacted the development of novel therapeutic interventions. Methods To evaluate the potential of INS-based treatments for mental disorders, we performed two systematic literature searches identifying studies that directly target INS through neurofeedback (12 publications; 9 independent studies) or brain stimulation techniques (7 studies), following PRISMA guidelines. In addition, we narratively review indirect INS manipulations through behavioral, biofeedback, or hormonal interventions. We discuss the potential of such treatments for ASD, RAD, and SAD and using a systematic database search assess the acceptability of neurofeedback (4 studies) and neurostimulation (4 studies) in patients with social dysfunction. Results Although behavioral approaches, such as engaging in eye contact or cooperative actions, have been shown to be associated with increased INS, little is known about potential long-term consequences of such interventions. Few proof-of-concept studies have utilized brain stimulation techniques, like transcranial direct current stimulation or INS-based neurofeedback, showing feasibility and preliminary evidence that such interventions can boost behavioral synchrony and social connectedness. Yet, optimal brain stimulation protocols and neurofeedback parameters are still undefined. For ASD, RAD, or SAD, so far no randomized controlled trial has proven the efficacy of direct INS-based intervention techniques, although in general brain stimulation and neurofeedback methods seem to be well accepted in these patient groups. Discussion Significant work remains to translate INS-based manipulations into effective treatments for social interaction disorders. Future research should focus on mechanistic insights into INS, technological advancements, and rigorous design standards. Furthermore, it will be key to compare interventions directly targeting INS to those targeting other modalities of synchrony as well as to define optimal target dyads and target synchrony states in clinical interventions.
Collapse
Affiliation(s)
- Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| | - Christian Gerloff
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
- Department of Applied Mathematics and Theoretical Physics, Cambridge Centre for Data-Driven Discovery, University of Cambridge, Cambridge, United Kingdom
| | - Simon H. Kohl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| | - David M. A. Mehler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- School of Psychology, Cardiff University Brain Research Imaging Center (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Lena Mehlem
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Emily L. Volbert
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Maike Komorek
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Alina T. Henn
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Maren Boecker
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- Institute of Medical Psychology and Medical Sociology, University Hospital RWTH, Aachen, Germany
| | - Eileen Weiss
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- Institute of Medical Psychology and Medical Sociology, University Hospital RWTH, Aachen, Germany
| | - Vanessa Reindl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- Department of Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
7
|
Watve A, Haugg A, Frei N, Koush Y, Willinger D, Bruehl AB, Stämpfli P, Scharnowski F, Sladky R. Facing emotions: real-time fMRI-based neurofeedback using dynamic emotional faces to modulate amygdala activity. Front Neurosci 2024; 17:1286665. [PMID: 38274498 PMCID: PMC10808718 DOI: 10.3389/fnins.2023.1286665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Maladaptive functioning of the amygdala has been associated with impaired emotion regulation in affective disorders. Recent advances in real-time fMRI neurofeedback have successfully demonstrated the modulation of amygdala activity in healthy and psychiatric populations. In contrast to an abstract feedback representation applied in standard neurofeedback designs, we proposed a novel neurofeedback paradigm using naturalistic stimuli like human emotional faces as the feedback display where change in the facial expression intensity (from neutral to happy or from fearful to neutral) was coupled with the participant's ongoing bilateral amygdala activity. Methods The feasibility of this experimental approach was tested on 64 healthy participants who completed a single training session with four neurofeedback runs. Participants were assigned to one of the four experimental groups (n = 16 per group), i.e., happy-up, happy-down, fear-up, fear-down. Depending on the group assignment, they were either instructed to "try to make the face happier" by upregulating (happy-up) or downregulating (happy-down) the amygdala or to "try to make the face less fearful" by upregulating (fear-up) or downregulating (fear-down) the amygdala feedback signal. Results Linear mixed effect analyses revealed significant amygdala activity changes in the fear condition, specifically in the fear-down group with significant amygdala downregulation in the last two neurofeedback runs as compared to the first run. The happy-up and happy-down groups did not show significant amygdala activity changes over four runs. We did not observe significant improvement in the questionnaire scores and subsequent behavior. Furthermore, task-dependent effective connectivity changes between the amygdala, fusiform face area (FFA), and the medial orbitofrontal cortex (mOFC) were examined using dynamic causal modeling. The effective connectivity between FFA and the amygdala was significantly increased in the happy-up group (facilitatory effect) and decreased in the fear-down group. Notably, the amygdala was downregulated through an inhibitory mechanism mediated by mOFC during the first training run. Discussion In this feasibility study, we intended to address key neurofeedback processes like naturalistic facial stimuli, participant engagement in the task, bidirectional regulation, task congruence, and their influence on learning success. It demonstrated that such a versatile emotional face feedback paradigm can be tailored to target biased emotion processing in affective disorders.
Collapse
Affiliation(s)
- Apurva Watve
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
| | - Amelie Haugg
- Department of Child and Adolescent Psychiatry, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Nada Frei
- Department of Child and Adolescent Psychiatry, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Yury Koush
- Magnetic Resonance Research Center (MRRC), Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States
| | - David Willinger
- Department of Child and Adolescent Psychiatry, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
- Division of Psychodynamics, Department of Psychology and Psychodynamics, Karl Landsteiner University of Health Sciences, Krems an der Donau, Lower Austria, Austria
- Neuroscience Center Zürich, University of Zürich and Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Annette Beatrix Bruehl
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
- Center for Affective, Stress and Sleep Disorders, Psychiatric University Hospital Basel, Basel, Switzerland
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
| | - Frank Scharnowski
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, University of Zürich and Swiss Federal Institute of Technology, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, Faculty of Medicine, University of Zürich, Zürich, Switzerland
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Ronald Sladky
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
- Social, Cognitive and Affective Neuroscience Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Saxena A, Shovestul BJ, Dudek EM, Reda S, Venkataraman A, Lamberti JS, Dodell-Feder D. Training volitional control of the theory of mind network with real-time fMRI neurofeedback. Neuroimage 2023; 279:120334. [PMID: 37591479 DOI: 10.1016/j.neuroimage.2023.120334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
Is there a way improve our ability to understand the minds of others? Towards addressing this question, here, we conducted a single-arm, proof-of-concept study to evaluate whether real-time fMRI neurofeedback (rtfMRI-NF) from the temporo-parietal junction (TPJ) leads to volitional control of the neural network subserving theory of mind (ToM; the process by which we attribute and reason about the mental states of others). As additional aims, we evaluated the strategies used to self-regulate the network and whether volitional control of the ToM network was moderated by participant characteristics and associated with improved performance on behavioral measures. Sixteen participants underwent fMRI while completing a task designed to individually-localize the TPJ, and then three separate rtfMRI-NF scans during which they completed multiple runs of a training task while receiving intermittent, activation-based feedback from the TPJ, and one run of a transfer task in which no neurofeedback was provided. Region-of-interest analyses demonstrated volitional control in most regions during the training tasks and during the transfer task, although the effects were smaller in magnitude and not observed in one of the neurofeedback targets for the transfer task. Text analysis demonstrated that volitional control was most strongly associated with thinking about prior social experiences when up-regulating the neural signal. Analysis of behavioral performance and brain-behavior associations largely did not reveal behavior changes except for a positive association between volitional control in RTPJ and changes in performance on one ToM task. Exploratory analysis suggested neurofeedback-related learning occurred, although some degree of volitional control appeared to be conferred with the initial self-regulation strategy provided to participants (i.e., without the neurofeedback signal). Critical study limitations include the lack of a control group and pre-rtfMRI transfer scan, which prevents a more direct assessment of neurofeedback-induced volitional control, and a small sample size, which may have led to an overestimate and/or unreliable estimate of study effects. Nonetheless, together, this study demonstrates the feasibility of training volitional control of a social cognitive brain network, which may have important clinical applications. Given the study's limitations, findings from this study should be replicated with more robust experimental designs.
Collapse
Affiliation(s)
- Abhishek Saxena
- Department of Psychology, University of Rochester, 500 Wilson Blvd Rochester, NY 14627 USA
| | - Bridget J Shovestul
- Department of Psychology, University of Rochester, 500 Wilson Blvd Rochester, NY 14627 USA
| | - Emily M Dudek
- Department of Psychology, University of Houston, 3695 Cullen Boulevard Houston, TX 77204 USA
| | - Stephanie Reda
- Department of Psychology, University of Rochester, 500 Wilson Blvd Rochester, NY 14627 USA
| | - Arun Venkataraman
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - J Steven Lamberti
- Department of Psychiatry, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - David Dodell-Feder
- Department of Psychology, University of Rochester, 500 Wilson Blvd Rochester, NY 14627 USA; Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642 USA.
| |
Collapse
|
9
|
Pereira DJ, Sayal A, Pereira J, Morais S, Macedo A, Direito B, Castelo-Branco M. Neurofeedback-dependent influence of the ventral striatum using a working memory paradigm targeting the dorsolateral prefrontal cortex. Front Behav Neurosci 2023; 17:1014223. [PMID: 36844653 PMCID: PMC9947361 DOI: 10.3389/fnbeh.2023.1014223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Executive functions and motivation have been established as key aspects for neurofeedback success. However, task-specific influence of cognitive strategies is scarcely explored. In this study, we test the ability to modulate the dorsolateral prefrontal cortex, a strong candidate for clinical application of neurofeedback in several disorders with dysexecutive syndrome, and investigate how feedback contributes to better performance in a single session. Participants of both neurofeedback (n = 17) and sham-control (n = 10) groups were able to modulate DLPFC in most runs (with or without feedback) while performing a working memory imagery task. However, activity in the target area was higher and more sustained in the active group when receiving feedback. Furthermore, we found increased activity in the nucleus accumbens in the active group, compared with a predominantly negative response along the block in participants receiving sham feedback. Moreover, they acknowledged the non-contingency between imagery and feedback, reflecting the impact on motivation. This study reinforces DLPFC as a robust target for neurofeedback clinical implementations and enhances the critical influence of the ventral striatum, both poised to achieve success in the self-regulation of brain activity.
Collapse
Affiliation(s)
- Daniela Jardim Pereira
- Neurorradiology Functional Area, Imaging Department, Coimbra Hospital and University Center, Coimbra, Portugal,Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Alexandre Sayal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal,Siemens Healthineers Portugal, Lisboa, Portugal
| | - João Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Sofia Morais
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal,Psychiatry Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - António Macedo
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Psychiatry Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Bruno Direito
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal,IATV—Instituto do Ambiente, Tecnologia e Vida (IATV), Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal,*Correspondence: Miguel Castelo-Branco
| |
Collapse
|
10
|
Klöbl M, Prillinger K, Diehm R, Doganay K, Lanzenberger R, Poustka L, Plener P, Konicar L. Individual brain regulation as learned via neurofeedback is related to affective changes in adolescents with autism spectrum disorder. Child Adolesc Psychiatry Ment Health 2023; 17:6. [PMID: 36635760 PMCID: PMC9837918 DOI: 10.1186/s13034-022-00549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/18/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Emotions often play a role in neurofeedback (NF) regulation strategies. However, investigations of the relationship between the induced neuronal changes and improvements in affective domains are scarce in electroencephalography-based studies. Thus, we extended the findings of the first study on slow cortical potential (SCP) NF in autism spectrum disorder (ASD) by linking affective changes to whole-brain activity during rest and regulation. METHODS Forty-one male adolescents with ASD were scanned twice at rest using functional magnetic resonance imaging. Between scans, half underwent NF training, whereas the other half received treatment as usual. Furthermore, parents reported on their child's affective characteristics at each measurement. The NF group had to alternatingly produce negative and positive SCP shifts during training and was additionally scanned using functional magnetic resonance imaging while applying their developed regulation strategies. RESULTS No significant treatment group-by-time interactions in affective or resting-state measures were found. However, we found increases of resting activity in the anterior cingulate cortex and right inferior temporal gyrus as well as improvements in affective characteristics over both groups. Activation corresponding to SCP differentiation in these regions correlated with the affective improvements. A further correlation was found for Rolandic operculum activation corresponding to positive SCP shifts. There were no significant correlations with the respective achieved SCP regulation during NF training. CONCLUSION SCP NF in ASD did not lead to superior improvements in neuronal or affective functioning compared to treatment as usual. However, the affective changes might be related to the individual strategies and their corresponding activation patterns as indicated by significant correlations on the whole-brain level. Trial registration This clinical trial was registered at drks.de (DRKS00012339) on 20th April, 2017.
Collapse
Affiliation(s)
- Manfred Klöbl
- Department of Psychiatry & Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Karin Prillinger
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Robert Diehm
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Kamer Doganay
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry & Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry, Medical University of Göttingen, Göttingen, Germany
| | - Paul Plener
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Ulm, Ulm, Germany
| | - Lilian Konicar
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Pindi P, Houenou J, Piguet C, Favre P. Real-time fMRI neurofeedback as a new treatment for psychiatric disorders: A meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110605. [PMID: 35843369 DOI: 10.1016/j.pnpbp.2022.110605] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/12/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
Neurofeedback using real-time functional MRI (RT-fMRI-NF) is an innovative technique that allows to voluntarily modulate a targeted brain response and its associated behavior. Despite promising results in the current literature, its effectiveness on symptoms management in psychiatric disorders is not yet clearly demonstrated. Here, we provide 1) a state-of-art qualitative review of RT-fMRI-NF studies aiming at alleviating clinical symptoms in a psychiatric population; 2) a quantitative evaluation (meta-analysis) of RT-fMRI-NF effectiveness on various psychiatric disorders and 3) methodological suggestions for future studies. Thirty-one clinical trials focusing on psychiatric disorders were included and categorized according to standard diagnostic categories. Among the 31 identified studies, 22 consisted of controlled trials, of which only eight showed significant clinical improvement in the experimental vs. control group after the training. Nine studies found an effect at follow-up on ADHD symptoms, emotion dysregulation, facial emotion processing, depressive symptoms, hallucinations, psychotic symptoms, and specific phobia. Within-group meta-analysis revealed large effects of the NF training on depressive symptoms right after the training (g = 0.81, p < 0.01) and at follow-up (g = 1.19, p < 0.01), as well as medium effects on anxiety (g = 0.44, p = 0.01) and emotion regulation (g = 0.48, p < 0.01). Between-group meta-analysis showed a medium effect on depressive symptoms (g = 0.49, p < 0.01) and a large effect on anxiety (g = 0.77, p = 0.01). However, the between-studies heterogeneity is very high. The use of RT-fMRI-NF as a treatment for psychiatric symptoms is promising, however, further double-blind, multicentric, randomized-controlled trials are warranted.
Collapse
Affiliation(s)
- Pamela Pindi
- Paris Est Créteil University (UPEC), INSERM U955, IMRB, Translational Neuro-psychiatry Team, AP-HP, DMU IMPACT, Mondor University Hospitals, FondaMental Foundation, F-94010 Créteil, France; Paris-Saclay University, Neurospin, CEA, UNIACT Lab, PsyBrain Team, F-91191 Gif-sur-Yvette, France
| | - Josselin Houenou
- Paris Est Créteil University (UPEC), INSERM U955, IMRB, Translational Neuro-psychiatry Team, AP-HP, DMU IMPACT, Mondor University Hospitals, FondaMental Foundation, F-94010 Créteil, France; Paris-Saclay University, Neurospin, CEA, UNIACT Lab, PsyBrain Team, F-91191 Gif-sur-Yvette, France.
| | - Camille Piguet
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Campus Biotech, Geneva, Switzerland
| | - Pauline Favre
- Paris Est Créteil University (UPEC), INSERM U955, IMRB, Translational Neuro-psychiatry Team, AP-HP, DMU IMPACT, Mondor University Hospitals, FondaMental Foundation, F-94010 Créteil, France; Paris-Saclay University, Neurospin, CEA, UNIACT Lab, PsyBrain Team, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
12
|
Pires G, Cruz A, Jesus D, Yasemin M, Nunes UJ, Sousa T, Castelo-Branco M. A new error-monitoring brain-computer interface based on reinforcement learning for people with autism spectrum disorders. J Neural Eng 2022; 19. [PMID: 36541535 DOI: 10.1088/1741-2552/aca798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Objective.Brain-computer interfaces (BCIs) are emerging as promising cognitive training tools in neurodevelopmental disorders, as they combine the advantages of traditional computerized interventions with real-time tailored feedback. We propose a gamified BCI based on non-volitional neurofeedback for cognitive training, aiming at reaching a neurorehabilitation tool for application in autism spectrum disorders (ASDs).Approach.The BCI consists of an emotional facial expression paradigm controlled by an intelligent agent that makes correct and wrong actions, while the user observes and judges the agent's actions. The agent learns through reinforcement learning (RL) an optimal strategy if the participant generates error-related potentials (ErrPs) upon incorrect agent actions. We hypothesize that this training approach will allow not only the agent to learn but also the BCI user, by participating through implicit error scrutiny in the process of learning through operant conditioning, making it of particular interest for disorders where error monitoring processes are altered/compromised such as in ASD. In this paper, the main goal is to validate the whole methodological BCI approach and assess whether it is feasible enough to move on to clinical experiments. A control group of ten neurotypical participants and one participant with ASD tested the proposed BCI approach.Main results.We achieved an online balanced-accuracy in ErrPs detection of 81.6% and 77.1%, respectively for two different game modes. Additionally, all participants achieved an optimal RL strategy for the agent at least in one of the test sessions.Significance.The ErrP classification results and the possibility of successfully achieving an optimal learning strategy, show the feasibility of the proposed methodology, which allows to move towards clinical experimentation with ASD participants to assess the effectiveness of the approach as hypothesized.
Collapse
Affiliation(s)
- Gabriel Pires
- Institute of Systems and Robotics of the University of Coimbra, Coimbra, Portugal.,Engineering Department, Polytechnic Institute of Tomar, Tomar, Portugal
| | - Aniana Cruz
- Institute of Systems and Robotics of the University of Coimbra, Coimbra, Portugal
| | - Diogo Jesus
- Institute of Systems and Robotics of the University of Coimbra, Coimbra, Portugal
| | - Mine Yasemin
- Institute of Systems and Robotics of the University of Coimbra, Coimbra, Portugal
| | - Urbano J Nunes
- Institute of Systems and Robotics of the University of Coimbra, Coimbra, Portugal.,Department of Electrical and Computer Engineering, University of Coimbra, Coimbra, Portugal
| | - Teresa Sousa
- Coimbra Institute for Biomedical Imaging and Translational Research of the University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research of the University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Bernardino I, Dionísio A, Violante IR, Monteiro R, Castelo-Branco M. Motor Cortex Excitation/Inhibition Imbalance in Young Adults With Autism Spectrum Disorder: A MRS-TMS Approach. Front Psychiatry 2022; 13:860448. [PMID: 35492696 PMCID: PMC9046777 DOI: 10.3389/fpsyt.2022.860448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Excitatory/inhibitory imbalance has been suggested as a neurobiological substrate of the cognitive symptomatology in Autism Spectrum Disorder (ASD). Studies using magnetic resonance spectroscopy (MRS) attempted to characterize GABA and Glutamate brain levels in ASD. However mixed findings have been reported. Here, we characterize both neurochemical and physiological aspects of GABA system in ASD by implementing a more comprehensive approach combining MRS and transcranial magnetic stimulation (TMS). A group of 16 young ASD adults and a group of 17 controls participated in this study. We employed one MRS session to assess motor cortex GABA+ and Glutamate+Glutamine (Glx) levels using MEGAPRESS and PRESS sequences, respectively. Additionally, a TMS experiment was implemented including paired-pulse (SICI, ICF and LICI), input-output curve and cortical silent period to probe cortical excitability. Our results showed a significantly increased Glx, with unchanged GABA+ levels in the ASD group compared with controls. Single TMS measures did not differ between groups, although exploratory within-group analysis showed impaired inhibition in SICI5ms, in ASD. Importantly, we observed a correlation between GABA levels and measures of the input-output TMS recruitment curve (slope and MEP amplitude) in the control group but not in ASD, as further demonstrated by direct between group comparisons. In this exploratory study, we found evidence of increased Glx levels which may contribute to ASD excitatory/inhibitory imbalance while highlighting the relevance of conducting further larger-scale studies to investigate the GABA system from complementary perspectives, using both MRS and TMS techniques.
Collapse
Affiliation(s)
- Inês Bernardino
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Ana Dionísio
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Inês R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Raquel Monteiro
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| |
Collapse
|