1
|
O'Leary S, Gowda P, Prabhakar A, Jenkins A, Darko K, Azam F, Robledo A, Luna AE, Bonsrah NA, Still MEH, Aoun SG, Whittemore BA, Barrie U, Braga BP, Totimeh T. Evidence-based approaches to cranial cerebrospinal fluid leaks in low- and middle-income countries: a systematic review of the literature. Neurosurg Rev 2024; 48:14. [PMID: 39738756 DOI: 10.1007/s10143-024-03162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Cerebrospinal fluid (CSF) leaks commonly occur due to trauma or surgical procedures. Here we review CSF leak diagnosis and management in Low- and Middle-Income Countries (LMICs). A systematic review of the CSF leak management in LMICs was conducted using PubMed, Google Scholar, Embase and Web of Science databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Eighteen articles with 3,596 patients (mean age = 39.58 years) were analyzed. Of these patients, 31.37% (1,128/3,596) were reported to have developed cranial CSF leaks. The predominant presentation of CSF leak included symptoms of rhinorrhea, headache, meningitis, and visual impairment. The primary etiology of CSF leak was complications from endoscopic surgery (482 patients), followed by spontaneous origin (46 patients), craniotomy (44 cases), and trauma from motor vehicle accidents (43 cases). Computed tomography (CT) scans (10 retrospective, 15 case, and 1 comparative study) and magnetic resonance imaging (MRI) (6 retrospective, 11 case, and 2 comparative studies) were identified as the most utilized diagnostic modalities. The endoscopic endonasal technique emerged as the predominant surgical approach for managing CSF leak (5 retrospective, 13 case, and 1 comparative study). Moreover, both acellular dermal matrix and turbinate flaps demonstrated comparable repair rates in the management of CSF rhinorrhea (95.23% and 96.00%, respectively). Additionally, porcine-derived fibrin sealant exhibited enhanced success rates for repairs in craniotomies, increasing from 49.21% to 97.81%. This study demonstrates progress in the diagnosis, treatment, and management of cerebrospinal fluid (CSF) leaks within LMICs, including the noteworthy advancement from traditional microscope utilization to the endoscopic endonasal technique.
Collapse
Affiliation(s)
- Sean O'Leary
- Department of Neurosurgery, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Prashanth Gowda
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Akshay Prabhakar
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Abigail Jenkins
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kwadwo Darko
- Department of Neurosurgery, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Faraaz Azam
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ariadna Robledo
- Department of Neurosurgery, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Aaron E Luna
- Department of Neurosurgery, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Nancy A Bonsrah
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Megan E H Still
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Salah G Aoun
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brett A Whittemore
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Umaru Barrie
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruno P Braga
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Teddy Totimeh
- Department of Neurosurgery, Accra Medical Centre, Accra, Ghana
| |
Collapse
|
2
|
Martyniuk A, Hart S, Lannon M, Mastrolonardo A, Kabbani A, Hafeez DA, Engels PT, Sharma S. Therapeutic Hypothermia Compared with Normothermia in Adults with Traumatic Brain Injury; Functional Outcome, Mortality, and Adverse Effects: A Systematic Review and Meta-Analysis. Neurocrit Care 2024; 41:400-417. [PMID: 38664327 DOI: 10.1007/s12028-024-01985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/14/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND The main focus of traumatic brain injury (TBI) management is prevention of secondary injury. Therapeutic hypothermia (TH), the induction of a targeted low core body temperature, has been explored as a potential neuroprotectant in TBI. The aim of this article is to synthesize the available clinical data comparing the use of TH with the use of normothermia in TBI. METHODS A systematic search was conducted through MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials for randomized clinical trials including one or more outcome of interest associated with TH use in TBI. Independent reviewers evaluated quality of the studies and extracted data on patients with TBI undergoing TH treatment compared with those undergoing normothermia treatment. Pooled estimates, confidence intervals (CIs), and risk ratios (RRs) or odds ratios were calculated for all outcomes. RESULTS A total of 3,909 patients from 32 studies were eligible for analysis. Pooled analysis revealed a significant benefit of TH on mortality and functional outcome (RR 0.81, 95% CI 0.68-0.96, I2 = 41%; and RR 0.77; 95% CI 0.67-0.88, I2 = 68%, respectively). However, subgroup analysis based on risk of bias showed that only studies with a high risk of bias maintained this benefit. When divided by cooling method, reduced poor functional outcome was seen in the systemic surface cooling and cranial cooling groups (RR 0.68, 95% CI 0.59-0.79, I2 = 35%; and RR 0.44, 95% CI 0.29-0.67, I2 = 0%), and no difference was seen for the systemic intravenous or gastric cooling group. Reduced mortality was only seen in the systemic surface cooling group (RR 0.63, 95% CI 0.53-0.75, I2 = 0%,); however, this group had mostly high risk of bias studies. TH had an increased rate of pneumonia (RR 1.24, 95% CI 1.10-1.40, I2 = 32%), coagulation abnormalities (RR 1.63, 95% CI 1.09-2.44, I2 = 55%), and cardiac arrhythmias (RR 1.78, 95% CI 1.05-3.01, I2 = 21%). Once separated by low and high risk of bias, we saw no difference in these complications in the groups with low risk of bias. Overall quality of the evidence was moderate for mortality, functional outcome, and pneumonia and was low for coagulation abnormalities and cardiac arrhythmias. CONCLUSIONS With the addition of several recent randomized clinical trials and a thorough quality assessment, we have provided an updated systematic review and meta-analysis that concludes that TH does not show any benefit over normothermia in terms of mortality and functional outcome.
Collapse
Affiliation(s)
- Amanda Martyniuk
- Division of Neurosurgery, Department of Surgery, Hamilton General Hospital, McMaster University, 237 Barton St E, Hamilton, ON, L8L 2X2, Canada
| | - Shannon Hart
- Division of Neurosurgery, Department of Surgery, Hamilton General Hospital, McMaster University, 237 Barton St E, Hamilton, ON, L8L 2X2, Canada.
| | - Melissa Lannon
- Division of Neurosurgery, Department of Surgery, Hamilton General Hospital, McMaster University, 237 Barton St E, Hamilton, ON, L8L 2X2, Canada
| | | | - Aseel Kabbani
- Division of Neurosurgery, Department of Surgery, Hamilton General Hospital, McMaster University, 237 Barton St E, Hamilton, ON, L8L 2X2, Canada
| | | | - Paul T Engels
- Departments of Surgery and Critical Care, McMaster University, Hamilton, ON, Canada
| | - Sunjay Sharma
- Division of Neurosurgery, Department of Surgery, Hamilton General Hospital, McMaster University, 237 Barton St E, Hamilton, ON, L8L 2X2, Canada
| |
Collapse
|
3
|
Trieu C, Rajagopalan S, Kofke WA, Cruz Navarro J. Overview of Hypothermia, Its Role in Neuroprotection, and the Application of Prophylactic Hypothermia in Traumatic Brain Injury. Anesth Analg 2023; 137:953-962. [PMID: 37115720 DOI: 10.1213/ane.0000000000006503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The current standard of practice is to maintain normothermia in traumatic brain injury (TBI) patients despite the theoretical benefits of hypothermia and numerous animal studies with promising results. While targeted temperature management or induced hypothermia to support neurological function is recommended for a select patient population postcardiac arrest, similar guidelines have not been instituted for TBI. In this review, we will examine the pathophysiology of TBI and discuss the benefits and risks of induced hypothermia in this patient population. In addition, we provide an overview of the largest randomized controlled trials testing-induced hypothermia. Our literature review on hypothermia returned a myriad of studies and trials, many of which have inconclusive results. The aim of this review was to recognize the effects of hypothermia, summarize the latest trials, address the inconsistencies, and discuss future directions for the study of hypothermia in TBI.
Collapse
Affiliation(s)
- Christine Trieu
- From the Department of Anesthesiology, Baylor College of Medicine, Houston, Texas; Departments of
| | - Suman Rajagopalan
- From the Department of Anesthesiology, Baylor College of Medicine, Houston, Texas; Departments of
| | - W Andrew Kofke
- Anesthesiology and Critical Care
- Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania; and Departments of
| | - Jovany Cruz Navarro
- Anesthesiology and Critical Care
- Neurosurgery, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
4
|
Navarro JC, Kofke WA. Perioperative Management of Acute Central Nervous System Injury. Perioper Med (Lond) 2022. [DOI: 10.1016/b978-0-323-56724-4.00024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
5
|
The effectiveness of early prophylactic hypothermia in adult patients with traumatic brain injury: A systematic review and meta-analysis. Aust Crit Care 2020; 34:83-91. [PMID: 32698987 DOI: 10.1016/j.aucc.2020.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/04/2020] [Accepted: 05/19/2020] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES Previously published systematic reviews have explored the effects of therapeutic hypothermia on adult patients with traumatic brain injury (TBI). However, none explored the effect of early prophylactic hypothermia (within 6 h from injury to hypothermia induction). Animal studies indicated that early prophylactic hypothermia may reduce secondary injury and improve neurological outcomes. This systematic review aimed to investigate the effects of early prophylactic hypothermia on adult TBI regarding mortality, favourable outcomes, and complications. DATA SOURCE We searched electronic databases including Cochrane CENTRAL, PubMed, MEDLINE, CINAHL, EMBASE, Web of Science, OpenGrey, and ClinicalTrials.gov from inception to June 12, 2019. Manual search was conducted for additional information. REVIEW METHODS Only randomised controlled trials were included. The Cochrane Collaboration Risk of Bias Tool was used to assess the quality of included studies. We extracted general demographic characteristics, the initiation timing, methods of cooling, duration, target temperature, rewarming rate, mortality, neurological outcomes, and complications. RESULTS Six studies with a total of 1207 participants were included. Meta-analyses showed no significant difference in mortality and favourable outcomes (risk ratio = 1.11, 95% confidence interval = 0.90-1.37, P = 0.32; risk ratio = 1.03, 95% confidence interval = 0.91-1.16, P = 0.65, respectively). Similar results were found regarding different durations of hypothermia and different rewarming rates. Various complications were reported in the included studies. No statistical difference was found in three studies, while complications were reported to be significantly higher in the hypothermia group in the other three studies. CONCLUSIONS This review does not support the use of early prophylactic hypothermia (within 6 h after injury) as a neurological protection strategy in adult patients with TBI, irrespective of the short term or long term. No significant benefits were found regarding hypothermia with different rewarming rates. Owing to the limited number of studies, more randomised controlled trials with higher quality are required to establish true effects of early hypothermia in adult TBI.
Collapse
|
6
|
Goyal K, Garg N, Bithal P. Central fever: a challenging clinical entity in neurocritical care. JOURNAL OF NEUROCRITICAL CARE 2020. [DOI: 10.18700/jnc.190090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
7
|
Zusman BE, Kochanek PM, Jha RM. Cerebral Edema in Traumatic Brain Injury: a Historical Framework for Current Therapy. Curr Treat Options Neurol 2020; 22:9. [PMID: 34177248 PMCID: PMC8223756 DOI: 10.1007/s11940-020-0614-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The purposes of this narrative review are to (1) summarize a contemporary view of cerebral edema pathophysiology, (2) present a synopsis of current management strategies in the context of their historical roots (many of which date back multiple centuries), and (3) discuss contributions of key molecular pathways to overlapping edema endophenotypes. This may facilitate identification of important therapeutic targets. RECENT FINDINGS Cerebral edema and resultant intracranial hypertension are major contributors to morbidity and mortality following traumatic brain injury. Although Starling forces are physical drivers of edema based on differences in intravascular vs extracellular hydrostatic and oncotic pressures, the molecular pathophysiology underlying cerebral edema is complex and remains incompletely understood. Current management protocols are guided by intracranial pressure measurements, an imperfect proxy for cerebral edema. These include decompressive craniectomy, external ventricular drainage, hyperosmolar therapy, hypothermia, and sedation. Results of contemporary clinical trials assessing these treatments are summarized, with an emphasis on the gap between intermediate measures of edema and meaningful clinical outcomes. This is followed by a brief statement summarizing the most recent guidelines from the Brain Trauma Foundation (4th edition). While many molecular mechanisms and networks contributing to cerebral edema after TBI are still being elucidated, we highlight some promising molecular mechanism-based targets based on recent research including SUR1-TRPM4, NKCC1, AQP4, and AVP1. SUMMARY This review outlines the origins of our understanding of cerebral edema, chronicles the history behind many current treatment approaches, and discusses promising molecular mechanism-based targeted treatments.
Collapse
Affiliation(s)
- Benjamin E. Zusman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute for Clinical Research Education, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Children’s Hospital of Pittsburgh, UPMC, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
| | - Ruchira M. Jha
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Chen H, Wu F, Yang P, Shao J, Chen Q, Zheng R. A meta-analysis of the effects of therapeutic hypothermia in adult patients with traumatic brain injury. Crit Care 2019; 23:396. [PMID: 31806001 PMCID: PMC6896404 DOI: 10.1186/s13054-019-2667-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/12/2019] [Indexed: 11/10/2022] Open
Abstract
Purpose Therapeutic hypothermia management remains controversial in patients with traumatic brain injury. We conducted a meta-analysis to evaluate the risks and benefits of therapeutic hypothermia management in patients with traumatic brain injury. Methods We searched the Web of Science, PubMed, Embase, Cochrane (Central) and Clinical Trials databases from inception to January 17, 2019. Eligible studies were randomised controlled trials that investigated therapeutic hypothermia management versus normothermia management in patients with traumatic brain injury. We collected the individual data of the patients from each included study. Meta-analyses were performed for 6-month mortality, unfavourable functional outcome and pneumonia morbidity. The risk of bias was evaluated using the Cochrane Risk of Bias tool. Results Twenty-three trials involving a total of 2796 patients were included. The randomised controlled trials with a high quality show significantly more mortality in the therapeutic hypothermia group [risk ratio (RR) 1.26, 95% confidence interval (CI) 1.04 to 1.53, p = 0.02]. Lower mortality in the therapeutic hypothermia group occurred when therapeutic hypothermia was received within 24 h (RR 0.83, 95% CI 0.71 to 0.96, p = 0.01), when hypothermia was received for treatment (RR 0.66, 95% CI 0.49 to 0.88, p = 0.006) or when hypothermia was combined with post-craniectomy measures (RR 0.69, 95% CI 0.48 to 1.00, p = 0.05). The risk of unfavourable functional outcome following therapeutic hypothermia management appeared to be significantly reduced (RR 0.78, 95% CI 0.67 to 0.91, p = 0.001). The meta-analysis suggested that there was a significant increase in the risk of pneumonia with therapeutic hypothermia management (RR 1.48, 95% CI 1.11 to 1.97, p = 0.007). Conclusions Our meta-analysis demonstrated that therapeutic hypothermia did not reduce but might increase the mortality rate of patients with traumatic brain injury in some high-quality studies. However, traumatic brain injury patients with elevated intracranial hypertension could benefit from hypothermia in therapeutic management instead of prophylaxis when initiated within 24 h.
Collapse
Affiliation(s)
- Hanbing Chen
- Graduate School of Dalian Medical University; Department of Critical Care Medicine, Northern Jiangsu People's Hospital; Clinical Medical College, Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu, China
| | - Fei Wu
- Department of Intensive Care Unit, Affiliated Hospital of Yangzhou University, Clinical Medical College, Yangzhou University, No.368 Hanjiangzhonglu Road, Yangzhou, 225001, Jiangsu, China
| | - Penglei Yang
- Graduate School of Dalian Medical University; Department of Critical Care Medicine, Northern Jiangsu People's Hospital; Clinical Medical College, Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu, China
| | - Jun Shao
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital; Clinical Medical College, Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu, China
| | - Qihong Chen
- Department of Critical Care Medicine, Jiangdu People's Hospital of Yangzhou, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, No 9 Dongfanghong Road of Jiangdu District, Yangzhou, 225001, Jiangsu, China.
| | - Ruiqiang Zheng
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital; Clinical Medical College, Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu, China
| |
Collapse
|
9
|
Watson HI, Shepherd AA, Rhodes JKJ, Andrews PJD. Revisited: A Systematic Review of Therapeutic Hypothermia for Adult Patients Following Traumatic Brain Injury. Crit Care Med 2019; 46:972-979. [PMID: 29601315 DOI: 10.1097/ccm.0000000000003125] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Therapeutic hypothermia has been of topical interest for many years and with the publication of two international, multicenter randomized controlled trials, the evidence base now needs updating. The aim of this systematic review of randomized controlled trials is to assess the efficacy of therapeutic hypothermia in adult traumatic brain injury focusing on mortality, poor outcomes, and new pneumonia. DATA SOURCES The following databases were searched from January 1, 2011, to January 26, 2018: Cochrane Central Register of Controlled Trial, MEDLINE, PubMed, and EMBASE. STUDY SELECTION Only foreign articles published in the English language were included. Only articles that were randomized controlled trials investigating adult traumatic brain injury sustained following an acute, closed head injury were included. Two authors independently assessed at each stage. DATA EXTRACTION Quality was assessed using the Cochrane Collaboration's tool for assessing the risk of bias. All extracted data were combined using the Mantel-Haenszel estimator for pooled risk ratio with 95% CIs. p value of less than 0.05 was considered statistically significant. All statistical analyses were conducted using RevMan 5 (Cochrane Collaboration, Version 5.3, Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). DATA SYNTHESIS Twenty-two studies with 2,346 patients are included. Randomized controlled trials with a low risk of bias show significantly more mortality in the therapeutic hypothermia group (risk ratio, 1.37; 95% CI, 1.04-1.79; p = 0.02), whereas randomized controlled trials with a high risk of bias show the opposite with a higher mortality in the control group (risk ratio, 0.70; 95% CI, 0.60-0.82; p < 0.00001). CONCLUSIONS Overall, this review is in-keeping with the conclusions published by the most recent randomized controlled trials. High-quality studies show no significant difference in mortality, poor outcomes, or new pneumonia. In addition, this review shows a place for fever control in the management of traumatic brain injury.
Collapse
Affiliation(s)
- Hannah I Watson
- Departments of Anaesthesia and Critical Care, Western General Hospital, NHS Lothian, Edinburgh, United Kingdom
| | - Andrew A Shepherd
- Departments of Anaesthesia and Critical Care, Western General Hospital, NHS Lothian, Edinburgh, United Kingdom
| | - Jonathan K J Rhodes
- Departments of Anaesthesia and Critical Care, Western General Hospital, NHS Lothian, Edinburgh, United Kingdom.,Departments of Anaesthesia and Critical Care, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
10
|
Andrews PJ, Sinclair HL, Rodríguez A, Harris B, Rhodes J, Watson H, Murray G. Therapeutic hypothermia to reduce intracranial pressure after traumatic brain injury: the Eurotherm3235 RCT. Health Technol Assess 2019; 22:1-134. [PMID: 30168413 DOI: 10.3310/hta22450] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major cause of disability and death in young adults worldwide. It results in around 1 million hospital admissions annually in the European Union (EU), causes a majority of the 50,000 deaths from road traffic accidents and leaves a further ≈10,000 people severely disabled. OBJECTIVE The Eurotherm3235 Trial was a pragmatic trial examining the effectiveness of hypothermia (32-35 °C) to reduce raised intracranial pressure (ICP) following severe TBI and reduce morbidity and mortality 6 months after TBI. DESIGN An international, multicentre, randomised controlled trial. SETTING Specialist neurological critical care units. PARTICIPANTS We included adult participants following TBI. Eligible patients had ICP monitoring in place with an ICP of > 20 mmHg despite first-line treatments. Participants were randomised to receive standard care with the addition of hypothermia (32-35 °C) or standard care alone. Online randomisation and the use of an electronic case report form (CRF) ensured concealment of random treatment allocation. It was not possible to blind local investigators to allocation as it was obvious which participants were receiving hypothermia. We collected information on how well the participant had recovered 6 months after injury. This information was provided either by the participant themself (if they were able) and/or a person close to them by completing the Glasgow Outcome Scale - Extended (GOSE) questionnaire. Telephone follow-up was carried out by a blinded independent clinician. INTERVENTIONS The primary intervention to reduce ICP in the hypothermia group after randomisation was induction of hypothermia. Core temperature was initially reduced to 35 °C and decreased incrementally to a lower limit of 32 °C if necessary to maintain ICP at < 20 mmHg. Rewarming began after 48 hours if ICP remained controlled. Participants in the standard-care group received usual care at that centre, but without hypothermia. MAIN OUTCOME MEASURES The primary outcome measure was the GOSE [range 1 (dead) to 8 (upper good recovery)] at 6 months after the injury as assessed by an independent collaborator, blind to the intervention. A priori subgroup analysis tested the relationship between minimisation factors including being aged < 45 years, having a post-resuscitation Glasgow Coma Scale (GCS) motor score of < 2 on admission, having a time from injury of < 12 hours and patient outcome. RESULTS We enrolled 387 patients from 47 centres in 18 countries. The trial was closed to recruitment following concerns raised by the Data and Safety Monitoring Committee in October 2014. On an intention-to-treat basis, 195 participants were randomised to hypothermia treatment and 192 to standard care. Regarding participant outcome, there was a higher mortality rate and poorer functional recovery at 6 months in the hypothermia group. The adjusted common odds ratio (OR) for the primary statistical analysis of the GOSE was 1.54 [95% confidence interval (CI) 1.03 to 2.31]; when the GOSE was dichotomised the OR was 1.74 (95% CI 1.09 to 2.77). Both results favoured standard care alone. In this pragmatic study, we did not collect data on adverse events. Data on serious adverse events (SAEs) were collected but were subject to reporting bias, with most SAEs being reported in the hypothermia group. CONCLUSIONS In participants following TBI and with an ICP of > 20 mmHg, titrated therapeutic hypothermia successfully reduced ICP but led to a higher mortality rate and worse functional outcome. LIMITATIONS Inability to blind treatment allocation as it was obvious which participants were randomised to the hypothermia group; there was biased recording of SAEs in the hypothermia group. We now believe that more adequately powered clinical trials of common therapies used to reduce ICP, such as hypertonic therapy, barbiturates and hyperventilation, are required to assess their potential benefits and risks to patients. TRIAL REGISTRATION Current Controlled Trials ISRCTN34555414. FUNDING This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 22, No. 45. See the NIHR Journals Library website for further project information. The European Society of Intensive Care Medicine supported the pilot phase of this trial.
Collapse
Affiliation(s)
- Peter Jd Andrews
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - H Louise Sinclair
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Aryelly Rodríguez
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Bridget Harris
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Gordon Murray
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
11
|
Olah E, Poto L, Hegyi P, Szabo I, Hartmann P, Solymar M, Petervari E, Balasko M, Habon T, Rumbus Z, Tenk J, Rostas I, Weinberg J, Romanovsky AA, Garami A. Therapeutic Whole-Body Hypothermia Reduces Death in Severe Traumatic Brain Injury if the Cooling Index Is Sufficiently High: Meta-Analyses of the Effect of Single Cooling Parameters and Their Integrated Measure. J Neurotrauma 2018; 35:2407-2417. [PMID: 29681213 DOI: 10.1089/neu.2018.5649] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Emoke Olah
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Laszlo Poto
- Institute of Bioanalysis, Medical School, University of Pecs, Pecs, Hungary
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
- Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences - University of Szeged, Szeged, Hungary
| | - Imre Szabo
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Petra Hartmann
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Margit Solymar
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Erika Petervari
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Marta Balasko
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Tamas Habon
- Department of Cardiology and Angiology, First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Zoltan Rumbus
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Judit Tenk
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Ildiko Rostas
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Jordan Weinberg
- Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | | | - Andras Garami
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
12
|
Cadena R, Shoykhet M, Ratcliff JJ. Emergency Neurological Life Support: Intracranial Hypertension and Herniation. Neurocrit Care 2018; 27:82-88. [PMID: 28913634 DOI: 10.1007/s12028-017-0454-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sustained intracranial hypertension and acute brain herniation are "brain codes," signifying catastrophic neurological events that require immediate recognition and treatment to prevent irreversible injury and death. As in cardiac arrest, a brain code mandates the organized implementation of a stepwise management algorithm. The goal of this Emergency Neurological Life Support protocol is to implement an evidence-based, standardized approach to the evaluation and management of patients with intracranial hypertension and/or herniation.
Collapse
Affiliation(s)
- Rhonda Cadena
- Departments of Neurology, Neurosurgery, and Emergency Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| | - Michael Shoykhet
- Pediatric Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Jonathan J Ratcliff
- Departments of Emergency Medicine and Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
13
|
Zhu L. Hypothermia Used in Medical Applications for Brain and Spinal Cord Injury Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:295-319. [PMID: 30315552 DOI: 10.1007/978-3-319-96445-4_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite more than 80 years of animal experiments and clinical practice, efficacy of hypothermia in improving treatment outcomes in patients suffering from cell and tissue damage caused by ischemia is still ongoing. This review will first describe the history of utilizing cooling in medical treatment, followed by chemical and biochemical mechanisms of cooling that can lead to neuroprotection often observed in animal studies and some clinical studies. The next sections will be focused on current cooling approaches/devices, as well as cooling parameters recommended by researchers and clinicians. Animal and clinical studies of implementing hypothermia to spinal cord and brain tissue injury patients are presented next. This section will review the latest outcomes of hypothermia in treating patients suffering from traumatic brain injury (TBI), spinal cord injury (SCI), stroke, cardiopulmonary surgery, and cardiac arrest, followed by a summary of available evidence regarding both demonstrated neuroprotection and potential risks of hypothermia. Contributions from bioengineers to the field of hypothermia in medical treatment will be discussed in the last section of this review. Overall, an accumulating body of clinical evidence along with several decades of animal research and mathematical simulations has documented that the efficacy of hypothermia is dependent on achieving a reduced temperature in the target tissue before or soon after the injury-precipitating event. Mild hypothermia with temperature reduction of several degrees Celsius is as effective as modest or deep hypothermia in providing therapeutic benefit without introducing collateral/systemic complications. It is widely demonstrated that the rewarming rate must be controlled to be lower than 0.5 °C/h to avoid mismatch between local blood perfusion and metabolism. In the past several decades, many different cooling methods and devices have been designed, tested, and used in medical treatments with mixed results. Accurately designing treatment protocols to achieve specific cooling outcomes requires collaboration among engineers, researchers, and clinicians. Although this problem is quite challenging, it presents a major opportunity for bioengineers to create methods and devices that quickly and safely produce hypothermia in targeted tissue regions without interfering with routine medical treatment.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
14
|
Meta-Analysis of Therapeutic Hypothermia for Traumatic Brain Injury in Adult and Pediatric Patients. Crit Care Med 2017; 45:575-583. [PMID: 27941370 DOI: 10.1097/ccm.0000000000002205] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Therapeutic hypothermia has been used to attenuate the effects of traumatic brain injuries. However, the required degree of hypothermia, length of its use, and its timing are uncertain. We undertook a comprehensive meta-analysis to quantify benefits of hypothermia therapy for traumatic brain injuries in adults and children by analyzing mortality rates, neurologic outcomes, and adverse effects. DATA SOURCES Electronic databases PubMed, Google Scholar, Web of Science, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov and manual searches of studies were conducted for relevant publications up until February 2016. STUDY SELECTION Forty-one studies in adults (n = 3,109; age range, 18-81 yr) and eight studies in children (n = 454; age range, 3 mo to 18 yr) met eligibility criteria. DATA EXTRACTION Baseline patient characteristics, enrollment time, methodology of cooling, target temperature, duration of hypothermia, and rewarming protocols were extracted. DATA SYNTHESIS Risk ratios with 95% CIs were calculated. Compared with adults who were kept normothermic, those who underwent therapeutic hypothermia were associated with 18% reduction in mortality (risk ratio, 0.82; 95% CI, 0.70-0.96; p = 0.01) and a 35% improvement in neurologic outcome (risk ratio, 1.35; 95% CI, 1.18-1.54; p < 0.00001). The optimal management strategy for adult patients included cooling patients to a minimum of 33°C for 72 hours, followed by spontaneous, natural rewarming. In contrast, adverse outcomes were observed in children who underwent hypothermic treatment with a 66% increase in mortality (risk ratio, 1.66; 95% CI, 1.06-2.59; p = 0.03) and a marginal deterioration of neurologic outcome (risk ratio, 0.90; 95% CI, 0.80-1.01; p = 0.06). CONCLUSIONS Therapeutic hypothermia is likely a beneficial treatment following traumatic brain injuries in adults but cannot be recommended in children.
Collapse
|
15
|
Szczygielski J, Müller A, Mautes AE, Sippl C, Glameanu C, Schwerdtfeger K, Steudel WI, Oertel J. Selective Brain Hypothermia Mitigates Brain Damage and Improves Neurological Outcome after Post-Traumatic Decompressive Craniectomy in Mice. J Neurotrauma 2017; 34:1623-1635. [PMID: 27799012 DOI: 10.1089/neu.2016.4615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypothermia and decompressive craniectomy (DC) have been considered as treatment for traumatic brain injury. The present study investigates whether selective brain hypothermia added to craniectomy could improve neurological outcome after brain trauma. Male CD-1 mice were assigned into the following groups: sham; DC; closed head injury (CHI); CHI followed by craniectomy (CHI+DC); and CHI+DC followed by focal hypothermia (CHI+DC+H). At 24 h post-trauma, animals were subjected to Neurological Severity Score (NSS) test and Beam Balance Score test. At the same time point, magnetic resonance imaging using a 9.4 Tesla scanner and subsequent volumetric evaluation of edema and contusion were performed. Thereafter, the animals were sacrificed and subjected to histopathological analysis. According to NSS, there was a significant impairment among all the groups subjected to trauma. Animals with both trauma and craniectomy performed significantly worse than animals with craniectomy alone. This deleterious effect disappeared when additional hypothermia was applied. BBS was significantly worse in the CHI and CHI+DC groups, but not in the CHI+DC+H group, compared to the sham animals. Edema and contusion volumes were significantly increased in CHI+DC animals, but not in the CHI+DC+H group, compared to the DC group. Histopathological analysis showed that neuronal loss and contusional blossoming could be attenuated by application of selective brain hypothermia. Selective brain cooling applied post-trauma and craniectomy improved neurological function and reduced structural damage and may be therefore an alternative to complication-burdened systemic hypothermia. Clinical studies are recommended in order to explore the potential of this treatment.
Collapse
Affiliation(s)
- Jacek Szczygielski
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Andreas Müller
- 2 Department of Radiology, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Angelika E Mautes
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Christoph Sippl
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Cosmin Glameanu
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Karsten Schwerdtfeger
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Wolf-Ingo Steudel
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Joachim Oertel
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| |
Collapse
|
16
|
Stevens RD, Shoykhet M, Cadena R. Emergency Neurological Life Support: Intracranial Hypertension and Herniation. Neurocrit Care 2016; 23 Suppl 2:S76-82. [PMID: 26438459 DOI: 10.1007/s12028-015-0168-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sustained intracranial hypertension and acute brain herniation are "brain codes," signifying catastrophic neurological events that require immediate recognition and treatment to prevent irreversible injury and death. As in cardiac arrest, a brain code mandates the organized implementation of a stepwise management algorithm. The goal of this emergency neurological life support protocol is to implement an evidence-based, standardized approach to the evaluation and management of patients with intracranial hypertension and/or herniation.
Collapse
Affiliation(s)
- Robert D Stevens
- Departments of Anesthesiology and Critical Care Medicine, Neurology, Neurosurgery, and Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Michael Shoykhet
- Pediatric Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Rhonda Cadena
- Departments of Neurology, Neurosurgery, and Emergency Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Bragge P, Synnot A, Maas AI, Menon DK, Cooper DJ, Rosenfeld JV, Gruen RL. A State-of-the-Science Overview of Randomized Controlled Trials Evaluating Acute Management of Moderate-to-Severe Traumatic Brain Injury. J Neurotrauma 2016; 33:1461-78. [PMID: 26711675 PMCID: PMC5003006 DOI: 10.1089/neu.2015.4233] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Moderate-to-severe traumatic brain injury (TBI) remains a major global challenge, with rising incidence, unchanging mortality and lifelong impairments. State-of-the-science reviews are important for research planning and clinical decision support. This review aimed to identify randomized controlled trials (RCTs) evaluating interventions for acute management of moderate/severe TBI, synthesize key RCT characteristics and findings, and determine their implications on clinical practice and future research. RCTs were identified through comprehensive database and other searches. Key characteristics, outcomes, risk of bias, and analysis approach were extracted. Data were narratively synthesized, with a focus on robust (multi-center, low risk of bias, n > 100) RCTs, and three-dimensional graphical figures also were used to explore relationships between RCT characteristics and findings. A total of 207 RCTs were identified. The 191 completed RCTs enrolled 35,340 participants (median, 66). Most (72%) were single center and enrolled less than 100 participants (69%). There were 26 robust RCTs across 18 different interventions. For 74% of 392 comparisons across all included RCTs, there was no significant difference between groups. Positive findings were broadly distributed with respect to RCT characteristics. Less than one-third of RCTs demonstrated low risk of bias for random sequence generation or allocation concealment, less than one-quarter used covariate adjustment, and only 7% employed an ordinal analysis approach. Considerable investment of resources in producing 191 completed RCTs for acute TBI management has resulted in very little translatable evidence. This may result from broad distribution of research effort, small samples, preponderance of single-center RCTs, and methodological shortcomings. More sophisticated RCT design, large multi-center RCTs in priority areas, increased focus on pre-clinical research, and alternatives to RCTs, such as comparative effectiveness research and precision medicine, are needed to fully realize the potential of acute TBI research to benefit patients.
Collapse
Affiliation(s)
- Peter Bragge
- Centre of Excellence in Traumatic Brain Injury Research, National Trauma Research Institute, Monash University and The Alfred Hospital, Victoria, Australia
- BehaviourWorks Australia, Monash Sustainability Institute, Monash University, Victoria, Australia
| | - Anneliese Synnot
- Centre of Excellence in Traumatic Brain Injury Research, National Trauma Research Institute, Monash University and The Alfred Hospital, Victoria, Australia
- Cochrane Consumers and Communication Review Group, Centre for Health Communication and Participation, School of Psychology and Public Health, La Trobe University, Melbourne, Australia; Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
| | - Andrew I. Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - David K. Menon
- Division of Anaesthesia, University of Cambridge; Neurosciences Critical Care Unit, Addenbrooke's Hospital; Queens' College, Cambridge, United Kingdom
| | - D. James Cooper
- Department of Intensive Care, Alfred Hospital, Victoria, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Victoria, Australia
| | - Jeffrey V. Rosenfeld
- Centre of Excellence in Traumatic Brain Injury Research, National Trauma Research Institute, Monash University and The Alfred Hospital, Victoria, Australia
- Monash Institute of Medical Engineering (MIME); Division of Clinical Sciences and Department of Surgery, Central Clinical School, Monash University, Victoria, Australia; Department of Neurosurgery, Alfred Hospital, Victoria, Australia; F. Edward Hébert School of Medicine, Uniformed Services University of The Health Sciences (USUHS), Bethesda, Maryland
| | - Russell L. Gruen
- Centre of Excellence in Traumatic Brain Injury Research, National Trauma Research Institute, Monash University and The Alfred Hospital, Victoria, Australia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
18
|
Zhu Y, Yin H, Zhang R, Ye X, Wei J. Therapeutic hypothermia versus normothermia in adult patients with traumatic brain injury: a meta-analysis. SPRINGERPLUS 2016; 5:801. [PMID: 27390642 PMCID: PMC4916079 DOI: 10.1186/s40064-016-2391-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/23/2016] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Many single-center studies and meta-analyses demonstrate that therapeutic hypothermia (TH), in which the body temperature is maintained at 32-35°C, exerts significant neuroprotection and attenuates secondary intracranial hypertension after traumatic brain injury (TBI). In 2015, two well-designed multi-center, randomized controlled trials were published that did not show favorable outcomes with the use of TH in adult patients with TBI compared to normothermia treatment (NT). Therefore, we performed an updated meta-analysis to assess the effect of TH in adult patients with TBI. METHODS We reviewed the PubMed, EMbase, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, and Wanfang Databases. We included randomized controlled trials that compared TH and NT in adult patients with TBI. Two reviewers assessed the quality of each study and independently collected the data. We performed the meta-analysis using the Cochrane Collaboration's RevMan 5.3 software. RESULTS We included 18 trials involving 2177 patients with TBI. There was no significant heterogeneity among the studies. TH could not decrease mortality at 3 months post-TBI (RR 0.95; 95 % CI 0.59, 1.55; z = 0.19, P = 0.85) or 6 months post-TBI (RR 0.96; 95 % CI 0.76, 1.23; z = 0.29, P = 0.77). There were no significant differences in unfavorable clinical outcomes when TH was compared to NT at 3 months post-TBI (RR 0.79; 95 % CI 0.56, 1.12; z = 1.31, P = 0.19) or 6 months post-TBI (RR 0.80; 95 % CI 0.63, 1.00; z = 1.92, P = 0.05). TH was associated with a significant increase in pneumonia (RR 1.51; 95 % CI 1.12, 2.03; z = 2.72, P = 0.006) and cardiovascular complications (RR 1.75; 95% CI 1.14, 2.70; z = 2.54, P = 0.01). CONCLUSIONS Therapeutic hypothermia failed to demonstrate a decrease in mortality and unfavorable clinical outcomes at 3 or 6 months post-TBI. Additionally, TH might increase the risk of developing pneumonia and cardiovascular complications.
Collapse
Affiliation(s)
- Youfeng Zhu
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510220 Guangdong China
| | - Haiyan Yin
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510220 Guangdong China
| | - Rui Zhang
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510220 Guangdong China
| | - Xiaoling Ye
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510220 Guangdong China
| | - Jianrui Wei
- Department of Cardiology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Tongfuzhong Road No. 396, Guangzhou, 510220 Guangdong China
| |
Collapse
|
19
|
Abstract
Traumatic injury to the brain or spinal cord is one of the most serious public health problems worldwide. The devastating impact of 'trauma', a term used to define the global burden of disease related to all injuries, is the leading cause of loss of human potential across the globe, especially in low- and middle-income countries. Enormous challenges must be met to significantly advance neurotrauma research around the world, specifically in underserved and austere environments. Neurotrauma research at the global level needs to be contextualized: different regions have their own needs and obstacles. Interventions that are not considered a priority in some regions could be a priority for others. The introduction of inexpensive and innovative interventions, including mobile technologies and e-health applications, focused on policy management improvement are essential and should be applicable to the needs of the local environment. The simple transfer of a clinical question from resource-rich environments to those of low- and middle-income countries that lack sophisticated interventions may not be the best strategy to address these countries' needs. Emphasis on promoting the design of true 'ecological' studies that include the evaluation of human factors in relation to the process of care, analytical descriptions of health systems, and how leadership is best applied in medical communities and society as a whole will become crucial.
Collapse
|
20
|
Flynn LM, Rhodes J, Andrews PJ. Therapeutic Hypothermia Reduces Intracranial Pressure and Partial Brain Oxygen Tension in Patients with Severe Traumatic Brain Injury: Preliminary Data from the Eurotherm3235 Trial. Ther Hypothermia Temp Manag 2015; 5:143-51. [PMID: 26060880 PMCID: PMC4575517 DOI: 10.1089/ther.2015.0002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of disability and death and a huge economic burden throughout the world. Much of the morbidity associated with TBI is attributed to secondary brain injuries resulting in hypoxia and ischemia after the initial trauma. Intracranial hypertension and decreased partial brain oxygen tension (PbtO2) are targeted as potentially avoidable causes of morbidity. Therapeutic hypothermia (TH) may be an effective intervention to reduce intracranial pressure (ICP), but could also affect cerebral blood flow (CBF). This is a retrospective analysis of prospectively collected data from 17 patients admitted to the Western General Hospital, Edinburgh. Patients with an ICP >20 mmHg refractory to initial therapy were randomized to standard care or standard care and TH (intervention group) titrated between 32°C and 35°C to reduce ICP. ICP and PbtO2 were measured using the Licox system and core temperature was recorded through rectal thermometer. Data were analyzed at the hour before cooling, the first hour at target temperature, 2 consecutive hours at target temperature, and after 6 hours of hypothermia. There was a mean decrease in ICP of 4.3±1.6 mmHg (p<0.04) from 15.7 to 11.4 mmHg, from precooling to the first epoch of hypothermia in the intervention group (n=9) that was not seen in the control group (n=8). A decrease in ICP was maintained throughout all time periods. There was a mean decrease in PbtO2 of 7.8±3.1 mmHg (p<0.05) from 30.2 to 22.4 mmHg, from precooling to stable hypothermia, which was not seen in the control group. This research supports others in demonstrating a decrease in ICP with temperature, which could facilitate a reduction in the use of hyperosmolar agents or other stage II interventions. The decrease in PbtO2 is not below the suggested treatment threshold of 20 mmHg, but might indicate a decrease in CBF.
Collapse
Affiliation(s)
- Liam M.C. Flynn
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kindgom
| | - Jonathan Rhodes
- Department of Anesthesia and Critical Care, University of Edinburgh and NHS Lothian, Western General Hospital, Edinburgh, United Kingdom
| | - Peter J.D. Andrews
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kindgom
| |
Collapse
|
21
|
Kim DK, Hyun DK. Therapeutic Hypothermia in Traumatic Brain injury; Review of History, Pathophysiology and Current Studies. Korean J Crit Care Med 2015. [DOI: 10.4266/kjccm.2015.30.3.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Reis C, Wang Y, Akyol O, Ho WM, Ii RA, Stier G, Martin R, Zhang JH. What's New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment. Int J Mol Sci 2015; 16:11903-65. [PMID: 26016501 PMCID: PMC4490422 DOI: 10.3390/ijms160611903] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI), defined as an alteration in brain functions caused by an external force, is responsible for high morbidity and mortality around the world. It is important to identify and treat TBI victims as early as possible. Tracking and monitoring TBI with neuroimaging technologies, including functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET), and high definition fiber tracking (HDFT) show increasing sensitivity and specificity. Classical electrophysiological monitoring, together with newly established brain-on-chip, cerebral microdialysis techniques, both benefit TBI. First generation molecular biomarkers, based on genomic and proteomic changes following TBI, have proven effective and economical. It is conceivable that TBI-specific biomarkers will be developed with the combination of systems biology and bioinformation strategies. Advances in treatment of TBI include stem cell-based and nanotechnology-based therapy, physical and pharmaceutical interventions and also new use in TBI for approved drugs which all present favorable promise in preventing and reversing TBI.
Collapse
Affiliation(s)
- Cesar Reis
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Physiology, School of Medicine, University of Jinan, Guangzhou 250012, China.
| | - Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
| | - Wing Mann Ho
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, University Hospital Innsbruck, Tyrol 6020, Austria.
| | - Richard Applegate Ii
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Gary Stier
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Robert Martin
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - John H Zhang
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
23
|
Li P, Yang C. Moderate hypothermia treatment in adult patients with severe traumatic brain injury: a meta-analysis. Brain Inj 2015; 28:1036-41. [PMID: 24892219 DOI: 10.3109/02699052.2014.910609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To evaluate the effect of moderate hypothermia treatment (MHT) in severe traumatic brain injury (sTBI) compared to normothermia management. METHODS PubMed, Medline, Springer, Elsevier Science Direct, Cochrane Library and Google scholar were searched up to December 2012. Pooled risk ratios (RRs) and 95% confidence intervals (CIs) for the mortality and clinical neurological outcome of the adult patients with sTBI were collected and calculated in a fixed-effects model or a random-effects model. Summary effect estimates were stratified by study design and ethnicity. Egger's regression asymmetry tests were utilized for detecting the publication bias. RESULTS The overall estimates showed that MHT could reduce the mortality (hypothermia vs. normothermia, RR = 0.86, 95% CI = 0.73-1.01, p = 0.06) and unfavourable clinical neurological outcomes (RR = 1.21, 95% CI = 0.95-1.53, p = 0.12) for traumatic brain injured patients without statistical significance. Moreover, the further stratification sub-group analysis indicated that MHT presented a significant reduction (RR = 0.60, 95% CI = 0.44-0.83, p = 0.002) of mortality compared to the normothermia management in an Asian population. Surprisingly, American patients treated with moderate hypothermia showed an increasing mortality (RR = 1.07, 95% CI = 0.83-1.39, p = 0.61). CONCLUSIONS MHT may be effective in reducing death and unfavourable clinical neurological outcomes, but this finding is not statistically significant, except for decreasing the mortality in Asian patients.
Collapse
Affiliation(s)
- Pengcheng Li
- Department of Neurosurgery, West China Hospital, Sichuan University , Chengdu , PR China
| | | |
Collapse
|
24
|
Abstract
BACKGROUND Patients undergoing neurosurgery are at risk of cerebral ischaemia with resultant cerebral hypoxia and neuronal cell death. This can increase both the risk of mortality and long term neurological disability. Induced hypothermia has been shown to reduce the risk of cerebral ischaemic damage in both animal studies and in humans who have been resuscitated following cardiac arrest. This had lead to an increasing interest in its neuroprotective potential in neurosurgical patients. This review was originally published in 2011 and did not find any evidence of either effectiveness or harm in these patients. This updated review was designed to capture current evidence to readdress these issues. OBJECTIVES To evaluate the effectiveness and safety profile of induced hypothermia versus normothermia for neuroprotection in patients undergoing brain surgery. Effectiveness was to be measured in terms of short and long term mortality and functional neurological outcomes. Safety was to be assessed in terms of the rate of the adverse events infection, myocardial infarction, ischaemic stroke, congestive cardiac failure and any other adverse events reported by the authors of the included studies. SEARCH METHODS For the original review, the authors searched the databases Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (OvidSP), EMBASE (OvidSP) and LILACS to November 2010. For the updated review all these databases were re-searched from November 2010 to May 2014.For both the original and updated versions, grey literature was sought by searching reference lists of identified studies and relevant review articles, and conference proceedings. No language restrictions were applied. SELECTION CRITERIA As in the original review, we included randomized controlled trials (RCTs) of induced hypothermia versus normothermia for neuroprotection in patients of any age and gender undergoing brain surgery, which addressed mortality, neurological morbidity or adverse event outcomes. DATA COLLECTION AND ANALYSIS Three review authors independently extracted data and two independently assessed the risk of bias of the included studies. Any discrepancies were resolved by discussion between authors. MAIN RESULTS In this updated review, one new ongoing study was found but no new eligible completed studies were identified. This update was therefore conducted using the same four studies included in the original review. These studies included a total of 1219 participants, mean age 40 to 54 years. All included studies were reported as RCTs. Two were multicentred, together including a total of 1114 patients who underwent cerebral aneurysm clipping, and were judged to have an overall low risk of bias. The other two studies were single centred. One included 80 patients who had a craniotomy following severe traumatic brain injury and was judged to have an unclear or low risk of bias. The other study included 25 patients who underwent hemicranicectomy to relieve oedema following cerebral infarction and was judged to have an unclear or high risk of bias. All studies assessed hypothermia versus normothermia. Overall 608 participants received hypothermia with target temperatures ranging from 32.5 °C to 35 °C, and 611 were assigned to normothermia with the actual temperatures recorded in this group ranging form 36.5 °C to 38 °C. For those who were cooled, 556 had cooling commenced immediately after induction of anaesthesia that was continued until the surgical objective of aneurysm clipping was achieved, and 52 had cooling commenced immediately after surgery and continued for 48 to 96 hours.Pooled estimates of effect were calculated for the outcomes mortality during treatment or follow-up (ranging from in-hospital to one year); neurological outcome measured in terms of the Glasgow Outcome Score (GOS) of 3 or less; and adverse events of infections, myocardial infarction, ischaemic stroke and congestive cardiac failure. With regards to mortality, the risk of dying if allocated to hypothermia compared to normothermia was not statistically significantly different (risk ratio (RR) 0.87, 95% confidence interval (CI) 0.59 to 1.27, P = 0.47). There was no indication that the time at which cooling was started affected the risk of dying (RR with intraoperative cooling 0.95, 95% CI 0.60 to 1.51, P = 0.83; RR for cooling postoperatively 0.67, 95% CI 0.34 to 1.35, P = 0.26). For the neurological outcome, the risk of having a poor outcome with a GOS of 3 or less was not statistically different in those who received hypothermia versus normothermia (RR 0.80, 95% CI 0.61 to 1.04, P = 0.09). Again there was no indication that the time at which cooling was started affected this result. Regarding adverse events, there was no statistically significant difference in the incidence in those allocated to hypothermia versus normothermia for risk of surgical infection (RR 1.20, 95% CI 0.73 to 1.97, P = 0.48), myocardial infarction (RR 1.86, 95% CI 0.69 to 4.98, P = 0.22), ischaemic stroke (RR 0.93, 95% CI 0.82 to 1.05, P = 0.24) or congestive heart failure (RR 0.85, 95% CI 0.60 to 1.21, P = 0.38). In contrast to other outcomes, where time of application of cooling did not change the statistical significance of the effect estimates, there was a weak statistically significant increased risk of infection in those who were cooled postoperatively versus those who were not cooled (RR 1.77, 95% CI 1.05 to 2.98, P = 0.03). Overall, as in the original review, no evidence was found that the use of induced hypothermia was either beneficial or harmful in patients undergoing neurosurgery. AUTHORS' CONCLUSIONS We found no evidence that the use of induced hypothermia was associated with a significant reduction in mortality or severe neurological disability, or an increase in harm in patients undergoing neurosurgery.
Collapse
Affiliation(s)
| | - Ron Levy
- Kingston General HospitalDepartment of NeurosurgeryDept of Surgery, Room 304 , Victory 3 ,76 Stuart StreetKingstonONCanadaK7L 2V7
| | - J. Gordon Boyd
- Kingston General HospitalDepartment of Medicine (Neurology) and Critical CareDept of Medicine , Davies 276 Stuart StreetKingstonONCanadaK7L 2V7
| | - Andrew G Day
- Kingston General HospitalClinical Research CentreAngada 4, Room 5‐42176 Stuart StreetKingstonONCanadaK7L 2V7
| | - Micheal C Wallace
- Kingston General HospitalDepartment of NeurosurgeryDept of Surgery, Room 304 , Victory 3 ,76 Stuart StreetKingstonONCanadaK7L 2V7
| | | |
Collapse
|
25
|
Kim JH, Yun SH, Jang KH, Park J, Han HS, Rhee D, Suk K. Delayed and prolonged local brain hypothermia combined with decompressive craniectomy: a novel therapeutic strategy that modulates glial dynamics. Exp Neurobiol 2014; 23:115-23. [PMID: 24963275 PMCID: PMC4065824 DOI: 10.5607/en.2014.23.2.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 02/01/2023] Open
Abstract
Hypothermia is considered a useful intervention for limiting pathophysiological changes after brain injury. Local hypothermia is a relatively safe and convenient intervention that circumvents many of the complications associated with systemic hypothermia. However, successful hypothermia treatment requires careful consideration of several factors including its practicality, feasibility, and associated risks. Here, we review the protective effects-and the cellular mechanisms that underlie them-of delayed and prolonged local hypothermia in rodent and canine brain injury models. The data show that the protective effects of therapeutic hypothermia, which mainly result from the modulation of inflammatory glial dynamics, are limited. We argue that decompressive craniectomy can be used to overcome the limitations of local brain hypothermia without causing histological abnormalities or other detrimental effects to the cooled area. Therefore, delayed and prolonged local brain hypothermia at the site of craniectomy is a promising intervention that may prove effective in the clinical setting.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Sung-Ho Yun
- Department of Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Korea
| | - Kwang-Ho Jang
- Department of Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Korea
| | - Jaechan Park
- Department of Neurosurgery, Kyungpook National University School of Medicine, Daegu 700-721, Korea
| | - Hyung Soo Han
- Department of Physiology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Dongick Rhee
- Kyungwon Medical Co., Ltd., Seoul 135-080, Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| |
Collapse
|
26
|
Abstract
OBJECTIVE Observational studies suggest that infections are a common complication of therapeutic hypothermia. We performed a systematic review and meta-analysis of randomized trials to examine the risk of infections in patients treated with hypothermia. DATA SOURCES PubMed, Embase, and the Cochrane Central Register of Controlled Trials were systematically searched for eligible studies up to October 1, 2012. STUDY SELECTION We included randomized controlled clinical trials of therapeutic hypothermia induced in adults for any indication, which reported the prevalence of infection in each treatment group. DATA EXTRACTION For each study, we collected information about the baseline characteristics of patients, cooling strategy, and infections. DATA SYNTHESIS Twenty-three studies were identified, which included 2,820 patients, of whom 1,398 (49.6%) were randomized to hypothermia. Data from another 31 randomized trials, involving 4,004 patients, could not be included because the occurrence of infection was not reported with sufficient detail or not at all. The risk of bias in the included studies was high because information on the method of randomization and definitions of infections lacked in most cases, and assessment of infections was not blinded. In patients treated with hypothermia, the prevalence of all infections was not increased (rate ratio, 1.21 [95% CI, 0.95-1.54]), but there was an increased risk of pneumonia and sepsis (risk ratios, 1.44 [95% CI, 1.10-1.90]; 1.80 [95% CI, 1.04-3.10], respectively). CONCLUSION The available evidence, subject to its limitations, strongly suggests an association between therapeutic hypothermia and the risk of pneumonia and sepsis, whereas no increase in the overall risk of infection was observed. All future randomized trials of hypothermia should report on this important complication.
Collapse
|
27
|
Sandestig A, Romner B, Grände PO. Therapeutic Hypothermia in Children and Adults with Severe Traumatic Brain Injury. Ther Hypothermia Temp Manag 2014; 4:10-20. [PMID: 24660099 PMCID: PMC3949439 DOI: 10.1089/ther.2013.0024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Great expectations have been raised about neuroprotection of therapeutic hypothermia in patients with traumatic brain injury (TBI) by analogy with its effects after heart arrest, neonatal asphyxia, and drowning in cold water. The aim of this study is to review our present knowledge of the effect of therapeutic hypothermia on outcome in children and adults with severe TBI. A literature search for relevant articles in English published from year 2000 up to December 2013 found 19 studies. No signs of improvement in outcome from hypothermia were seen in the five pediatric studies. Varied results were reported in 14 studies on adult patients, 2 of which reported a tendency of higher mortality and worse neurological outcome, 4 reported lower mortality, and 9 reported favorable neurological outcome with hypothermia. The quality of several trials was low. The best-performed randomized studies showed no improvement in outcome by hypothermia-some even indicated worse outcome. TBI patients may suffer from hypothermia-induced pulmonary and coagulation side effects, from side effects of vasopressors when re-establishing the hypothermia-induced lowered blood pressure, and from a rebound increase in intracranial pressure (ICP) during and after rewarming. The difference between body temperature and temperature set by the biological thermostat may cause stress-induced worsening of the circulation and oxygenation in injured areas of the brain. These mechanisms may counteract neuroprotective effects of therapeutic hypothermia. We conclude that we still lack scientific support as a first-tier therapy for the use of therapeutic hypothermia in TBI patients for both adults and children, but it may still be an option as a second-tier therapy for refractory intracranial hypertension.
Collapse
Affiliation(s)
- Anna Sandestig
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bertil Romner
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Neurosurgery, Institution of Clinical Science in Lund, Lund University Hospital, and Lund University, Lund, Sweden
| | - Per-Olof Grände
- Department of Anesthesia and Intensive Care, Institution of Clinical Science in Lund, Lund University Hospital, and Lund University, Lund, Sweden
| |
Collapse
|
28
|
D'Ambrosio R, Eastman CL, Fattore C, Perucca E. Novel frontiers in epilepsy treatments: preventing epileptogenesis by targeting inflammation. Expert Rev Neurother 2014; 13:615-25. [PMID: 23738999 DOI: 10.1586/ern.13.54] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Currently available epilepsy drugs only affect the symptoms (seizures), and there is a need for innovative treatments that target the underlying disease. Increasing evidence points to inflammation as a potentially important mechanism in epileptogenesis. In the last decade, a new generation of etiologically realistic syndrome-specific experimental models have been developed, which are expected to capture the epileptogenic mechanisms operating in corresponding patient populations, and to exhibit similar treatment responsiveness. Recently, an intervention known to have broad-ranging anti-inflammatory effects (selective brain cooling) has been found to prevent the development of spontaneously occurring seizures in an etiologically realistic rat model of post-traumatic epilepsy. Several drugs used clinically for other indications also have the potential for inhibiting inflammation, and should be investigated for antiepileptogenic activity in these models. If results of such studies are positive, these compounds could rapidly enter Phase III trials in patients at high risk of developing epilepsy.
Collapse
Affiliation(s)
- Raimondo D'Ambrosio
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
29
|
Gladen A, Iaizzo PA, Bischof JC, Erdman AG, Divani AA. A Head and Neck Support Device for Inducing Local Hypothermia. J Med Device 2013; 8:0110021-110029. [PMID: 26734117 DOI: 10.1115/1.4025448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 09/12/2013] [Indexed: 01/01/2023] Open
Abstract
The present work describes the design of a device/system intended to induce local mild hypothermia by simultaneously cooling a patient's head and neck. The therapeutic goal is to lower the head and neck temperatures to 33-35 °C, while leaving the core body temperature unchanged. The device works by circulating a cold fluid around the exterior of the head and neck. The head surface area is separated into five different cooling zones. Each zone has a cooling coil and can be independently controlled. The cooling coils are tightly wrapped concentric circles of tubing. This design allows for a dense packing of tubes in a limited space, while preventing crimping of the tubing and minimizing the fluid pressure head loss. The design in the neck region also has multiple tubes wrapping around the circumference of the patient's neck in a helix. Preliminary testing indicates that this approach is capable of achieving the design goal of cooling the brain tissue (at a depth of 2.5 cm from the scalp) to 35 °C within 30- 40 min, without any pharmacologic or circulatory manipulation. In a comparison with examples of current technology, the device has shown the potential for improved cooling capability.
Collapse
Affiliation(s)
- Adam Gladen
- Department of Mechanical Engineering, University of Minnesota , Minneapolis, MN 55455
| | - Paul A Iaizzo
- Department of Surgery, University of Minnesota , Minneapolis, MN 55455
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota , Minneapolis, MN 55455
| | - Arthur G Erdman
- Department of Mechanical Engineering, University of Minnesota , Minneapolis, MN 55455
| | - Afshin A Divani
- Department of Mechanical Engineering, University of Minnesota , Minneapolis, MN 55455
| |
Collapse
|
30
|
Wang CC, Chen YS, Lin BS, Chio CC, Hu CY, Kuo JR. The neuronal protective effects of local brain cooling at the craniectomy site after lateral fluid percussion injury in a rat model. J Surg Res 2013; 185:753-62. [DOI: 10.1016/j.jss.2013.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/08/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
|
31
|
Abstract
Sustained intracranial hypertension and acute brain herniation are "brain codes," signifying catastrophic neurological events that require immediate recognition and treatment to prevent irreversible injury and death. As in cardiac arrest, evidence supports the organized implementation of a stepwise management algorithm. Because there are multiple etiologies and many treatments that can potentially reverse cerebral herniation, intracranial hypertension and herniation was chosen as an Emergency Neurological Life Support (ENLS) protocol.
Collapse
|
32
|
D'Ambrosio R, Eastman CL, Darvas F, Fender JS, Verley DR, Farin FM, Wilkerson HW, Temkin NR, Miller JW, Ojemann J, Rothman SM, Smyth MD. Mild passive focal cooling prevents epileptic seizures after head injury in rats. Ann Neurol 2012; 73:199-209. [PMID: 23225633 DOI: 10.1002/ana.23764] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Post-traumatic epilepsy is prevalent, often difficult to manage, and currently cannot be prevented. Although cooling is broadly neuroprotective, cooling-induced prevention of chronic spontaneous recurrent seizures has never been demonstrated. We examined the effect of mild passive focal cooling of the perilesional neocortex on the development of neocortical epileptic seizures after head injury in the rat. METHODS Rostral parasagittal fluid percussion injury in rats reliably induces a perilesional, neocortical epileptic focus within weeks after injury. Epileptic seizures were assessed by 5-electrode video-electrocorticography (ECoG) 2 to 16 weeks postinjury. Focal cooling was induced with ECoG headsets engineered for calibrated passive heat dissipation. Pathophysiology was assessed by glial fibrillary acidic protein immunostaining, cortical sclerosis, gene expression of inflammatory cytokines interleukin (IL)-1α and IL-1β, and ECoG spectral analysis. All animals were formally randomized to treatment groups, and data were analyzed blind. RESULTS Cooling by 0.5 to 2°C inhibited the onset of epileptic seizures in a dose-dependent fashion. The treatment induced no additional pathology or inflammation, and normalized the power spectrum of stage N2 sleep. Cooling by 2°C for 5.5 weeks beginning 3 days after injury virtually abolished ictal activity. This effect persisted through the end of the study, >10 weeks after cessation of cooling. Rare remaining seizures were shorter than in controls. INTERPRETATION These findings demonstrate potent and persistent prevention and modification of epileptic seizures after head injury with a cooling protocol that is neuroprotective, compatible with the care of head injury patients, and conveniently implemented. The required cooling can be delivered passively without Peltier cells or electrical power.
Collapse
Affiliation(s)
- Raimondo D'Ambrosio
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Affiliation(s)
- L A Urbano
- Department of Critical Care Medicine, Lausanne University Hospital and Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, CH-1011 Lausanne, Switzerland.
| | | |
Collapse
|
35
|
Mink S, Schwarz U, Mudra R, Gugl C, Fröhlich J, Keller E. Treatment of resistant fever: new method of local cerebral cooling. Neurocrit Care 2012; 15:107-12. [PMID: 20886310 DOI: 10.1007/s12028-010-9451-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fever in neurocritical care patients is common and has a negative impact on neurological outcome. The purpose of this prospective observational study was (1) to evaluate the practicability of cooling with newly developed neck pads in the daily setting of neurointensive care unit (NICU) patients and (2) to evaluate its effectiveness as a surrogate endpoint to indicate the feasibility of neck cooling as a new method for intractable fever. METHODS Nine patients with ten episodes of intractable fever and aneurysmal subarachnoid hemorrhage were treated with one of two different shapes of specifically adapted cooling neck pads. Temperature values of the brain, blood, and urinary bladder were taken close meshed after application of the cooling neck pads up to hour 8. RESULTS The brain, blood, and urinary bladder temperatures decreased significantly from hour 0 to a minimum in hour 5 (P < 0.01). After hour 5, instead of continuous cooling in all the patients, the temperature of all the three sites remounted. CONCLUSION This study showed the practicability of local cooling for intractable fever using the newly developed neck pads in the daily setting of NICU patients.
Collapse
Affiliation(s)
- Susanne Mink
- Department of Neurosurgery, Neuroscience Intensive Care Unit, University Hospital of Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
BACKGROUND The brain is at risk of ischaemia during a variety of neurosurgical procedures, and this can lead to devastating results. Induced hypothermia is the controlled lowering of core body temperature for therapeutic purposes. This remains the current practice during neurosurgery for the prevention or minimization of ischaemic brain injury. Brain surgery may lead to severe complications due to factors such as requirement for brain retraction, vessel occlusion, and intraoperative haemorrhage. Many anaesthesiologists believe that induced hypothermia is indicated to protect the central nervous system during surgery. Although hypothermia is often used during brain surgery, clinical efficacy has not yet been established. OBJECTIVES To evaluate the effectiveness and safety of induced hypothermia versus normothermia for neuroprotection in patients undergoing brain surgery. SEARCH STRATEGY We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2010, Issue 10), MEDLINE, LILACS, EMBASE and Current Controlled Trials (from inception to November 2010), reference lists of identified trials, and bibliographies of published reviews. We also contacted researchers in the field. There were no language restrictions. SELECTION CRITERIA We included randomized controlled trials and quasi-randomized controlled trials of induced hypothermia versus normothermia for neuroprotection in patients undergoing brain surgery. DATA COLLECTION AND ANALYSIS Two authors independently assessed trial quality and extracted data. We contacted study authors for additional information. MAIN RESULTS We included four trials of cooling for cerebral protection during brain surgery, involving a total of 1219 patients. We did not find any evidence that hypothermia for neuroprotection in patients undergoing brain surgery is either effective or unsafe when compared to normothermia. AUTHORS' CONCLUSIONS Although there is some evidence that mild hypothermia is safe, its effectiveness is not clear when compared with normothermia. We need to perform more clinical trials in order to establish the benefit, if any, of hypothermia for cerebral protection during brain surgery before making firm recommendations for the routine use of this intervention.
Collapse
Affiliation(s)
- Wilson Roberto Oliveira Milani
- Department of Anaesthesiology, Hospital Sírio Libanês, São Paulo Serviços Médicos de Anestesia, Rua Barão de Jaceguai,1062 ap. 91, São Paulo, São Paulo, Brazil, CEP: 04606-002
| | | | | |
Collapse
|
37
|
Moore EM, Nichol AD, Bernard SA, Bellomo R. Therapeutic hypothermia: benefits, mechanisms and potential clinical applications in neurological, cardiac and kidney injury. Injury 2011; 42:843-54. [PMID: 21481385 DOI: 10.1016/j.injury.2011.03.027] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 02/27/2011] [Accepted: 03/16/2011] [Indexed: 02/02/2023]
Abstract
Therapeutic hypothermia involves the controlled reduction of core temperature to attenuate the secondary organ damage which occurs following a primary injury. Clinicians have been increasingly using therapeutic hypothermia to prevent or ameliorate various types of neurological injury and more recently for some forms of cardiac injury. In addition, some recent evidence suggests that therapeutic hypothermia may also provide benefit following acute kidney injury. In this review we will examine the potential mechanisms of action and current clinical evidence surrounding the use of therapeutic hypothermia. We will discuss the ideal methodological attributes of future studies using hypothermia to optimise outcomes following organ injury, in particular neurological injury. We will assess the importance of target hypothermic temperature, time to achieve target temperature, duration of cooling, and re-warming rate on outcomes following neurological injury to gain insights into important factors which may also influence the success of hypothermia in other organ injuries, such as the heart and the kidney. Finally, we will examine the potential of therapeutic hypothermia as a future kidney protective therapy.
Collapse
Affiliation(s)
- Elizabeth M Moore
- Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| | | | | | | |
Collapse
|
38
|
Targeted temperature management in critical care: a report and recommendations from five professional societies. Crit Care Med 2011; 39:1113-25. [PMID: 21187745 DOI: 10.1097/ccm.0b013e318206bab2] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Representatives of five international critical care societies convened topic specialists and a nonexpert jury to review, assess, and report on studies of targeted temperature management and to provide clinical recommendations. DATA SOURCES Questions were allocated to experts who reviewed their areas, made formal presentations, and responded to questions. Jurors also performed independent searches. Sources used for consensus derived exclusively from peer-reviewed reports of human and animal studies. STUDY SELECTION Question-specific studies were selected from literature searches; jurors independently determined the relevance of each study included in the synthesis. CONCLUSIONS AND RECOMMENDATIONS 1) The jury opines that the term "targeted temperature management" replace "therapeutic hypothermia." 2) The jury opines that descriptors (e.g., "mild") be replaced with explicit targeted temperature management profiles. 3) The jury opines that each report of a targeted temperature management trial enumerate the physiologic effects anticipated by the investigators and actually observed and/or measured in subjects in each arm of the trial as a strategy for increasing knowledge of the dose/duration/response characteristics of temperature management. This enumeration should be kept separate from the body of the report, be organized by body systems, and be made without assertions about the impact of any specific effect on the clinical outcome. 4) The jury STRONGLY RECOMMENDS targeted temperature management to a target of 32°C-34°C as the preferred treatment (vs. unstructured temperature management) of out-of-hospital adult cardiac arrest victims with a first registered electrocardiography rhythm of ventricular fibrillation or pulseless ventricular tachycardia and still unconscious after restoration of spontaneous circulation (strong recommendation, moderate quality of evidence). 5) The jury WEAKLY RECOMMENDS the use of targeted temperature management to 33°C-35.5°C (vs. less structured management) in the treatment of term newborns who sustained asphyxia and exhibit acidosis and/or encephalopathy (weak recommendation, moderate quality of evidence).
Collapse
|
39
|
Contemporary management of traumatic intracranial hypertension: is there a role for therapeutic hypothermia? Neurocrit Care 2011; 11:427-36. [PMID: 19644773 DOI: 10.1007/s12028-009-9256-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Intracranial hypertension (ICH) remains the single most difficult therapeutic challenge for the acute management of severe traumatic brain injury (TBI). We reviewed the published trials of therapeutic moderate hypothermia to determine its effect on ICH and compared its efficacy to other commonly used therapies for ICH. METHODS A PubMed database search was done using various combinations of the search terms "brain injury," "therapeutic hypothermia," "intracranial hypertension," "barbiturates," "mannitol," "hypertonic saline," "hyperventilation," "decompressive craniectomy," and "CSF drainage." RESULTS We identified 11 prospective randomized clinical TBI trials comparing hypothermia vs. normothermia treatment for which intracranial pressure (ICP) data was provided, and 6 prospective cohort studies that provided ICP data before and during hypothermia treatment. In addition, we identified 37 clinical TBI studies of lumbar CSF drainage, mannitol, hyperventilation, barbiturates, hypertonic saline, and decompressive craniectomy that provided pre- and posttreatment ICP data. Hypothermia was at least as effective as the traditional therapies for ICH (hyperventilation, mannitol, and barbiturates), but was less effective than hypertonic saline, lumbar CSF drainage, and decompressive craniectomy. Ultimately, however, therapeutic hypothermia does appear to have a favorable risk/benefit profile. CONCLUSION Therapeutic moderate hypothermia is as effective, or more effective, than most other treatments for ICH. If used for 2-3 days or less there is no evidence that it causes clinically significant adverse events. The lack of consistent evidence that hypothermia improves long-term neurologic outcome should not preclude consideration of its use for the primary treatment of ICH since no other ICP therapy is held to this standard.
Collapse
|
40
|
Lee HC, Chuang HC, Cho DY, Cheng KF, Lin PH, Chen CC. Applying cerebral hypothermia and brain oxygen monitoring in treating severe traumatic brain injury. World Neurosurg 2011; 74:654-60. [PMID: 21492636 DOI: 10.1016/j.wneu.2010.06.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 06/02/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND Severe traumatic brain injury (TBI) was to be one of the major health problems encountered in modern medicine and had an incalculable socioeconomic impact. The initial cerebral damage after acute brain injury is often exacerbated by postischemic hyperthermia and worsens the outcome. Hypothermia is one of the current therapies designed to combat this deleterious effect. The brain tissue oxygen (P(ti)o(2))-guided cerebral perfusion pressure (CPP) management was successfully reduced because of cerebral hypoxic episodes following TBI. MATERIALS AND METHODS Forty-five patients with severe TBI whose Glasgow Coma Scale (GCS) score ranged between 4 and 8 during September 2006 and August 2007 were enrolled in China Medical University Hospital, Taichung, Taiwan. One patient with a GCS score of 3 was excluded for poor outcome. These patients were randomized into three groups. Group A (16 patients) was intracranial pressure/cerebral perfusion pressure (ICP/CPP)-guided management only, Group B (15 patients) was ICP/CPP guided with mild hypothermia, and Group C (14 patients) was combined mild hypothermia and P(ti)o(2) guided with CPP management on patients with severe TBI. All patients were treated with ICP/CPP management (ICP <20 mm Hg, CPP >60 mm Hg). However, the group with P(ti)o(2) monitoring was required to raise the P(ti)o(2) above 20 mm Hg. Length of intensive care unit stay, ICP, P(ti)o(2), Glasgow Outcome Scale (GOS) score, mortality, and complications were analyzed. RESULTS The ICP values progressively increased in the first 3 days but showed smaller changes in hypothermia groups (Groups B and C) and were significantly lower than those of the normothermia group (Group A) at the same time point. We also found out that the averaged ICP were significantly related to days and the daily variations [measured as (daily observation - daily group mean)(2)] of ICP were shown to the significantly different among three treatment groups after the third posttraumatic day. The values of P(ti)o(2) in Group C tended to rise when the ICP decreased were also observed. A favorable outcome is divided by the result of GOS scores. The percentage of favorable neurologic outcome was 50% in the normothermia group, 60% in the hypothermia-only group, and 71.4% in the P(ti)o(2) group, with statistical significance. The percentage of mortality was 12.5% in the normothermia group, 6.7% in the hypothermia-only group, and 8.5% in the P(ti)o(2) group, without statistical significance in three groups. Complications included pulmonary infections, peptic ulcer, and leukocytopenia (43.8% in the normothermia group, 55.6% in the hypothermia-only group, and 50% in the P(ti)o(2) group). CONCLUSIONS Therapeutic mild hypothermia combined with P(ti)o(2)-guided CPP/ICP management allows reducing elevated ICP before 24 hours after injury, and daily variations of ICP were shown to be significantly different among the three treatment groups after the third posttraumatic day. It means that the hypothermia groups may reduce the ICP earlier and inhibit the elicitation of acute inflammation after cerebral contusion. Our data also provided evidence that early treatment that lowers P(ti)o(2) may improve the outcome and seems the best medical treatment method in these three groups. We concluded that therapeutic mild hypothermia combined with P(ti)o(2)-guided CPP/ICP management provides beneficial effects when treating TBI, and a multicenter randomized trial needs to be undertaken.
Collapse
Affiliation(s)
- Han-Chung Lee
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Doll H, Maegele M, Bohl J, Störkel S, Kipfmueller F, Schaefer U, Angelov D, Wirth S, Truebel H. Pharyngeal selective brain cooling is associated with reduced CNS cortical lesion after experimental traumatic brain injury in rats. J Neurotrauma 2011; 27:2245-54. [PMID: 20939694 DOI: 10.1089/neu.2010.1505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Therapeutic hypothermia (TH) is still being explored as a therapeutic option after traumatic brain injury (TBI) but clinical data has not supported its efficacy. Experimental approaches were promising, but clinical data did not support its efficacy in the treatment of TBI. A novel approach of pharyngeal selective brain cooling (pSBC), recently introduced by our group, has been accompanied by superior neurofunctional, sensorimotor, and cognitive outcomes. This work is now extended by data on histomorphological and physical outcomes after pSBC in a model of experimental TBI. Male Sprague-Dawley rats were subjected to lateral fluid-percussion (LFP) brain injury, and randomized to the following experimental groups: (1) TBI with pSBC, (2) TBI without pSBC, and (3) sham animals. On day post-injury (DPI) 14, the animals were sacrificed and their brains were harvested for immunohistochemistry using the following antibodies: (1) glial fibrillary acidic protein (GFAP), (2) neurofilament (NF), and (3) synaptophysin (SY). In pSBC animals brain temperature was selectively lowered to 33 ± 0.5°C within 15 min post-injury, and maintained for 180 min after induction, while keeping rectal temperatures at physiological levels. Animals that had undergone pSBC showed a significantly faster recovery of body weight starting on DPI 3, and had gained substantially more weight than TBI-only animals on DPI 14 (p < 0.001), indicating superior physical recovery. Areas of cortical damage were significantly smaller in pSBC animals compared to TBI-only animals (p < 0.01). pSBC was associated with preservation of cortical tissue ipsilateral to the lesion, and superior physical recovery after experimental TBI. These results complement earlier reports in which pSBC was associated with superior neurofunctional and cognitive outcomes using the same experimental model.
Collapse
Affiliation(s)
- Hinnerk Doll
- Institute for Research in Operative Medicine (IFOM), University of Witten-Herdecke, Cologne, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wei G, Lu XCM, Shear DA, Yang X, Tortella FC. Neuroprotection of Selective Brain Cooling After Penetrating Ballistic-like Brain Injury in Rats. Ther Hypothermia Temp Manag 2011; 1:33-42. [DOI: 10.1089/ther.2010.0007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Guo Wei
- Department of Applied Neurobiology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Xi-Chun M. Lu
- Department of Applied Neurobiology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Deborah A. Shear
- Department of Applied Neurobiology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Xiaofang Yang
- Department of Applied Neurobiology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Frank C. Tortella
- Department of Applied Neurobiology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
43
|
Comments on Point:Counterpoint: Humans do/do not demonstrate selective brain cooling during hyperthermia. J Appl Physiol (1985) 2011; 110:575-80. [DOI: 10.1152/japplphysiol.01375.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
44
|
Andrews PJD, Sinclair HL, Battison CG, Polderman KH, Citerio G, Mascia L, Harris BA, Murray GD, Stocchetti N, Menon DK, Shakur H, De Backer D. European society of intensive care medicine study of therapeutic hypothermia (32-35 °C) for intracranial pressure reduction after traumatic brain injury (the Eurotherm3235Trial). Trials 2011; 12:8. [PMID: 21226939 PMCID: PMC3027122 DOI: 10.1186/1745-6215-12-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/12/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traumatic brain injury is a major cause of death and severe disability worldwide with 1,000,000 hospital admissions per annum throughout the European Union.Therapeutic hypothermia to reduce intracranial hypertension may improve patient outcome but key issues are length of hypothermia treatment and speed of re-warming. A recent meta-analysis showed improved outcome when hypothermia was continued for between 48 hours and 5 days and patients were re-warmed slowly (1 °C/4 hours). Previous experience with cooling also appears to be important if complications, which may outweigh the benefits of hypothermia, are to be avoided. METHODS/DESIGN This is a pragmatic, multi-centre randomised controlled trial examining the effects of hypothermia 32-35 °C, titrated to reduce intracranial pressure <20 mmHg, on morbidity and mortality 6 months after traumatic brain injury. The study aims to recruit 1800 patients over 41 months. Enrolment started in April 2010.Participants are randomised to either standard care or standard care with titrated therapeutic hypothermia. Hypothermia is initiated with 20-30 ml/kg of intravenous, refrigerated 0.9% saline and maintained using each centre's usual cooling technique. There is a guideline for detection and treatment of shivering in the intervention group. Hypothermia is maintained for at least 48 hours in the treatment group and continued for as long as is necessary to maintain intracranial pressure <20 mmHg. Intracranial hypertension is defined as an intracranial pressure >20 mmHg in accordance with the Brain Trauma Foundation Guidelines, 2007. DISCUSSION The Eurotherm3235Trial is the most important clinical trial in critical care ever conceived by European intensive care medicine, because it was launched and funded by the European Society of Intensive Care Medicine and will be the largest non-commercial randomised controlled trial due to the substantial number of centres required to deliver the target number of patients. It represents a new and fundamental step for intensive care medicine in Europe. Recruitment will continue until January 2013 and interested clinicians from intensive care units worldwide can still join this important collaboration by contacting the Trial Coordinating Team via the trial website http://www.eurotherm3235trial.eu. TRIAL REGISTRATION Current Controlled Trials ISRCTN34555414.
Collapse
Affiliation(s)
- Peter JD Andrews
- Department of Anaesthesia, Critical Care and Pain Management, University of Edinburgh, UK
| | - Helen Louise Sinclair
- Department of Anaesthesia, Critical Care and Pain Management, University of Edinburgh, UK
| | - Claire G Battison
- Department of Anaesthesia, Critical Care and Pain Management, University of Edinburgh, UK
| | - Kees H Polderman
- Critical Care Medicine, 3550 Terrace Street, Pittsburgh, Pennsylvania PA 15261, USA
| | - Giuseppe Citerio
- Neurorianimazione, Dipartimento di Anestesia e Rianimazione, Nuovo Ospedale San Gerardo, Via Pergolesi 33, 20052 Monza (MI), Italy
| | - Luciana Mascia
- Dipartimento di Anestesiologia e Rianimazione, Università di Torino, Ospedale S. Giovanni Battista, Torino, Italy
| | - Bridget A Harris
- Department of Anaesthesia, Critical Care and Pain Management, University of Edinburgh, UK
| | - Gordon D Murray
- Public Health Sciences section, Division of Community Health Sciences, The University of Edinburgh, Medical School, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Nino Stocchetti
- Terapia Intensiva Neuroscienze, Ospedale Maggiore, Policlinico IRCCS, Via S Sforza, 3520 122 Milan, Italy
| | - David K Menon
- Department of Anaesthesia, Division of Anaesthesia, University of Cambridge, UK
| | - Haleema Shakur
- Clinical Trials Unit, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Daniel De Backer
- Erasme University Hospital, Free University of Brussels, 808 Route de Lennick Brussels, B-1070, Belgium
| |
Collapse
|
45
|
King C, Robinson T, Dixon CE, Rao GR, Larnard D, Nemoto CEM. Brain Temperature Profiles during Epidural Cooling with the ChillerPad in a Monkey Model of Traumatic Brain Injury. J Neurotrauma 2010; 27:1895-903. [DOI: 10.1089/neu.2009.1178] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christopher King
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - C. Edward Dixon
- Neurosurgery University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gutti R. Rao
- Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - C. Edwin M. Nemoto
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
46
|
|
47
|
White MD, Greiner JG, McDonald PLL. Point: humans do demonstrate selective brain cooling during hyperthermia. J Appl Physiol (1985) 2010; 110:569-71; discussion 581-2. [PMID: 20798268 DOI: 10.1152/japplphysiol.00992.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Matthew D White
- Laboratory for Exercise and Environmental Physiology, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia.
| | | | | |
Collapse
|
48
|
Meyer MJ, Megyesi J, Meythaler J, Murie-Fernandez M, Aubut JA, Foley N, Salter K, Bayley M, Marshall S, Teasell R. Acute management of acquired brain injury part I: an evidence-based review of non-pharmacological interventions. Brain Inj 2010; 24:694-705. [PMID: 20353284 DOI: 10.3109/02699051003692118] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PRIMARY OBJECTIVE To review the literature on non-pharmacological interventions used in acute settings to manage elevated intracranial pressure (ICP) and minimize cerebral damage in patients with acquired brain injury (ABI). MAIN OUTCOMES A literature search of multiple databases (CINAHL, EMBASE, MEDLINE and PSYCHINFO) and hand-searched articles covering the years 1980-2008 was performed. Peer reviewed articles were assessed for methodological quality using the PEDro scoring system for randomized controlled trials (RCTs) and the Downs and Black tool for RCTs and non-randomized trials. Levels of evidence were assigned and recommendations made. RESULTS Five non-invasive interventions for acute ABI management were assessed: adjusting head posture, body rotation (continuous rotational therapy and prone positioning), hyperventilation, hypothermia and hyperbaric oxygen. Two invasive interventions were also reviewed: cerebrospinal fluid (CSF) drainage and decompressive craniectomy (DC). CONCLUSIONS There is a paucity of information regarding non-pharmacological acute management of patients with ABI. Strong levels of evidence were found for only four of the seven interventions (decompressive craniectomy, cerebrospinal fluid drainage, hypothermia and hyperbaric oxygen) and only for specific components of their use. Further research into all interventions is warranted.
Collapse
Affiliation(s)
- Matthew J Meyer
- Aging, Rehabilitation and Geriatric Care Program, Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Brain hypothermia induced by cold spinal fluid using a torso cooling pad: theoretical analyses. Med Biol Eng Comput 2010; 48:783-91. [DOI: 10.1007/s11517-010-0635-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 05/08/2010] [Indexed: 12/19/2022]
|
50
|
Finkelstein RA, Alam HB. Induced hypothermia for trauma: current research and practice. J Intensive Care Med 2010; 25:205-26. [PMID: 20444735 DOI: 10.1177/0885066610366919] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Induction of hypothermia with the goal of providing therapeutic benefit has been accepted for use in the clinical setting of adult cardiac arrest and neonatal hypoxic-ischemic encephalopathy (HIE). However, its potential as a treatment in trauma is not as well defined. This review discusses potential benefits and complications of induced hypothermia (IH) with emphasis on the current state of knowledge and practice in various types of trauma. There is excellent preclinical research showing that in cases of penetrating trauma with cardiac arrest, inducing hypothermia to 10 degrees C using cardiopulmonary bypass (CPB) could possibly save those otherwise likely to die without causing neurologic sequelae. A human trial of this intervention is about to get underway. Preclinical studies suggest that inducing hypothermia may be useful to delay cardiac arrest in penetrating trauma victims who are hypotensive. There is potential for IH to be used in cases of blunt trauma, but it has not been well studied. In the case of traumatic brain injury (TBI), clinical trials have shown conflicting results, despite almost uniform efficacy seen in preclinical experiments. Major studies are analyzed and ways to standardize its use and optimize future clinical trials are discussed. More preclinical and clinical research is needed to better define whether there could be a role for IH in the case of spinal cord injuries.
Collapse
Affiliation(s)
- Robert A Finkelstein
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|