1
|
Junga A, Siņicins I, Pētersons A, Pilmane M. Evaluation of PGP 9.5, NGFR, TGFβ1, FGFR1, MMP-2, AT2R2, SHH, and TUNEL in Primary Obstructive Megaureter Tissue. J Histochem Cytochem 2022; 70:139-149. [PMID: 34915763 PMCID: PMC8777373 DOI: 10.1369/00221554211063515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Primary obstructive megaureter (POM) morphogenesis is not fully known. The aim of the study was to evaluate the appearance of different factors that might take part in the pathogenesis of POM. Megaureter tissues of 14 children were stained with hematoxylin and eosin as well as with immunohistochemistry for protein gene product 9.5, nerve growth factor receptor, transforming growth factor beta 1 (TGFβ1), fibroblast growth factor receptor 1 (FGFR1), matrix metalloproteinase 2 (MMP-2), angiotensin 2 receptor type 2, and sonic hedgehog (SHH) protein. Apoptosis was detected by terminal dUTP nick-end labeling reaction. POM tissues revealed transitional epithelium with scattered vacuolization, submucosa with inflammatory cells, and focally vacuolized and chaotically organized muscle layers. Apoptosis, appearance of MMP-2, FGFR1, and SHH prevailed, but TGFβ1 positive cell number was lower in patients. Correlation between MMP-2 in epithelium and endothelium, FGFR1 and MMP-2 in epithelium, and TGFβ1 in epithelium and connective tissue in patients was detected. POM morphopathogenesis involves an apoptotic cell death of epithelium and smooth muscle as well as tissue degradation in epithelium and connective tissue of the ureter wall. The decrease of tissue growth through diminished TGFβ1 expression and stimulation of FGFR1 and MMP-2 suggests a disbalance of tissue remodelation in the megaureter wall.
Collapse
Affiliation(s)
- Anna Junga
- Anna Junga, Institute of Anatomy and
Anthropology, Riga Stradins University, Kronvalda bulv 9, Riga LV-1010, Latvia.
E-mail:
| | - Ivo Siņicins
- Institute of Anatomy and Anthropology, Riga
Stradins University, Riga, Latvia
| | - Aigars Pētersons
- Department of Children Surgery, Riga Stradins
University, Riga, Latvia
| | - Māra Pilmane
- Institute of Anatomy and Anthropology, Riga
Stradins University, Riga, Latvia
| |
Collapse
|
2
|
Doan TNA, Akison LK, Bianco-Miotto T. Epigenetic Mechanisms Responsible for the Transgenerational Inheritance of Intrauterine Growth Restriction Phenotypes. Front Endocrinol (Lausanne) 2022; 13:838737. [PMID: 35432208 PMCID: PMC9008301 DOI: 10.3389/fendo.2022.838737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
A poorly functioning placenta results in impaired exchanges of oxygen, nutrition, wastes and hormones between the mother and her fetus. This can lead to restriction of fetal growth. These growth restricted babies are at increased risk of developing chronic diseases, such as type-2 diabetes, hypertension, and kidney disease, later in life. Animal studies have shown that growth restricted phenotypes are sex-dependent and can be transmitted to subsequent generations through both the paternal and maternal lineages. Altered epigenetic mechanisms, specifically changes in DNA methylation, histone modifications, and non-coding RNAs that regulate expression of genes that are important for fetal development have been shown to be associated with the transmission pattern of growth restricted phenotypes. This review will discuss the subsequent health outcomes in the offspring after growth restriction and the transmission patterns of these diseases. Evidence of altered epigenetic mechanisms in association with fetal growth restriction will also be reviewed.
Collapse
Affiliation(s)
- Thu Ngoc Anh Doan
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Lisa K. Akison
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Tina Bianco-Miotto,
| |
Collapse
|
3
|
Block LN, Bowman BD, Schmidt JK, Keding LT, Stanic AK, Golos TG. The promise of placental extracellular vesicles: models and challenges for diagnosing placental dysfunction in utero†. Biol Reprod 2021; 104:27-57. [PMID: 32856695 PMCID: PMC7786267 DOI: 10.1093/biolre/ioaa152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Monitoring the health of a pregnancy is of utmost importance to both the fetus and the mother. The diagnosis of pregnancy complications typically occurs after the manifestation of symptoms, and limited preventative measures or effective treatments are available. Traditionally, pregnancy health is evaluated by analyzing maternal serum hormone levels, genetic testing, ultrasonographic imaging, and monitoring maternal symptoms. However, researchers have reported a difference in extracellular vesicle (EV) quantity and cargo between healthy and at-risk pregnancies. Thus, placental EVs (PEVs) may help to understand normal and aberrant placental development, monitor pregnancy health in terms of developing placental pathologies, and assess the impact of environmental influences, such as infection, on pregnancy. The diagnostic potential of PEVs could allow for earlier detection of pregnancy complications via noninvasive sampling and frequent monitoring. Understanding how PEVs serve as a means of communication with maternal cells and recognizing their potential utility as a readout of placental health have sparked a growing interest in basic and translational research. However, to date, PEV research with animal models lags behind human studies. The strength of animal pregnancy models is that they can be used to assess placental pathologies in conjunction with isolation of PEVs from fluid samples at different time points throughout gestation. Assessing PEV cargo in animals within normal and complicated pregnancies will accelerate the translation of PEV analysis into the clinic for potential use in prognostics. We propose that appropriate animal models of human pregnancy complications must be established in the PEV field.
Collapse
Affiliation(s)
- Lindsey N Block
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Brittany D Bowman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Logan T Keding
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Aleksandar K Stanic
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Chen L, Yue J, Zhou S, Hu Y, Li J. Ouabain Protects Nephrogenesis in Rats Experiencing Intrauterine Growth Restriction and Partially Restores Renal Function in Adulthood. Reprod Sci 2021; 28:186-196. [PMID: 32767217 DOI: 10.1007/s43032-020-00280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Intrauterine growth restriction (IUGR) is, in general, accompanied by a reduction of the nephron number, which increases the risk of hypertension and renal dysfunction. Studies have revealed that ouabain can partially restore the number of nephrons during IUGR. However, there is limited information regarding the melioration of nephric structure and function. We used maternal malnutrition to induce an IUGR model in rats. Subsequently, we used a mini-pump to administer ouabain to IUGR rats during pregnancy. Male offspring were divided randomly into two groups. One group was fed a normal diet, whereas the other was fed an isocaloric 8% high-salt diet. Maternal malnutrition led to a reduction in the birth weight and number of nephrons in offspring. At the end of a 40-week follow-up period, offspring from the IUGR group had high blood pressure and abnormal excretion of urinary protein; these parameters were exacerbated in offspring fed a high-salt diet. However, ouabain administration during pregnancy could partially restore the number of nephrons in IUGR offspring, normalize blood pressure, and reduce urinary protein excretion, even when challenged with a high-salt diet. Pathology findings revealed that IUGR, particularly following feeding of a high-salt diet, damaged the ultrastructure of glomeruli, but these harmful effects were ameliorated in offspring treated with ouabain. Collectively, our data suggest that ouabain could rescue nephrogenesis in IUGR newborns and protect (at least in part) the structure and function of the kidney during adulthood even when encountering unfavorable environmental challenges in subsequent life.
Collapse
Affiliation(s)
- Liang Chen
- Department of Gynecology, Jiangsu Province Hospital (The First Affiliated Hospital of Nanjing Medical University), 300 Guangzhou Road, Nanjing, 210000, China.
| | - Jing Yue
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital (The Affiliated Hospital of Nanjing University Medical School), Nanjing, China
| | - Shulin Zhou
- Department of Gynecology, Jiangsu Province Hospital (The First Affiliated Hospital of Nanjing Medical University), 300 Guangzhou Road, Nanjing, 210000, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital (The Affiliated Hospital of Nanjing University Medical School), Nanjing, China
| | - Juan Li
- Department of Hematology, Nanjing Drum Tower Hospital (The Affiliated Hospital of Nanjing University Medical School), Nanjing, China
| |
Collapse
|
5
|
Horie A, Abe Y, Koike D, Hirade T, Nariai A, Ito T, Katou F. Long-term renal follow up of preterm neonates born before 35 weeks of gestation. Pediatr Int 2019; 61:1244-1249. [PMID: 31495051 PMCID: PMC6973113 DOI: 10.1111/ped.14004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND The hypothesis of the Developmental Origins of Health and Disease states that environmental factors during fetal and infantile life are risk factors for some chronic diseases in adulthood. Few studies, however, have confirmed this hypothesis early in childhood. Therefore, we assessed how premature birth and low-birthweight (LBW) affect the renal function of Japanese children. METHODS This retrospective study surveyed 168 patients who were born before 35 weeks of gestation and were cared for at the present neonatal intensive care unit. Follow-up duration was >2 years. Serum creatinine (sCr) and estimated glomerular filtration rate (eGFR) recorded in medical records were reviewed. RESULTS The eGFR at 2 years of age was significantly correlated with birthweight and gestational age (P < 0.01). Approximately 10.7% of the children had low eGFR (<90 mL/min/1.73 m2 ) without clinical symptoms or abnormal urine examination. These children had high sCr on day 7 after birth (P < 0.01) and delayed recovery of these levels during the first month after birth. CONCLUSION Premature gestational age and LBW directly affect renal function in young children. High sCr on day 7 after birth is a risk factor for chronic kidney disease in children. Careful follow up of renal function is therefore required for premature infants and infants with LBW beginning in early childhood to prevent renal dysfunction.
Collapse
Affiliation(s)
- Akiyoshi Horie
- Division of Pediatrics, Shimane Prefectural Central Hospital, Himebara, Izumo, Shimane, Japan
| | - Yasuhiro Abe
- Division of Pediatrics, Shimane Prefectural Central Hospital, Himebara, Izumo, Shimane, Japan
| | - Daisuke Koike
- Division of Pediatrics, Shimane Prefectural Central Hospital, Himebara, Izumo, Shimane, Japan
| | - Tomohiro Hirade
- Division of Pediatrics, Shimane Prefectural Central Hospital, Himebara, Izumo, Shimane, Japan
| | - Akiyoshi Nariai
- Division of Pediatrics, Shimane Prefectural Central Hospital, Himebara, Izumo, Shimane, Japan
| | - Tomoko Ito
- Division of Neonatology, Shimane Prefectural Central Hospital, Himebara, Izumo, Shimane, Japan
| | - Fumihide Katou
- Division of Neonatology, Shimane Prefectural Central Hospital, Himebara, Izumo, Shimane, Japan
| |
Collapse
|
6
|
Palmer KR, Mockler JC, Davies-Tuck ML, Miller SL, Goergen SK, Fahey MC, Anderson PJ, Groom KM, Wallace EM. Protect-me: a parallel-group, triple blinded, placebo-controlled randomised clinical trial protocol assessing antenatal maternal melatonin supplementation for fetal neuroprotection in early-onset fetal growth restriction. BMJ Open 2019; 9:e028243. [PMID: 31230020 PMCID: PMC6596968 DOI: 10.1136/bmjopen-2018-028243] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Fetal growth restriction (FGR) is a serious pregnancy complication, associated with increased rates of perinatal death and morbidity among survivors. Most commonly FGR results from placental insufficiency, where the placenta fails to deliver the oxygen and nutrients required for normal fetal growth. This leads to fetal oxidative stress, resulting in organ damage through lipid peroxidation. The early developing brain is particularly susceptible, such that FGR is associated with poorer neurodevelopment, witnessed as cognitive and behavioural dysfunction, and cerebral palsy. Promisingly, melatonin, a lipid soluble antioxidant is neuroprotective in animal models of FGR. We present a protocol outlining a randomised, placebo-controlled trial to explore whether antenatal maternal melatonin supplementation in pregnancies with severe, early-onset FGR can improve neurodevelopment among survivors at 2 years of age. METHODS AND ANALYSES We will recruit 336 women with a singleton pregnancy complicated by FGR between 23+0 and 31+6 weeks gestation. Participants will be randomised, stratified by gestational age, to either 30 mg melatonin per day or a visually identical placebo, continued until birth. Measures of maternal and fetal health will be collected until birth. Timing of birth will be determined by the treating clinical team in discussion with the woman. Neonatal and infant neurodevelopmental assessments will be undertaken, consisting of brain MRI at term corrected age, general movements assessment at term and 3 months' corrected age, and Bayley Scales of Infant & Toddler Development-III and Infant Toddler Social Emotional Assessment at 2.5 years corrected age. Analyses will be on intention to treat. The primary outcome is a difference of 5 points in the cognitive domain of the Bayley-III. Secondary outcomes address maternal and fetal safety. ETHICS AND DISSEMINATION This trial has Monash Health Human Research and Ethics committee approval (17-0000-583A). Findings will be disseminated through peer-reviewed publications, conference presentations and to participants. TRIAL REGISTRATION NUMBER ACTRN12617001515381; Pre-results.
Collapse
Affiliation(s)
- Kirsten R Palmer
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash Health, Clayton, Victoria, Australia
| | - Joanne C Mockler
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash Health, Clayton, Victoria, Australia
| | - Miranda L Davies-Tuck
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Suzanne L Miller
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Stacy K Goergen
- Department of Imaging, Monash University, Clayton, Victoria, Australia
- Department of Radiology, Monash Health, Clayton, Victoria, Australia
| | - Michael C Fahey
- Department of Paediatric Neurology, Monash Health, Clayton, Victoria, Australia
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Peter J Anderson
- Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Clayton, Victoria, Australia
| | - Katie M Groom
- Department of Obstetrics and Gynaecology, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Euan M Wallace
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Stewart T, Kallash M, Vehaskari VM, Hodgeson SM, Aviles DH. Increased Autophagy and Apoptosis in the Kidneys of Intrauterine Growth Restricted Rats. Fetal Pediatr Pathol 2019; 38:185-194. [PMID: 30741571 DOI: 10.1080/15513815.2018.1564160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND IUGR has been associated with nephron loss and chronic kidney disease (CKD). MATERIALS AND METHODS We examined autophagy and apoptosis markers in the kidneys of IUGR Sprague Dawley rats induced by maternal low protein diet (LP), comparing them to controls. The autophagy marker LC3B, the pro-apoptotic protein Bax, and the anti-apoptotic protein Bcl-2 were determined by quantitative immunoblotting. Immunohistochemical expressions of LC3B, Bax, and Bcl-2 were evaluated at 4 weeks age. Glomerular counts (by maceration techniques) were performed at 5 weeks. RESULTS The LP diet offspring were lighter (P < 0.05). In IUGR kidneys, LC3B and Bax were increased at birth (p < 0.05, p < 0.001) and at 4 weeks (p < 0.0142, p < 0.0001), Bcl-2 was decreased at birth (p < 0.05), and there were less glomeruli (p < 0.01) at 5 weeks. CONCLUSIONS Autophagy and apoptosis may have a role in IUGR associated decreased nephron number in Sprague rats.
Collapse
Affiliation(s)
- Tyrus Stewart
- a Louisiana State University, Health Sciences Center , New Orleans , Louisiana , USA
| | - Mahmoud Kallash
- b Nationwide Children's Hospital , Columbus , Ohio , USA.,c University at Buffalo , Buffalo , New York , USA
| | - V Matti Vehaskari
- a Louisiana State University, Health Sciences Center , New Orleans , Louisiana , USA
| | - Sydney M Hodgeson
- a Louisiana State University, Health Sciences Center , New Orleans , Louisiana , USA
| | - Diego H Aviles
- a Louisiana State University, Health Sciences Center , New Orleans , Louisiana , USA.,d Children's Hospital , New Orleans , Louisiana , USA
| |
Collapse
|
8
|
Finken MJJ, van der Steen M, Smeets CCJ, Walenkamp MJE, de Bruin C, Hokken-Koelega ACS, Wit JM. Children Born Small for Gestational Age: Differential Diagnosis, Molecular Genetic Evaluation, and Implications. Endocr Rev 2018; 39:851-894. [PMID: 29982551 DOI: 10.1210/er.2018-00083] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/21/2018] [Indexed: 12/25/2022]
Abstract
Children born small for gestational age (SGA), defined as a birth weight and/or length below -2 SD score (SDS), comprise a heterogeneous group. The causes of SGA are multifactorial and include maternal lifestyle and obstetric factors, placental dysfunction, and numerous fetal (epi)genetic abnormalities. Short-term consequences of SGA include increased risks of hypothermia, polycythemia, and hypoglycemia. Although most SGA infants show catch-up growth by 2 years of age, ∼10% remain short. Short children born SGA are amenable to GH treatment, which increases their adult height by on average 1.25 SD. Add-on treatment with a gonadotropin-releasing hormone agonist may be considered in early pubertal children with an expected adult height below -2.5 SDS. A small birth size increases the risk of later neurodevelopmental problems and cardiometabolic diseases. GH treatment does not pose an additional risk.
Collapse
Affiliation(s)
- Martijn J J Finken
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Manouk van der Steen
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Carolina C J Smeets
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Marie J E Walenkamp
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Christiaan de Bruin
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| | - Anita C S Hokken-Koelega
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| |
Collapse
|
9
|
Yamauchi T, Mogi M, Kan-No H, Shan BS, Higaki A, Min LJ, Higaki T, Iwanami J, Ishii EI, Horiuchi M. Roles of angiotensin II type 2 receptor in mice with fetal growth restriction. Hypertens Res 2018; 41:157-164. [PMID: 29335616 DOI: 10.1038/s41440-017-0004-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 01/04/2023]
Abstract
Our previous report indicated that vascular injury enhances vascular remodeling in fetal growth restriction (FGR) mice. The angiotensin II type 2 receptor (AT2R) is relatively highly expressed in fetal mice. Therefore, we investigated the roles of AT2R in FGR-induced cardiovascular disease using AT2R knockout (AT2KO) mice. Dams (wild-type and AT2KO mice) were fed an isocaloric diet containing 20% protein (NP) or 8% protein (LP) until delivery. Arterial blood pressure, body weight, and histological changes in organs were investigated in offspring. The birth weight of offspring from dams fed an LP diet (LPO) was significantly lower than that of offspring from dams fed an NP diet. The heart/body and kidney/body weight ratios in AT2KO-LPO at 12 weeks of age were significantly higher than those in the other groups. Greater thickness of the left ventricular wall, larger cardiomyocyte size and enhancement of perivascular fibrosis were observed in AT2KO-LPO. Interestingly, mRNA expression of collagen I and inflammatory cytokines was markedly higher in the AT2KO-LPO heart at 6 weeks of age but not at 12 weeks of age. AT2R signaling may be involved in cardiovascular disorders of adult offspring with FGR. Regulation of AT2R could contribute to preventing future cardiovascular disease in FGR offspring.
Collapse
Affiliation(s)
- Toshifumi Yamauchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan.,Department of Pediatrics, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan.
| | - Harumi Kan-No
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Bao-Shuai Shan
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Akinori Higaki
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan.,Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Li-Juan Min
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Takashi Higaki
- Department of Pediatrics, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Jun Iwanami
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Ei-Ichi Ishii
- Department of Pediatrics, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| |
Collapse
|