1
|
Scheau C, Draghici C, Ilie MA, Lupu M, Solomon I, Tampa M, Georgescu SR, Caruntu A, Constantin C, Neagu M, Caruntu C. Neuroendocrine Factors in Melanoma Pathogenesis. Cancers (Basel) 2021; 13:cancers13092277. [PMID: 34068618 PMCID: PMC8126040 DOI: 10.3390/cancers13092277] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Melanoma is a very aggressive and fatal malignant tumor. While curable if diagnosed in its early stages, advanced melanoma, despite the complex therapeutic approaches, is associated with one of the highest mortality rates. Hence, more and more studies have focused on mechanisms that may contribute to melanoma development and progression. Various studies suggest a role played by neuroendocrine factors which can act directly on tumor cells, modulating their proliferation and metastasis capability, or indirectly through immune or inflammatory processes that impact disease progression. However, there are still multiple areas to explore and numerous unknown features to uncover. A detailed exploration of the mechanisms by which neuroendocrine factors can influence the clinical course of the disease could open up new areas of biomedical research and may lead to the development of new therapeutic approaches in melanoma. Abstract Melanoma is one of the most aggressive skin cancers with a sharp rise in incidence in the last decades, especially in young people. Recognized as a significant public health issue, melanoma is studied with increasing interest as new discoveries in molecular signaling and receptor modulation unlock innovative treatment options. Stress exposure is recognized as an important component in the immune-inflammatory interplay that can alter the progression of melanoma by regulating the release of neuroendocrine factors. Various neurotransmitters, such as catecholamines, glutamate, serotonin, or cannabinoids have also been assessed in experimental studies for their involvement in the biology of melanoma. Alpha-MSH and other neurohormones, as well as neuropeptides including substance P, CGRP, enkephalin, beta-endorphin, and even cellular and molecular agents (mast cells and nitric oxide, respectively), have all been implicated as potential factors in the development, growth, invasion, and dissemination of melanoma in a variety of in vitro and in vivo studies. In this review, we provide an overview of current evidence regarding the intricate effects of neuroendocrine factors in melanoma, including data reported in recent clinical trials, exploring the mechanisms involved, signaling pathways, and the recorded range of effects.
Collapse
Affiliation(s)
- Cristian Scheau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.)
| | - Carmen Draghici
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mihaela Adriana Ilie
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mihai Lupu
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Iulia Solomon
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mircea Tampa
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.T.); (S.R.G.)
| | - Simona Roxana Georgescu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.T.); (S.R.G.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
- Correspondence:
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 076201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.)
- Department of Dermatology, “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
2
|
Delbart W, Ghanem GE, Karfis I, Flamen P, Wimana Z. Investigating intrinsic radiosensitivity biomarkers to peptide receptor radionuclide therapy with [ 177Lu]Lu-DOTATATE in a panel of cancer cell lines. Nucl Med Biol 2021; 96-97:68-79. [PMID: 33839677 DOI: 10.1016/j.nucmedbio.2021.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/02/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION [177Lu]Lu-DOTATATE is an effective systemic targeted radionuclide therapy for somatostatin receptor (SSTR) positive metastatic or inoperable neuroendocrine tumours (NET). However, for a given injected activity, tumour responses are variable. Our aim was to investigate whether SSTR expression/functionality and known characteristics of intrinsic radiosensitivity, namely proliferation rate, glucose metabolism, cell cycle phase, DNA repair and antioxidant defences were predictors of sensitivity to [177Lu]Lu-DOTATATE in SSTR expressing human cancer cell lines. METHODS In six human cancer cell lines and under basal condition, SSTR expression was assessed by qRT-PCR and immunocytochemistry. Its functionality was evaluated by binding/uptake assays with [68Ga]Ga- and [177Lu]Lu-DOTATATE. The radiosensitivity parameters were evaluated as follows: proliferation rate (cell counting), glucose metabolism ([18F]FDG uptake), antioxidant defences (qRT-PCR, colorimetric assay, flow cytometry), DNA repair (qRT-PCR) and cell cycle (flow cytometry). Effect of [177Lu]Lu-DOTATATE on cell viability was assessed 3, 7 and 10 days after 4 h incubation with [177Lu]Lu-DOTATATE using crystal violet. RESULTS Based on cell survival at day 10, cell lines were classified into two groups of sensitivity to [177Lu]Lu-DOTATATE. One group with <20% of survival decrease (-14 to -1%) and one group with >20% of survival decrease (-22 to -33%) compared to the untreated control cell lines. The latter had significantly lower total antioxidant capacity, glutathione (GSH) levels and glucose metabolism (p < 0.05) compared to the first group. SSTR (p = 0.64), proliferation rate (p = 0.74), cell cycle phase (p = 0.55), DNA repair (p > 0.22), combined catalase and GSH peroxidase expression (p = 0.42) and superoxide dismutase (SOD) activity (p = 0.41) were not significantly different between the two groups. CONCLUSION Antioxidant defences may be major determinants in [177Lu]Lu-DOTATATE radiosensitivity.
Collapse
Affiliation(s)
- Wendy Delbart
- Nuclear Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium; Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Ghanem E Ghanem
- Nuclear Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium; Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Ioannis Karfis
- Nuclear Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Patrick Flamen
- Nuclear Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Zéna Wimana
- Nuclear Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium; Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
3
|
Li C, Han X. Co-delivery of Dacarbazine and All-Trans Retinoic Acid (ATRA) Using Lipid Nanoformulations for Synergistic Antitumor Efficacy Against Malignant Melanoma. NANOSCALE RESEARCH LETTERS 2020; 15:113. [PMID: 32430641 PMCID: PMC7237551 DOI: 10.1186/s11671-020-3293-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Malignant melanoma is a highly aggressive skin cancer responsible for 80% of mortality, and the overall median survival in patients with metastatic melanoma is only 6-9 months. Combination treatment through the simultaneous administration of dual drugs in a single nanocarrier has been demonstrated to be elegant and effective in combatting cancer. Herein, we employ a combination therapy based on dacarbazine (DBZ), FDA approved drug for melanoma and all-trans retinoic acid (ATRA), promising anticancer agents loaded on lipid nanoformulations (RD-LNF) as a new treatment strategy for malignant melanoma. We have successfully encapsulated both the drugs in lipid nanoformulations and showed a controlled release of payload over time. We demonstrated that the simultaneous delivery of DBZ and ATRA could effectively reduce cell proliferation in a concentration-dependent manner. The combinational nanoparticles significantly reduced the colony formation ability of B16F10 melanoma cells. Flow cytometer analysis showed that RD-LNF induced a greater proportion of apoptosis cells with significant inhibition of cell cycle progression and cell migration. These results suggest the promising potential of RD-LNF in the treatment of malignant melanoma with high efficacy.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Xiuping Han
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
4
|
Banerjee I, De M, Dey G, Bharti R, Chattopadhyay S, Ali N, Chakrabarti P, Reis RL, Kundu SC, Mandal M. A peptide-modified solid lipid nanoparticle formulation of paclitaxel modulates immunity and outperforms dacarbazine in a murine melanoma model. Biomater Sci 2019; 7:1161-1178. [PMID: 30652182 DOI: 10.1039/c8bm01403e] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Melanoma is a highly aggressive skin cancer. A paclitaxel formulation of solid lipid nanoparticles modified with Tyr-3-octreotide (PSM) is employed to treat melanoma that highly expresses somatostatin receptors (SSTRs). PSM exerts more apoptotic and anti-invasive effects in B16F10 mice melanoma cells as compared to dacarbazine (DTIC), an approved chemotherapeutic drug for treating aggressive melanoma. Besides, PSM induces one of the biomarkers of immunogenic cell death in vitro and in vivo as confirmed by calreticulin exposure on the B16F10 cell surface. We observed a significant number of CD8 positive T cells in the tumor bed of the PSM treated group. As a result, PSM effectively reduces tumor volume in vivo as compared to DTIC. PSM also induces a favorable systemic immune response as determined in the spleen and sera of the treated animals. Importantly, PSM can reduce the number of nodule formations in the experimental lung metastasis model. Our experimentations indicate that the metronomic PSM exhibits remarkable anti-melanoma activities without any observable toxicity. This immune modulation behavior of PSM can be exploited for the therapy of melanoma and probably for other malignancies.
Collapse
Affiliation(s)
- Indranil Banerjee
- Division of Infectious Diseases and Immunology, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S C Mullick Road, Kolkata - 700032, West Bengal, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Dummer R, Michielin O, Nägeli MC, Goldinger SM, Campigotto F, Kriemler-Krahn U, Schmid H, Pedroncelli A, Micaletto S, Schadendorf D. Phase I, open-label study of pasireotide in patients with BRAF-wild type and NRAS-wild type, unresectable and/or metastatic melanoma. ESMO Open 2018; 3:e000388. [PMID: 30094073 PMCID: PMC6069912 DOI: 10.1136/esmoopen-2018-000388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 01/20/2023] Open
Abstract
Introduction Somatostatin analogues exert antitumour activity via direct and indirect mechanisms. The present study was designed to assess the safety and efficacy of pasireotide in patients with BRAF-wild type (WT) and NRAS-WT metastatic melanoma. Patients and methods Patients with unresectable and/or metastatic melanoma or Merkel cell carcinoma were eligible. Pasireotide was administered at different doses for ≤8 weeks in dose-escalation phase, followed by long-acting pasireotide 80 mg or lower dose in case of toxicity in follow-up phase up to six additional months. Primary endpoint was safety in the first 8 weeks of dose-escalation phase. Results The study was terminated early due to slow recruitment. Of the 10 patients with metastatic melanoma enrolled, only four reached the high dose level: two patients reached 3600 µg in dose-escalation and follow-up phases and two patients reached 3600 µg in dose-escalation and long-acting pasireotide 80 mg in follow-up phases and were stable for >5 months. Most common adverse events (AEs) during dose-escalation phase in ≥2 patients (20%) were: diarrhoea (50%), nausea (50%), fatigue (20%), hyperglycaemia (20%), hypophosphatemia (20%), chills (20%) and tumour pain (20%). Grade 3 or 4 study drug-related AEs were diarrhoea and nausea, reported in one patient. Partial response was documented in one patient and stable disease in another. Conclusions Pasireotide was well tolerated, and safety results were similar to those previously reported in other indications. Further studies are needed to evaluate its antitumour activity alone and in combination with other drugs in melanoma.
Collapse
Affiliation(s)
- Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.
| | - Olivier Michielin
- Multidisciplinary Oncology Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | - Simone M Goldinger
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Federico Campigotto
- Global Medical Affairs, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | - Herbert Schmid
- Clinical Development, Novartis Pharma AG, Basel, Switzerland
| | | | - Sara Micaletto
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium, Heidelberg, Germany
| |
Collapse
|
6
|
Jaskula–Sztul R, Chen G, Dammalapati A, Harrison A, Tang W, Gong S, Chen H. AB3-Loaded and Tumor-Targeted Unimolecular Micelles for Medullary Thyroid Cancer Treatment. J Mater Chem B 2017; 5:151-159. [PMID: 28025618 PMCID: PMC5180596 DOI: 10.1039/c6tb02530g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Medullary thyroid cancer (MTC) is often resistant to standard therapies, emphasizing the need for the development of other treatments. A new histone deacetylase inhibitor, AB3, can effectively inhibit MTC cell proliferation in vitro. However, its poor aqueous solubility and stability, fast clearance, and lack of tumor targeting ability limit its in vivo application. Therefore, multifunctional unimolecular micelles were developed for targeted delivery of AB3 for MTC therapy. The unimolecular micelles exhibited a spherical core-shell structure, uniform size distribution, and excellent stability. AB3 was encapsulated into the hydrophobic core of the unimolecular micelles, thus significantly enhancing its aqueous solubility and stability. KE108, a somatostatin analog possessing high affinity to all five subtypes of SSTR, was used as an MTC-targeting ligand. In vitro cellular uptake analyses demonstrated that the KE108 exhibited superior targeting ability in MTC cells compared to octreotide, the first clinically used somatostatin analog. Moreover, the AB3-loaded and KE108-conjugated unimolecular micelles exhibited the best efficacy in suppressing MTC cell growth and tumor marker expression in vitro. Furthermore, AB3-loaded, KE108-conjugated micelles demonstrated the best anticancer efficacy in vivo without any apparent systemic toxicity, thereby offering a promising approach for targeted MTC therapy.
Collapse
Affiliation(s)
- Renata Jaskula–Sztul
- Department of Surgery, School of Medicine University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Guojun Chen
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53715, USA
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Ajitha Dammalapati
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - April Harrison
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53715, USA
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Herbert Chen
- Department of Surgery, School of Medicine University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
7
|
Chen G, Jaskula-Sztul R, Harrison A, Dammalapati A, Xu W, Cheng Y, Chen H, Gong S. KE108-conjugated unimolecular micelles loaded with a novel HDAC inhibitor thailandepsin-A for targeted neuroendocrine cancer therapy. Biomaterials 2016; 97:22-33. [PMID: 27156249 DOI: 10.1016/j.biomaterials.2016.04.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/06/2016] [Accepted: 04/20/2016] [Indexed: 12/18/2022]
Abstract
Neuroendocrine (NE) cancers can cause significant patient morbidity. Besides surgery, there are no curative treatments for NE cancers and their metastases, emphasizing the need for the development of other forms of therapy. In this study, multifunctional unimolecular micelles were developed for targeted NE cancer therapy. The unimolecular micelles were formed by multi-arm star amphiphilic block copolymer poly(amidoamine)-poly(valerolactone)-poly(ethylene glycol) conjugated with KE108 peptide and Cy5 dye (abbreviated as PAMAM-PVL-PEG-KE108/Cy5). The unimolecular micelles with a spherical core-shell structure exhibited a uniform size distribution and excellent stability. The hydrophobic drug thailandepsin-A (TDP-A), a recently discovered HDAC inhibitor, was physically encapsulated into the hydrophobic core of the micelles. KE108 peptide, a somatostatin analog possessing high affinity for all five subtypes of somatostatin receptors (SSTR 1-5), commonly overexpressed in NE cancer cells, was used for the first time as an NE cancer targeting ligand. KE108 exhibited superior targeting abilities compared to other common somatostatin analogs, such as octreotide, in NE cancer cell lines. The in vitro assays demonstrated that the TDP-A-loaded, KE108-targeted micelles exhibited the best capabilities in suppressing NE cancer cell growth. Moreover, the in vivo near-infrared fluorescence imaging on NE-tumor-bearing nude mice showed that KE108-conjugated micelles exhibited the greatest tumor accumulation due to their passive targeting and active targeting capabilities. Finally, TDP-A-loaded and KE108-conjugated micelles possessed the best anticancer efficacy without detectable systemic toxicity. Thus, these novel TDP-A-loaded and KE108-conjugated unimolecular micelles offer a promising approach for targeted NE cancer therapy.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Renata Jaskula-Sztul
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - April Harrison
- Department of Surgery, University of Wisconsin-Madison, WI 53705, USA
| | | | - Wenjin Xu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yiqiang Cheng
- University of Texas Health Sciences Center San Anto-Division, San Antonio, TX 76107, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
8
|
Metastatic melanoma to the thyroid gland expressing somatostatin receptors-imaging with 68Ga-DOTANOC PET/CT. Clin Nucl Med 2014; 40:175-6. [PMID: 25546189 DOI: 10.1097/rlu.0000000000000636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Malignant melanoma is an aggressive tumor with poor prognosis that can have widespread metastases at presentation. Melanoma is known to undergo neuroendocrine differentiation. We report a case of a 60-year-old woman with malignant melanoma showing a metastatic lesion in the thyroid expressing somatostatin receptors as evident by Ga-DOTANOC PET/CT and metabolically active widespread subcutaneous metastases on F-FDG PET/CT imaging.
Collapse
|
9
|
Abstract
PURPOSE Somatostatin binding to somatostatin receptors (SSTRs) is known to have an antiproliferative effect in neuroendocrine tumours. Melanoma cells are derived from the neural crest and thus express SSTR. Treatment options in metastasized melanomas are limited. Therefore, we aimed to investigate whether there is a relevant uptake of the SSTR analogue DOTATOC in metastasized melanoma patients, which could be used for therapy with radiolabelled SSTR analogues. MATERIALS AND METHODS We investigated 18 patients (nine men and nine women; mean age 61 years) with metastasized melanoma using PET/CT, first with F-18 fluorodeoxyglucose ((18)F-FDG) and then with Ga-68 DOTATOC. The number of (18)F-FDG-positive or DOTATOC-positive lesions and the maximum standardized uptake value (SUV(max)) for an index lesion were determined for each patient. RESULTS DOTATOC could reveal metastatic lesions in 11 of 18 patients (61%). However, on a lesion-by-lesion basis only 59 of 263 (22%) (18)F-FDG-avid metastases were seen with DOTATOC. Further, DOTATOC uptake was only faint. The mean SUV(max) was 3.1 (range, 1.2-4.2) for DOTATOC, in contrast to 28.2 (range, 2.3-115) for (18)F-FDG. CONCLUSION Radiolabelled DOTATOC does not seem to be a promising agent for treatment of metastasized melanoma.
Collapse
|
10
|
Masyuk TV, Radtke BN, Stroope AJ, Banales JM, Gradilone SA, Huang B, Masyuk AI, Hogan MC, Torres VE, LaRusso NF. Pasireotide is more effective than octreotide in reducing hepatorenal cystogenesis in rodents with polycystic kidney and liver diseases. Hepatology 2013; 58:409-21. [PMID: 23172758 PMCID: PMC3616157 DOI: 10.1002/hep.26140] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 11/06/2012] [Indexed: 12/21/2022]
Abstract
UNLABELLED In polycystic liver (PLD) and kidney (PKD) diseases, increased cyclic adenosine monophosphate (cAMP) levels trigger hepatorenal cystogenesis. A reduction of the elevated cAMP by targeting somatostatin receptors (SSTRs) with octreotide (OCT; a somatostatin analog that preferentially binds to SSTR2) inhibits cyst growth. Here we compare the effects of OCT to pasireotide (PAS; a more potent somatostatin analog with broader receptor specificity) on: (1) cAMP levels, cell cycle, proliferation, and cyst expansion in vitro using cholangiocytes derived from control and PCK rats (a model of autosomal recessive PKD [ARPKD]), healthy human beings, and patients with autosomal dominant PKD (ADPKD); and (2) hepatorenal cystogenesis in vivo in PCK rats and Pkd2(WS25/-) mice (a model of ADPKD). Expression of SSTRs was assessed in control and cystic cholangiocytes of rodents and human beings. Concentrations of insulin-like growth factor 1 (IGF1) and vascular endothelial growth factor (VEGF) (both involved in indirect action of somatostatin analogs), and expression and localization of SSTRs after treatment were evaluated. We found that PAS was more potent (by 30%-45%) than OCT in reducing cAMP and cell proliferation, affecting cell cycle distribution, decreasing growth of cultured cysts in vitro, and inhibiting hepatorenal cystogenesis in vivo in PCK rats and Pkd2(WS25/-) mice. The levels of IGF1 (but not VEGF) were reduced only in response to PAS. Expression of SSTR1 and SSTR2 (but not SSTR3 and SSTR5) was decreased in cystic cholangiocytes compared to control. Although both OCT and PAS increased the immunoreactivity of SSTR2, only PAS up-regulated SSTR1; neither drug affected cellular localization of SSTRs. CONCLUSION PAS is more effective than OCT in reducing hepatorenal cystogenesis in rodent models; therefore, it might be more beneficial for the treatment of PKD and PLD.
Collapse
Affiliation(s)
- Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Brynn N Radtke
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Angela J Stroope
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Jesús M Banales
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA,IKERBASQUE, Basque Foundation of Science, Division of Hepatology, Biodonostia Institute, Donostia Hospital, CIBERehd, University of Basque Country, San Sebastián, Spain
| | - Sergio A Gradilone
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Bing Huang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Anatoliy I Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Marie C Hogan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN USA
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
11
|
Kwan DHT, Yung LY, Ye RD, Wong YH. Activation of Ras-dependent signaling pathways by G(14) -coupled receptors requires the adaptor protein TPR1. J Cell Biochem 2013; 113:3486-97. [PMID: 22711498 DOI: 10.1002/jcb.24225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Many G(q) -coupled receptors mediate mitogenic signals by stimulating extracellular signal-regulated protein kinases (ERKs) that are typically regulated by the small GTPase Ras. Recent studies have revealed that members of the Gα(q) family may possess the ability to activate Ras/ERK by interacting with the adaptor protein tetratricopeptide repeat 1 (TPR1). Within the Gα(q) family, the highly promiscuous Gα(14) can relay signals from numerous receptors. Here, we examined if Gα(14) interacts with TPR1 to stimulate Ras signaling pathways. Expression of the constitutively active Gα(14) QL mutant in HEK293 cells led to the formation of GTP-bound Ras as well as increased phosphorylations of downstream signaling molecules including ERK and IκB kinase. Stimulation of endogenous G(14) -coupled somatostatin type 2 and α(2) -adrenergic receptors produced similar responses in human hepatocellular HepG2 carcinoma cells. Co-immunoprecipitation assays using HEK293 cells demonstrated a stronger association of TPR1 for Gα(14) QL than Gα(14) , suggesting that TPR1 preferentially binds to the GTP-bound form of Gα(14) . Activated Gα(14) also interacted with the Ras guanine nucleotide exchange factors SOS1 and SOS2. Expression of a dominant negative mutant of TPR1 or siRNA-mediated knockdown of TPR1 effectively abolished the ability of Gα(14) to induce Ras signaling in native HepG2 or transfected HEK293 cells. Although expression of the dominant negative mutant of TPR1 suppressed Gα(14) QL-induced phosphorylations of ERK and IκB kinase, it did not affect Gα(14) QL-induced stimulation of phospholipase Cβ or c-Jun N-terminal kinase. Our results suggest that TPR1 is required for Gα(14) to stimulate Ras-dependent signaling pathways, but not for the propagation of signals along Ras-independent pathways.
Collapse
Affiliation(s)
- Dawna H T Kwan
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
12
|
Li SC, Martijn C, Cui T, Essaghir A, Luque RM, Demoulin JB, Castaño JP, Öberg K, Giandomenico V. The somatostatin analogue octreotide inhibits growth of small intestine neuroendocrine tumour cells. PLoS One 2012; 7:e48411. [PMID: 23119007 PMCID: PMC3485222 DOI: 10.1371/journal.pone.0048411] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/01/2012] [Indexed: 01/02/2023] Open
Abstract
Octreotide is a widely used synthetic somatostatin analogue that significantly improves the management of neuroendocrine tumours (NETs). Octreotide acts through somatostatin receptors (SSTRs). However, the molecular mechanisms leading to successful disease control or symptom management, especially when SSTRs levels are low, are largely unknown. We provide novel insights into how octreotide controls NET cells. CNDT2.5 cells were treated from 1 day up to 16 months with octreotide and then were profiled using Affymetrix microarray analysis. Quantitative real-time PCR and western blot analyses were used to validate microarray profiling in silico data. WST-1 cell proliferation assay was applied to evaluate cell growth of CNDT2.5 cells in the presence or absence of 1 µM octreotide at different time points. Moreover, laser capture microdissected tumour cells and paraffin embedded tissue slides from SI-NETs at different stages of disease were used to identify transcriptional and translational expression. Microarrays analyses did not reveal relevant changes in SSTR expression levels. Unexpectedly, six novel genes were found to be upregulated by octreotide: annexin A1 (ANXA1), rho GTPase-activating protein 18 (ARHGAP18), epithelial membrane protein 1 (EMP1), growth/differentiation factor 15 (GDF15), TGF-beta type II receptor (TGFBR2) and tumour necrosis factor (ligand) superfamily member 15 (TNFSF15). Furthermore, these novel genes were expressed in tumour tissues at transcript and protein levels. We suggest that octreotide may use a potential novel framework to exert its beneficial effect as a drug and to convey its action on neuroendocrine cells. Thus, six novel genes may regulate cell growth and differentiation in normal and tumour neuroendocrine cells and have a role in a novel octreotide mechanism system.
Collapse
Affiliation(s)
- Su-Chen Li
- Department of Medical Sciences, Endocrine Oncology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Cécile Martijn
- Department of Surgical Sciences, Anaesthesiology & Intensive Care, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tao Cui
- Department of Medical Sciences, Endocrine Oncology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ahmed Essaghir
- Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Raúl M. Luque
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica (IMIBIC), Hospital Universitario Reina Sofia, University of Cordoba, and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cordoba, Spain
| | | | - Justo P. Castaño
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica (IMIBIC), Hospital Universitario Reina Sofia, University of Cordoba, and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cordoba, Spain
| | - Kjell Öberg
- Department of Medical Sciences, Endocrine Oncology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Centre of Excellence for Endocrine Tumours, Uppsala University Hospital, Uppsala, Sweden
| | - Valeria Giandomenico
- Department of Medical Sciences, Endocrine Oncology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
13
|
|
14
|
Das A, Pushparaj C, Bahí N, Sorolla A, Herreros J, Pamplona R, Vilella R, Matias-Guiu X, Martí RM, Cantí C. Functional expression of voltage-gated calcium channels in human melanoma. Pigment Cell Melanoma Res 2012; 25:200-12. [PMID: 22260517 DOI: 10.1111/j.1755-148x.2012.00978.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The expression of voltage-gated calcium channels (VGCCs) has not been reported previously in melanoma cells in spite of increasing evidence of a role of VGCCs in tumorigenesis and tumour progression. To address this issue we have performed an extensive RT-PCR analysis of VGCC expression in human melanocytes and a range of melanoma cell lines and biopsies. In addition, we have tested the functional expression of these channels using Ca(2+) imaging techniques and examined their relevance for the viability and proliferation of the melanoma cells. Our results show that control melanocytes and melanoma cells express channel isoforms belonging to the Ca(v) 1 and Ca(v) 2 gene families. Importantly, the expression of low voltage-activated Ca(v) 3 (T-type) channels is restricted to melanoma. We have confirmed the function of T-type channels as mediators of constitutive Ca(2+) influx in melanoma cells. Finally, pharmacological and gene silencing approaches demonstrate a role for T-type channels in melanoma viability and proliferation. These results encourage the analysis of T-type VGCCs as targets for therapeutic intervention in melanoma tumorigenesis and/or tumour progression.
Collapse
Affiliation(s)
- A Das
- Laboratori d'Investigació, University of Lleida-IRBLleida, Lerida, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Martí RM, Sorolla A, Yeramian A. New therapeutic targets in melanoma. ACTAS DERMO-SIFILIOGRAFICAS 2012; 103:579-90. [PMID: 22261672 DOI: 10.1016/j.ad.2011.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/25/2011] [Accepted: 08/10/2011] [Indexed: 01/07/2023] Open
Abstract
Research into molecular targets for drug development in melanoma is starting to bear fruit. Of the drugs tested to date in patients with metastatic melanoma, those that have yielded the best results are V600E BRAF inhibitors in melanomas carrying the V600E mutation; c-kit tyrosine kinase activity inhibitors in melanomas carrying c-kit mutations; and anti-cytotoxic T lymphocyte antigen 4 (CTLA-4) antibodies, which block the mechanisms involved in immune tolerance. Many problems have yet to be resolved in these areas, however, such as the rapid development of resistance to BRAF and c-kit inhibitors and the lack of biomarkers to predict treatment response in the case of CTLA-4 blockers. We review the results of targeted therapy with these and other drugs in metastatic melanoma and discuss what the future holds for this field.
Collapse
Affiliation(s)
- R M Martí
- Servicio de Dermatología, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLLEIDA, Lleida, Spain.
| | | | | |
Collapse
|
16
|
Michel JL. [Eruptive naevi associated with octreotide treatment]. Ann Dermatol Venereol 2011; 138:677-80. [PMID: 21978505 DOI: 10.1016/j.annder.2011.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/29/2011] [Accepted: 05/03/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND Octreotide is a synthetic octapeptide having properties related to those of natural somatostatin, a hypothalamic hormone. We report a case of eruptive naevus in patients treated with octreotide. PATIENTS AND METHODS A 52-year-old man consulted for multiple achromic naevi of recent onset. He was undergoing treatment with octreotide 30 mg per month for hepatic metastases in a setting of operated colonic carcinoid tumor. Since the start of this treatment, he had presented an efflorescence of diffuse naevus comprising over 200 lesions, certain of which were highly atypical. Annual follow-up was carried out. Ten years later, the patient was still alive and undergoing octreotide therapy at the same dose. The number of naevi had stabilized and there was no evidence of melanoma. DISCUSSION Eruptions of naevi are rare; they may occur at the sites of lesions in bullous diseases or during immunodepression (malignant or drug induced, HIV infection). There are questions concerning possible stimulation of naevus cells and the risk of onset of melanoma. Routine monitoring of pigmented lesions is thus necessary in patients treated with octreotide.
Collapse
Affiliation(s)
- J-L Michel
- Cabinet de dermatologie, Saint-Étienne, France.
| |
Collapse
|
17
|
Gilaberte Y, Roca MJ, Garcia-Prats MD, Coscojuela C, Arbues MD, Vera-Alvarez JJ. Neuropeptide Y expression in cutaneous melanoma. J Am Acad Dermatol 2011; 66:e201-8. [PMID: 21620518 DOI: 10.1016/j.jaad.2011.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/25/2010] [Accepted: 02/15/2011] [Indexed: 01/26/2023]
Abstract
BACKGROUND Neuropeptide Y (NPY) is widely found in the nervous system and has a role in numerous physiologic processes. In addition, NPY receptors are expressed in neuroendocrine tumors, breast cancer, prostate cancer, kidney cancer, and some types of sarcomas. Different neuropeptides, particularly α-melanocyte-stimulating hormone (MSH), seem to play a role in the pathogenesis of melanoma. OBJECTIVE We sought to analyze the expression of NPY in cutaneous melanoma, its association with clinical and histologic features, and its correlation with α-MSH. METHODS This was an observational study of the immunohistochemical expression of NPY and α-MSH in tissue samples of cutaneous melanomas, different types of melanocytic nevi, and melanoma metastases diagnosed from 2004 to 2008 in San Jorge Hospital, Huesca, Spain. RESULTS A total of 184 lesions were studied: 49 primary cutaneous melanomas, 12 melanoma metastases (9 cutaneous and 3 lymphatic), and 123 melanocytic nevi. Immunostaining revealed that levels of NPY and α-MSH were significantly higher in melanomas than in melanocytic nevi (P < .001). Melanoma metastases were negative for both neuropeptides. Nodular melanomas showed the highest median percentage of NPY positive cells (75% [20-95]) followed by superficial spreading melanoma (25% [2-92]), whereas lentigo maligna were negative (0% [0-0]). Significant, direct associations between NPY expression and vertical growth (P = .0141) and presence of metastasis (P = .0196) were observed. NPY and α-MSH were positively correlated in cutaneous melanoma (0.49, P < .001). LIMITATIONS The sample size of melanomas was not very large. CONCLUSION Our study demonstrates that NPY is significantly expressed in melanomas, especially the nodular type, being associated with invasiveness independently of proliferative markers such as thickness, ulceration, and mitotic index.
Collapse
|
18
|
Current World Literature. Curr Opin Support Palliat Care 2010; 4:293-304. [DOI: 10.1097/spc.0b013e328340e983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|