1
|
Treichel M, Xun R, Williams CF, Gaitor JC, MacMillan SN, Vinskus JL, Womble CT, Kowalewski T, Noonan KJT. Examining the Alkaline Stability of Tris(dialkylamino)sulfoniums and Sulfoxoniums. J Org Chem 2022; 87:15732-15743. [PMID: 36383039 DOI: 10.1021/acs.joc.2c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Herein, a synthetic method was developed to prepare a series of tris(dialkylamino)sulfonium and sulfoxonium cations from sulfur monochloride. Alkaline stability studies of these two cation families in 2 M KOH/CD3OH solution at 80 °C revealed how degradation pathways change as a function of the oxidation state of the S center, as determined by 1H NMR spectroscopy. The sulfonium cations (+S(NR2)3) typically degrade by nucleophilic attack at the sulfur atom with loss of an amino group and a proton transfer reaction to produce sulfoxides, while the sulfoxoniums (+O═S(NR2)3) tend to degrade by loss of an R group to form sulfoximines. From the group of sulfoniums and sulfoxoniums explored in this work, the tris(piperidino)sulfoxonium cation was noted to have excellent alkaline stability. This sulfoxonium should be suitable for future examination as a tethered cation in anion-exchange membranes (AEMs), or as a phase-transfer catalyst in biphasic reactions.
Collapse
Affiliation(s)
- Megan Treichel
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Ruiran Xun
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Camille F Williams
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jamie C Gaitor
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14850, United States
| | - Jessica L Vinskus
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - C Tyler Womble
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tomasz Kowalewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Chu KO, Man GCW, Hung SW, Chan TH, Lee WYT, Chan KP, Pang CP, Wang CC. Determination of (-)-epigallocatechin-3-gallate octaacetate and its metabolites in plasma of rats for pharmacokinetic study by ultra-performance-liquid-chromatography coupled to quadrupole-time-of-flight-mass-spectrometry. Front Pharmacol 2022; 13:1025053. [PMID: 36304154 PMCID: PMC9592989 DOI: 10.3389/fphar.2022.1025053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
(-)-Epigallocatechin-gallate octaacetate (pro-EGCG), a prodrug of epigallocatechin-gallate (EGCG), has been used for pre-clinical study for the treatment of endometriosis. A validated analytical method has been developed for the determination of plasma pro-EGCG and its metabolites after oral administration using ultra-performance-liquid-chromatography coupled to quadrupole-time-of-flight-mass-spectrometry (UPLC-Qtof-MS). This method is more robust, rapid, sensitive, simpler, and able to detect pro-EGCG metabolites compared to our previous method. Pro-EGCG in the plasma was stabilized from rapid degradation by formic acid, extracted by isopropanol/methyl-tert-butyl ether mixture, separated by UPLC core column, and quantified by an exact mass method with Qtof-MS. The lower limit of quantification (LLOQ), intra-day and inter-day precision, and accuracy for the range of 0.01–2.5 μg/mL were within acceptable limits. The sensitivity was improved by 25 folds using pro-EGCG ammonium adduct [M + NH4]+. This is the first report on the pharmacokinetics of oral administration with maximum-concentration (Cmax) was 0.067 ± 0.04 μg/mL, time-of-maximum-concentration (Tmax) was 1.33 h, area-under-curve (AUC) was 0.20 ± 0.05 h × µg/mL, and elimination-rate was 0.20 ± 0.11 hr−1. The pharmacokinetic profiles of pro-EGCG metabolites, (-)-epigallocatechin-gallate (EGCG) diacetates and EGCG triacetates, were also presented. This method is robust, rapid, and sensitive for the pharmacokinetic study of pro-EGCG and metabolites.
Collapse
Affiliation(s)
- Kai On Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, China
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, China
| | - Gene Chi Wai Man
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, China
| | - Sze Wan Hung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | | | - Kwok Ping Chan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, China
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, China
- Li Ka Shing Institute of Health Sciences; and School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
- *Correspondence: Chi Chiu Wang,
| |
Collapse
|
3
|
Carbofuran self-poisoning: forensic and analytic investigations in twins and literature review. Int J Legal Med 2022; 136:1585-1596. [PMID: 36050422 DOI: 10.1007/s00414-022-02885-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Carbofuran is a pesticide widely used in agricultural context to kill insects, mites, and flies by ingestion or contact. Along with literature review, we aimed to (i) present the clinical, autopsy, and toxicological findings of carbofuran self-poisonings in two 69-year-old twins, resulting in the death of one of them and (ii) assess carbofuran metabolite distribution using molecular networking. Quantitative analysis of carbofuran and its main metabolites (3-hydroxycarbofuran and 3-ketocarbofuran) was carried out using an original liquid chromatography-tandem mass spectrometry method on biological samples (cardiac or peripheral blood, urine, bile, and gastric contents). Toxicological analysis of post-mortem samples (twin 1) highlighted high concentrations of carbofuran and its metabolites in cardiac blood, bile, and gastric contents. These compounds were also quantified in blood and/or urine samples of the living brother (twin 2), confirming poisoning. Using molecular networking approach to facilitate visualization of mass spectrometry datasets and sample-to-sample comparisons, we detected two more metabolites (7-phenol-carbofuran and 3-hydroxycarbofuran glucuronide) in bile (twin 1) and urine (twin 2). These results highlight the value of (i) these compounds as carbofuran consumption markers and (ii) bile samples in post-mortem analysis to confirm poisoning. From an analytical point of view, molecular networking allowed the detection and interpretation of carbofuran metabolite ammonium adducts which helped to confirm their identification annotations, as well as their structural data. From a clinical point of view, the different outcomes between the two brothers are discussed. Overall, these cases provide novel information regarding the distribution of carbofuran and its metabolites in poisoning context.
Collapse
|
4
|
Shibata T, Nagai R, Okazaki S, Nishibe S, Ito M. Synthesis of NHC Ligands Containing a Sulfoxide Moiety and Their Use in Cross-Coupling via a Au(I)/(III) Catalytic Cycle. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takanori Shibata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Rikako Nagai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Sari Okazaki
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Shun Nishibe
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Mamoru Ito
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
5
|
Kanyiva KS, Shibata T, Tang KHN, Wang J. Palladium-Catalyzed sp3 C–H Benzoxylation of Alanine Derivatives Using Aldehydes under Ambient Conditions. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1422-9632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe Pd(II)-catalyzed sp3 C–H bond benzoxylation of N-phthaloylalanine derivatives possessing an 8-aminoquinolyl group as a directing group with aldehydes under ambient conditions is reported. When a solution of an alanine derivative and an aldehyde in a toluene/water co-solvent was reacted in the presence of palladium catalyst and tert-butyl hydroperoxide at room temperature, a benzoxylated product was formed in up to 68% yield. The protecting group of the obtained benzoxylated product was smoothly removed to afford a free amide in high yield.
Collapse
Affiliation(s)
- Kyalo Stephen Kanyiva
- Global Center of Science and Engineering, School of Advanced Science and Engineering, Waseda University
| | - Takanori Shibata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University
| | - King Hung Nigel Tang
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University
| | - Jiarui Wang
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University
| |
Collapse
|
6
|
Kanyiva KS, Uchida K, Shibata T. Silver-Catalyzed C(sp 3)-H Sulfonylation for the Synthesis of Benzyl Sulfones Using Toluene Derivatives and α-Amino Acid Sulfonamides. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kyalo Stephen Kanyiva
- Global Center of Science and Engineering, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Kanako Uchida
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
7
|
Sugimura N, Igarashi Y, Aoyama R, Shibue T. Energy decomposition analysis of the interactions in adduct ions of acetophenone and Na+, NH4+ and H+ in the gas phase. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.06.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|