1
|
Zhang YY, Xue RR, Yao M, Li ZY, Hu CW, Dai YX, Fang YD, Ding X, Xu JH, Cui XJ, Mo W. A systematic review and meta-analysis of chondroitinase ABC promotes functional recovery in rat models of spinal cord injury. Nutr Neurosci 2024; 27:917-933. [PMID: 37950873 DOI: 10.1080/1028415x.2023.2278867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
BACKGROUND To comprehensively assess the neurologic recovery potential of chondroitinase ABC (ChABC) in rats after spinal cord injury (SCI). METHODS The PubMed, Embase, ScienceDirect, Web of Science, and China National Knowledge Infrastructure databases were searched for animal experiments that evaluated the use of ChABC in the treatment of SCI up to November 2022. Studies reporting neurological function using the Basso, Beattie, and Bresnahan (BBB) scale, as well as assessments of cavity area, lesion area, and glial fibrillary acidic protein (GFAP) levels, were included in the analysis. RESULTS A total of 46 studies were ultimately selected for inclusion. The results of the study showed that rats with SCI that received ChABC therapy exhibited a significant improvement in locomotor function after 7 days compared with controls (32 studies, weighted mean difference (WMD) = 0.58, [0.33, 0.83], p < 0.00001). Furthermore, the benefits of ChABC therapy were maintained for up to 28 days according to BBB scale. The lesion area was reduced by ChABC (5 studies, WMD = -20.94, [-28.42, -13.46], p < 0.00001). Meanwhile, GFAP levels were reduced in the ChABC treatment group (8 studies, WMD = -29.15, [-41.57, -16.72], p < 0.00001). Cavity area is not statistically significant. The subgroup analysis recommended that a single injection of 10 μL (8 studies, WMD = 2.82, [1.99, 3.65], p < 0.00001) or 20 U/mL (4 studies, WMD = 2.21, [0.73, 3.70], p = 0.003) had a better effect on improving the function. The funnel plot of the BBB scale was found to be essentially symmetrical, indicating a low risk of publication bias. CONCLUSIONS This systematic review and meta-analysis has indicated that ChABC could improve functional recovery in rats after SCI.
Collapse
Affiliation(s)
- Ya-Yun Zhang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
- Department of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, People's Republic of China
| | - Rui-Rui Xue
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Min Yao
- Department of Orthopaedics, Longhua Hospital, Spine Disease Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhuo-Yao Li
- Department of Orthopaedics, Longhua Hospital, Spine Disease Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Cai-Wei Hu
- Department of Orthopaedics, Longhua Hospital, Spine Disease Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yu-Xiang Dai
- Department of Orthopaedics, Longhua Hospital, Spine Disease Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yi-de Fang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xing Ding
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jin-Hai Xu
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xue-Jun Cui
- Department of Orthopaedics, Longhua Hospital, Spine Disease Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wen Mo
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Kheirollahi A, Sadeghi S, Orandi S, Moayedi K, Khajeh K, Khoobi M, Golestani A. Chondroitinase as a therapeutic enzyme: Prospects and challenges. Enzyme Microb Technol 2024; 172:110348. [PMID: 37898093 DOI: 10.1016/j.enzmictec.2023.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
The chondroitinases (Chase) are bacterial lyases that specifically digest chondroitin sulfate and/or dermatan sulfate glycosaminoglycans via a β-elimination reaction and generate unsaturated disaccharides. In recent decades, these enzymes have attracted the attention of many researchers due to their potential applications in various aspects of medicine from the treatment of spinal cord injury to use as an analytical tool. In spite of this diverse spectrum, the application of Chase is faced with several limitations and challenges such as thermal instability and lack of a suitable delivery system. In the current review, we address potential therapeutic applications of Chase with emphasis on the challenges ahead. Then, we summarize the latest achievements to overcome the problems by considering the studies carried out in the field of enzyme engineering, drug delivery, and combination-based therapy.
Collapse
Affiliation(s)
- Asma Kheirollahi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Solmaz Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Orandi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiana Moayedi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Shaughness M, Acs D, Brabazon F, Hockenbury N, Byrnes KR. Role of Insulin in Neurotrauma and Neurodegeneration: A Review. Front Neurosci 2020; 14:547175. [PMID: 33100956 PMCID: PMC7546823 DOI: 10.3389/fnins.2020.547175] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin is a hormone typically associated with pancreatic release and blood sugar regulation. The brain was long thought to be “insulin-independent,” but research has shown that insulin receptors (IR) are expressed on neurons, microglia and astrocytes, among other cells. The effects of insulin on cells within the central nervous system are varied, and can include both metabolic and non-metabolic functions. Emerging data suggests that insulin can improve neuronal survival or recovery after trauma or during neurodegenerative diseases. Further, data suggests a strong anti-inflammatory component of insulin, which may also play a role in both neurotrauma and neurodegeneration. As a result, administration of exogenous insulin, either via systemic or intranasal routes, is an increasing area of focus in research in neurotrauma and neurodegenerative disorders. This review will explore the literature to date on the role of insulin in neurotrauma and neurodegeneration, with a focus on traumatic brain injury (TBI), spinal cord injury (SCI), Alzheimer’s disease (AD) and Parkinson’s disease (PD).
Collapse
Affiliation(s)
- Michael Shaughness
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Deanna Acs
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Fiona Brabazon
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Nicole Hockenbury
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kimberly R Byrnes
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
4
|
Lei Y. Myricitrin decreases traumatic injury of the spinal cord and exhibits antioxidant and anti-inflammatory activities in a rat model via inhibition of COX-2, TGF-β1, p53 and elevation of Bcl-2/Bax signaling pathway. Mol Med Rep 2017; 16:7699-7705. [DOI: 10.3892/mmr.2017.7567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/21/2017] [Indexed: 11/05/2022] Open
|
5
|
Wang T, Teng S, Zhang Y, Wang F, Ding H, Guo L. Role of mesenchymal stem cells on differentiation in steroid-induced avascular necrosis of the femoral head. Exp Ther Med 2016; 13:669-675. [PMID: 28352349 DOI: 10.3892/etm.2016.3991] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 07/23/2015] [Indexed: 12/21/2022] Open
Abstract
Steroids are known to inhibit osteogenic differentiation and decrease bone formation in mesenchymal stem cells (MSCs), while concomitantly inducing steroid-induced avascular necrosis of the femoral head (SANFH). The aim of the present study was to evaluate the function of MSCs on differentiation in SANFH and investigate the pathobiological mechanisms underlying SANFH in a rabbit model. MSCs in the control, trauma-induced ANFH (TANFH) and SANFH groups were incubated with low-glucose complete Dulbeccos modified Eagles medium containing 10% fetal bovine serum. A number of adipocytes in the MSCs were stained with Sudan III and counted using a light microscope. The mRNA and protein expression levels of the adipose-specific 422 (AP2), peroxisome proliferator-activated receptor-γ (PPARγ), RUNX2, collagen type I (Col I) and miR-103 in the MSCs were determined using quantitative polymerase chain reaction and western blot analysis, respectively. In addition, the activities of osteocalcin (OC), alkaline phosphatase (ALP) and triglyceride (TG) in MSCs were analyzed using radioimmunoassay and determination kits. In the MSCs of the SANFH group, the mRNA and protein expression levels of AP2 and PPARγ were increased, while those of RUNX2 and Col I were reduced. Furthermore, the levels of OC and ALP activity in the MSCs of the SANFH group were decreased, and the activity of TG in the MSCs of the SANFH group was increased. In addition, the expression of miR-103 in the MSCs of the SANFH group was elevated. Following routine culture of the MSCs for 3 weeks, the number of adipocytes among the MSC population of the SANFH group was increased. Therefore, the results of the present study suggest that the osteogenic differentiation of MSCs in the SANFH was mitigated, while fat differentiation was promoted, which provides a novel explanation for the pathological changes associated with SANFH.
Collapse
Affiliation(s)
- Tiansheng Wang
- Department of Orthopedics, 463 Hospital of PLA, Shenyang, Liaoning 110042, P.R. China
| | - Shoufa Teng
- Department of Orthopedics, 463 Hospital of PLA, Shenyang, Liaoning 110042, P.R. China
| | - Yingxia Zhang
- Department of Orthopedics, 463 Hospital of PLA, Shenyang, Liaoning 110042, P.R. China
| | - Fa Wang
- Department of Orthopedics, 463 Hospital of PLA, Shenyang, Liaoning 110042, P.R. China
| | - Haijiao Ding
- Department of Orthopedics, 463 Hospital of PLA, Shenyang, Liaoning 110042, P.R. China
| | - Li Guo
- Department of Orthopedics, 463 Hospital of PLA, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
6
|
Abstract
Objective: To analyze the mechanism of neuroprotection of insulin and which blood glucose range was benefit for insulin exerting neuroprotective action. Data Sources: The study is based on the data from PubMed. Study Selection: Articles were selected with the search terms “insulin”, “blood glucose”, “neuroprotection”, “brain”, “glycogen”, “cerebral ischemia”, “neuronal necrosis”, “glutamate”, “γ-aminobutyric acid”. Results: Insulin has neuroprotection. The mechanisms include the regulation of neurotransmitter, promoting glycogen synthesis, and inhibition of neuronal necrosis and apoptosis. Insulin could play its role in neuroprotection by avoiding hypoglycemia and hyperglycemia. Conclusions: Intermittent and long-term infusion insulin may be a benefit for patients with ischemic brain damage at blood glucose 6–9 mmol/L.
Collapse
Affiliation(s)
| | - Yu Pei
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
7
|
Cheng CH, Lin CT, Lee MJ, Tsai MJ, Huang WH, Huang MC, Lin YL, Chen CJ, Huang WC, Cheng H. Local Delivery of High-Dose Chondroitinase ABC in the Sub-Acute Stage Promotes Axonal Outgrowth and Functional Recovery after Complete Spinal Cord Transection. PLoS One 2015; 10:e0138705. [PMID: 26393921 PMCID: PMC4579094 DOI: 10.1371/journal.pone.0138705] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 09/02/2015] [Indexed: 01/11/2023] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are glial scar-associated molecules considered axonal regeneration inhibitors and can be digested by chondroitinase ABC (ChABC) to promote axonal regeneration after spinal cord injury (SCI). We previously demonstrated that intrathecal delivery of low-dose ChABC (1 U) in the acute stage of SCI promoted axonal regrowth and functional recovery. In this study, high-dose ChABC (50 U) introduced via intrathecal delivery induced subarachnoid hemorrhage and death within 48 h. However, most SCI patients are treated in the sub-acute or chronic stages, when the dense glial scar has formed and is minimally digested by intrathecal delivery of ChABC at the injury site. The present study investigated whether intraparenchymal delivery of ChABC in the sub-acute stage of complete spinal cord transection would promote axonal outgrowth and improve functional recovery. We observed no functional recovery following the low-dose ChABC (1 U or 5 U) treatments. Furthermore, animals treated with high-dose ChABC (50 U or 100 U) showed decreased CSPGs levels. The extent and area of the lesion were also dramatically decreased after ChABC treatment. The outgrowth of the regenerating axons was significantly increased, and some partially crossed the lesion site in the ChABC-treated groups. In addition, retrograde Fluoro-Gold (FG) labeling showed that the outgrowing axons could cross the lesion site and reach several brain stem nuclei involved in sensory and motor functions. The Basso, Beattie and Bresnahan (BBB) open field locomotor scores revealed that the ChABC treatment significantly improved functional recovery compared to the control group at eight weeks after treatment. Our study demonstrates that high-dose ChABC treatment in the sub-acute stage of SCI effectively improves glial scar digestion by reducing the lesion size and increasing axonal regrowth to the related functional nuclei, which promotes locomotor recovery. Thus, our results will aid in the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Chu-Hsun Cheng
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Te Lin
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Nursing, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Meng-Jen Lee
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan
| | - May-Jywan Tsai
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Hung Huang
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chao Huang
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Lo Lin
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Jung Chen
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Cheng Huang
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Center for Neural Regeneration, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| | - Henrich Cheng
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Center for Neural Regeneration, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
8
|
Secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant protein-1 promote recovery after rat spinal cord injury by altering macrophage polarity. J Neurosci 2015; 35:2452-64. [PMID: 25673840 DOI: 10.1523/jneurosci.4088-14.2015] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Engrafted mesenchymal stem cells from human deciduous dental pulp (SHEDs) support recovery from neural insults via paracrine mechanisms that are poorly understood. Here we show that the conditioned serum-free medium (CM) from SHEDs, administered intrathecally into rat injured spinal cord during the acute postinjury period, caused remarkable functional recovery. The ability of SHED-CM to induce recovery was associated with an immunoregulatory activity that induced anti-inflammatory M2-like macrophages. Secretome analysis of the SHED-CM revealed a previously unrecognized set of inducers for anti-inflammatory M2-like macrophages: monocyte chemoattractant protein-1 (MCP-1) and the secreted ectodomain of sialic acid-binding Ig-like lectin-9 (ED-Siglec-9). Depleting MCP-1 and ED-Siglec-9 from the SHED-CM prominently reduced its ability to induce M2-like macrophages and to promote functional recovery after spinal cord injury (SCI). The combination of MCP-1 and ED-Siglec-9 synergistically promoted the M2-like differentiation of bone marrow-derived macrophages in vitro, and this effect was abolished by a selective antagonist for CC chemokine receptor 2 (CCR2) or by the genetic knock-out of CCR2. Furthermore, MCP-1 and ED-Siglec-9 administration into the injured spinal cord induced M2-like macrophages and led to a marked recovery of hindlimb locomotor function after SCI. The inhibition of this M2 induction through the inactivation of CCR2 function abolished the therapeutic effects of both SHED-CM and MCP-1/ED-Siglec-9. Macrophages activated by MCP-1 and ED-Siglec-9 extended neurite and suppressed apoptosis of primary cerebellar granule neurons against the neurotoxic effects of chondroitin sulfate proteoglycans. Our data suggest that the unique combination of MCP-1 and ED-Siglec-9 repairs the SCI through anti-inflammatory M2-like macrophage induction.
Collapse
|
9
|
Abstract
Three theories of regeneration dominate neuroscience today, all purporting to explain why the adult central nervous system (CNS) cannot regenerate. One theory proposes that Nogo, a molecule expressed by myelin, prevents axonal growth. The second theory emphasizes the role of glial scars. The third theory proposes that chondroitin sulfate proteoglycans (CSPGs) prevent axon growth. Blockade of Nogo, CSPG, and their receptors indeed can stop axon growth in vitro and improve functional recovery in animal spinal cord injury (SCI) models. These therapies also increase sprouting of surviving axons and plasticity. However, many investigators have reported regenerating spinal tracts without eliminating Nogo, glial scar, or CSPG. For example, many motor and sensory axons grow spontaneously in contused spinal cords, crossing gliotic tissue and white matter surrounding the injury site. Sensory axons grow long distances in injured dorsal columns after peripheral nerve lesions. Cell transplants and treatments that increase cAMP and neurotrophins stimulate motor and sensory axons to cross glial scars and to grow long distances in white matter. Genetic studies deleting all members of the Nogo family and even the Nogo receptor do not always improve regeneration in mice. A recent study reported that suppressing the phosphatase and tensin homolog (PTEN) gene promotes prolific corticospinal tract regeneration. These findings cannot be explained by the current theories proposing that Nogo and glial scars prevent regeneration. Spinal axons clearly can and will grow through glial scars and Nogo-expressing tissue under some circumstances. The observation that deleting PTEN allows corticospinal tract regeneration indicates that the PTEN/AKT/mTOR pathway regulates axonal growth. Finally, many other factors stimulate spinal axonal growth, including conditioning lesions, cAMP, glycogen synthetase kinase inhibition, and neurotrophins. To explain these disparate regenerative phenomena, I propose that the spinal cord has evolved regenerative mechanisms that are normally suppressed by multiple extrinsic and intrinsic factors but can be activated by injury, mediated by the PTEN/AKT/mTOR, cAMP, and GSK3b pathways, to stimulate neural growth and proliferation.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
10
|
Examination of the combined effects of chondroitinase ABC, growth factors and locomotor training following compressive spinal cord injury on neuroanatomical plasticity and kinematics. PLoS One 2014; 9:e111072. [PMID: 25350665 PMCID: PMC4211738 DOI: 10.1371/journal.pone.0111072] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/23/2014] [Indexed: 12/13/2022] Open
Abstract
While several cellular and pharmacological treatments have been evaluated following spinal cord injury (SCI) in animal models, it is increasingly recognized that approaches to address the glial scar, including the use of chondroitinase ABC (ChABC), can facilitate neuroanatomical plasticity. Moreover, increasing evidence suggests that combinatorial strategies are key to unlocking the plasticity that is enabled by ChABC. Given this, we evaluated the anatomical and functional consequences of ChABC in a combinatorial approach that also included growth factor (EGF, FGF2 and PDGF-AA) treatments and daily treadmill training on the recovery of hindlimb locomotion in rats with mid thoracic clip compression SCI. Using quantitative neuroanatomical and kinematic assessments, we demonstrate that the combined therapy significantly enhanced the neuroanatomical plasticity of major descending spinal tracts such as corticospinal and serotonergic-spinal pathways. Additionally, the pharmacological treatment attenuated chronic astrogliosis and inflammation at and adjacent to the lesion with the modest synergistic effects of treadmill training. We also observed a trend for earlier recovery of locomotion accompanied by an improvement of the overall angular excursions in rats treated with ChABC and growth factors in the first 4 weeks after SCI. At the end of the 7-week recovery period, rats from all groups exhibited an impressive spontaneous recovery of the kinematic parameters during locomotion on treadmill. However, although the combinatorial treatment led to clear chronic neuroanatomical plasticity, these structural changes did not translate to an additional long-term improvement of locomotor parameters studied including hindlimb-forelimb coupling. These findings demonstrate the beneficial effects of combined ChABC, growth factors and locomotor training on the plasticity of the injured spinal cord and the potential to induce earlier neurobehavioral recovery. However, additional approaches such as stem cell therapies or a more adapted treadmill training protocol may be required to optimize this repair strategy in order to induce sustained functional locomotor improvement.
Collapse
|
11
|
Onifer SM, Smith GM, Fouad K. Plasticity after spinal cord injury: relevance to recovery and approaches to facilitate it. Neurotherapeutics 2011; 8:283-93. [PMID: 21384221 PMCID: PMC3101826 DOI: 10.1007/s13311-011-0034-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Motor, sensory, and autonomic functions can spontaneously return or recover to varying extents in both humans and animals, regardless of the traumatic spinal cord injury (SCI) level and whether it was complete or incomplete. In parallel, adverse and painful functions can appear. The underlying mechanisms for all of these diverse functional changes are summarized under the term plasticity. Our review will describe what is known regarding this phenomenon after traumatic SCI and focus on its relevance to motor and sensory recovery. Although it is still somewhat speculative, plasticity can be found throughout the neuraxis and includes various changes ranging from alterations in the properties of spared neuronal circuitries, intact or lesioned axon collateral sprouting, and synaptic rearrangements. Furthermore, we will discuss a selection of potential approaches for facilitating plasticity as possible SCI treatments. Because a mechanism underlying spontaneous plasticity and recovery might be motor activity and the related neuronal activity, activity-based therapies are being used and investigated both clinically and experimentally. Additional pharmacological and gene-delivery approaches, based on plasticity being dependent on the delicate balance between growth inhibition and promotion as well as the basic intrinsic growth ability of the neurons themselves, have been found to be effective alone and in combination with activity-based therapies. The positive results have to be tempered with the reality that not all plasticity is beneficial. Therefore, a tremendous number of questions still need to be addressed. Ultimately, answers to these questions will enhance plasticity's potential for improving the quality of life for persons with SCI.
Collapse
Affiliation(s)
- Stephen M. Onifer
- Spinal Cord and Brain Injury Research Center, University of Kentucky, College of Medicine, Lexington, Kentucky 40536-0509 USA
- Department of Anatomy and Neurobiology, University of Kentucky, College of Medicine, Lexington, Kentucky 40536-0098 USA
| | - George M. Smith
- Spinal Cord and Brain Injury Research Center, University of Kentucky, College of Medicine, Lexington, Kentucky 40536-0509 USA
- Department of Physiology, University of Kentucky, College of Medicine, Lexington, Kentucky 40536-0298 USA
| | - Karim Fouad
- Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, T6G 2G4 Canada
| |
Collapse
|
12
|
Wu J, Yang H, Qiu Z, Zhang Q, Ding T, Geng D. Effect of combined treatment with methylprednisolone and Nogo-A monoclonal antibody after rat spinal cord injury. J Int Med Res 2010; 38:570-82. [PMID: 20515570 DOI: 10.1177/147323001003800219] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The purpose of this study was to investigate the effects of combination therapy with methylprednisolone (MP) and Nogo-66 antagonistic peptide (NEP1-40) on morphological and functional recovery in adult rats subjected to thoracic compression spinal cord injury (SCI). Animals were randomized into four groups: a trauma control group, an MP group, an NEP1-40 group, and a combined treatment group. The inflammatory reaction, neuronal and oligodendrocyte survival, and ultrastructure were assessed at the injury site. Functional analysis was also performed using Basso, Beattie and Bresnahan (BBB) scoring. Rat behaviour was evaluated regularly up to week 4. NEP1-40 did not alter the beneficial effect of MP on haematogenous inflammatory cell infiltration, while combined treatment resulted in greater neuronal and oligodendrocyte survival compared with monotherapy or control. Combination therapy resulted in better locomotor scores. These results in a clinically-relevant SCI model showed that significant neuroprotection can be obtained by combining an initial acute IV injection of MP with continuously infused NEP1-40.
Collapse
Affiliation(s)
- J Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | | | | | | | | | | |
Collapse
|