1
|
La Rosa A, Mittauer KE, Chuong MD, Hall MD, Kutuk T, Bassiri N, McCulloch J, Alvarez D, Herrera R, Gutierrez AN, Tolakanahalli R, Mehta MP, Kotecha R. Accelerated hypofractionated magnetic resonance-guided adaptive radiotherapy for oligoprogressive non-small cell lung cancer. Med Dosim 2023; 48:238-244. [PMID: 37330328 DOI: 10.1016/j.meddos.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/12/2023] [Accepted: 05/08/2023] [Indexed: 06/19/2023]
Abstract
Given the positive results from recent randomized controlled trials in patients with oligometastatic, oligoprogressive, or oligoresidual disease, the role of radiotherapy has expanded in patients with metastatic non-small cell lung cancer (NSCLC). While small metastatic lesions are commonly treated with stereotactic body radiotherapy (SBRT), treatment of the primary tumor and involved regional lymph nodes may require prolonged fractionation schedules to ensure safety especially when treating larger volumes in proximity to critical organs-at-risk (OARs). We have developed an institutional MR-guided adaptive radiotherapy (MRgRT) workflow for these patients. We present a 71-year-old patient with stage IV NSCLC with oligoprogression of the primary tumor and associated regional lymph nodes in which MR-guided, online adaptive radiotherapy was performed, prescribing 60 Gy in 15 fractions. We describe our workflow, dosimetric constraints, and daily dosimetric comparisons for the critical OARs (esophagus, trachea, and proximal bronchial tree [PBT] maximum doses [D0.03cc]), in comparison to the original treatment plan recalculated on the anatomy of the day (i.e., predicted doses). During MRgRT, few fractions met the original dosimetric objectives: 6.6% for esophagus, 6.6% for PBT, and 6.6% for trachea. Online adaptive radiotherapy reduced the cumulative doses to the structures by 11.34%, 4.2%, and 5.62% when comparing predicted plan summations to the final delivered summation. Therefore, this case study presets a workflow and treatment paradigm for accelerated hypofractionated MRgRT due to the significant variations in daily dose to the central thoracic OARs to reduce treatment-related toxicity associated with radiotherapy.
Collapse
Affiliation(s)
- Alonso La Rosa
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
| | - Kathryn E Mittauer
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Matthew D Hall
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Tugce Kutuk
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Nema Bassiri
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - James McCulloch
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Diane Alvarez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Robert Herrera
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Ranjini Tolakanahalli
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA; Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
2
|
Feng A, Gu H, Chen H, Shao Y, Wang H, Duan Y, Huang Y, Zhou T, Xu Z. Account for the Full Extent of Esophagus Motion in Radiation Therapy Planning: A Preliminary Study of the IRV of the Esophagus. Front Oncol 2021; 11:734552. [PMID: 34900685 PMCID: PMC8656362 DOI: 10.3389/fonc.2021.734552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Accounting for esophagus motion in radiotherapy planning is an important basis for accurate assessment of toxicity. In this study, we calculated how much the delineations of the esophagus should be expanded based on three-dimensional (3D) computed tomography (CT), four-dimensional (4D) average projection (AVG), and maximum intensity projection (MIP) scans to account for the full extent of esophagus motion during 4D imaging acquisition. Methods and Materials The 3D and 4D CT scans of 20 lung cancer patients treated with conventional radiotherapy and 20 patients treated with stereotactic ablative radiation therapy (SBRT) were used. Radiation oncologists contoured the esophagus on the 3DCT, AVG, MIP and 25% exhale scans, and the combination of the esophagus in every phase of 4DCT. The union of all 4D phase delineations (U4D) represented the full extent of esophagus motion during imaging acquisition. Surface distances from U4D to 3D, AVG, and MIP volumes were calculated. Distances in the most extreme surface points (1.5 cm most superoinferior, 10% most right/left/anteroposterior) were used to derive margins accounting only for systematic (delineation) errors. Results Esophagus delineations on the MIP were the closest to the full extent of motion, requiring only 6.9 mm margins. Delineations on the AVG and 3D scans required margins up to 7.97 and 7.90 mm, respectively. The largest margins were for the inferior, right, and anterior aspects for the delineations on the 3D, AVG, and MIP scans, respectively. Conclusion Delineations on 3D, AVG, or MIP scans required extensions for representing the esophagus’s full extent of motion, with the MIP requiring the smallest margins. Research including daily imaging to determine the random components for the margins and dosimetric measurements to determine the relevance of creating a planning organ at risk volume (PRV) of the esophagus is required.
Collapse
Affiliation(s)
- Aihui Feng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hengle Gu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Chen
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Shao
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanhua Duan
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Huang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Zhou
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhiyong Xu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Boekhoff M, Defize I, Borggreve A, van Hillegersberg R, Kotte A, Lagendijk J, van Lier A, Ruurda J, Takahashi N, Mook S, Meijer G. An in-silico assessment of the dosimetric benefits of MR-guided radiotherapy for esophageal cancer patients. Radiother Oncol 2021; 162:76-84. [PMID: 34237345 DOI: 10.1016/j.radonc.2021.06.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/17/2021] [Accepted: 06/26/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE To assess the dosimetric benefits of online MR-guided radiotherapy (MRgRT) for esophageal cancer patients and to assess how these benefits could be translated into a local boosting strategy to improve future outcomes. METHODS Twenty-nine patients were in-silico treated with both a MRgRT regimen and a conventional image guided radiotherapy (IGRT) regimen using dose warping techniques. Here, the inter and intrafractional changes that occur over the course of treatment (as derived from 5 MRI scans that were acquired weekly during treatment) were incorporated to assess the total accumulated dose for each regimen. RESULTS A significant reduction in dose to the organs-at-risk (OARs) was observed for all dose-volume-histogram (DVH) parameters for the MRgRT regimen without concessions to target coverage compared to the IGRT regimen. The mean lung dose was reduced by 28%, from 7.9 to 5.7 Gy respectively and V20Gy of the lungs was reduced by 55% (6.3-2.8%). A reduction of 24% was seen in mean heart dose (14.8-11.2 Gy), while the V25Gy of the heart was decreased by 53% (14.3-6.7%) and the V40Gy of the heart was decreased by 69% (3.9-1.2%). In addition, MRgRT dose escalation regimens with a boost up to 66% of the prescription dose to the primary tumor yielded approximately the same dose levels to the OARs as from the conventional IGRT regimen. CONCLUSION This study revealed that MRgRT for esophageal cancer has the potential to significantly reduce the dose to heart and lungs. In addition, online high precision targeting of the primary tumor opens new perspectives for local boosting strategies to improve outcome of the local management of this disease.
Collapse
Affiliation(s)
- Mick Boekhoff
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands.
| | - Ingmar Defize
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands; Department of Surgery, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Alicia Borggreve
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands; Department of Surgery, University Medical Center Utrecht, Utrecht University, The Netherlands
| | | | - Alexis Kotte
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Jan Lagendijk
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Astrid van Lier
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Jelle Ruurda
- Department of Surgery, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Noriyoshi Takahashi
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands; Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Stella Mook
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Gert Meijer
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands.
| |
Collapse
|
4
|
Fechter T, Adebahr S, Grosu AL, Baltas D. Measuring breathing induced oesophageal motion and its dosimetric impact. Phys Med 2021; 88:9-19. [PMID: 34153886 DOI: 10.1016/j.ejmp.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/05/2021] [Accepted: 06/04/2021] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Stereotactic body radiation therapy allows for a precise dose delivery. Organ motion bears the risk of undetected high dose healthy tissue exposure. An organ very susceptible to high dose is the oesophagus. Its low contrast on CT and the oblong shape render motion estimation difficult. We tackle this issue by modern algorithms to measure oesophageal motion voxel-wise and estimate motion related dosimetric impacts. METHODS Oesophageal motion was measured using deformable image registration and 4DCT of 11 internal and 5 public datasets. Current clinical practice of contouring the organ on 3DCT was compared to timely resolved 4DCT contours. Dosimetric impacts of the motion were estimated by analysing the trajectory of each voxel in the 4D dose distribution. Finally an organ motion model for patient-wise comparisons was built. RESULTS Motion analysis showed mean absolute maximal motion amplitudes of 4.55 ± 1.81 mm left-right, 5.29 ± 2.67 mm anterior-posterior and 10.78 ± 5.30 mm superior-inferior. Motion between cohorts differed significantly. In around 50% of the cases the dosimetric passing criteria was violated. Contours created on 3DCT did not cover 14% of the organ for 50% of the respiratory cycle and were around 38% smaller than the union of all 4D contours. The motion model revealed that the maximal motion is not limited to the lower part of the organ. Our results showed motion amplitudes higher than most reported values in the literature and that motion is very heterogeneous across patients. CONCLUSIONS Individual motion information should be considered in contouring and planning.
Collapse
Affiliation(s)
- Tobias Fechter
- Division of Medical Physics, Department of Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK). Partner Site Freiburg, Germany.
| | - Sonja Adebahr
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany; Department of Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Anca-Ligia Grosu
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany; Department of Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Dimos Baltas
- Division of Medical Physics, Department of Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
| |
Collapse
|
5
|
Lee SL, Mahler P, Olson S, Witt JS, Musunuru HB, Rajamanickam V, Bassetti MF, Yadav P. Reduction of cardiac dose using respiratory-gated MR-linac plans for gastro-esophageal junction cancer. Med Dosim 2020; 46:152-156. [PMID: 33097372 DOI: 10.1016/j.meddos.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/19/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
Treatment of locally advanced adenocarcinoma of the gastroesophageal junction (GEJ) with chemoradiation may be associated with high rates of symptomatic cardiac toxicity. Large margins are typically required to ensure coverage of GEJ tumors with free-breathing volumetric modulated arc therapy (VMAT) radiotherapy. The purpose of this study is to determine whether treatment with tighter margins enabled by maximum-inhalation breath hold (MIBH)-gated intensity modulated radiation therapy (IMRT) on an integrated MRI-linear accelerator system (MR-linac) can decrease radiation doses to the heart and cardiac substructures. Ten patients with locally advanced GEJ adenocarcinoma underwent both free breathing 4-dimensional computed tomography (4DCT) and MIBH MRI simulation scans. MR-linac IMRT plans were created with a 3 mm clinical target volume (CTV) to planning target volume (PTV) isotropic margin and 4DCT VMAT plans were created with a 11, 13, and 9 mm CTV to PTV anisotropic margins in the left-right, cranial-caudal, and anterior-posterior directions according to GEJ-specific PTV expansion recommendations by Voncken et al. Prescription dose to PTV was 50.4 Gy in 28 fractions. Dosimetry to the heart and cardiac substructures was compared with paired t test; p < 0.05 was considered significant. Mean PTV on the MR-linac IMRT plans was significantly smaller compared to the 4DCT VMAT plans (689 cm3vs 1275 cm3, p < 0.01). Mean dose to the heart and all cardiac substructures was significantly lower in the MR-linac IMRT plans compared to the 4DCT VMAT plans: heart 20.9 Gy vs 27.8 Gy, left atrium 29.6 Gy vs 39.4 Gy, right atrium 20.5 Gy vs 25.6 Gy, left ventricle 21.6 Gy vs 29.6 Gy, and right ventricle 18.7 Gy vs 25.2 Gy (all p values <0.05). MIBH-gated MR-linac IMRT treatment of locally advanced GEJ adenocarcinoma can significantly decrease doses to the heart and cardiac substructures and this may translate to reduced rates of cardiac toxicity.
Collapse
Affiliation(s)
- Sangjune Laurence Lee
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI 53792, USA; Present address: Department of Oncology, University of Calgary, Calgary, AB T2N 4N2, Canada.
| | - Peter Mahler
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI 53792, USA
| | - Stephanie Olson
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI 53792, USA
| | - Jacob S Witt
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI 53792, USA
| | - Hima Bindu Musunuru
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Victoria Rajamanickam
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53792, USA
| | - Michael F Bassetti
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI 53792, USA
| | - Poonam Yadav
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI 53792, USA
| |
Collapse
|
6
|
Alam S, Thor M, Rimner A, Tyagi N, Zhang SY, Kuo LC, Nadeem S, Lu W, Hu YC, Yorke E, Zhang P. Quantification of accumulated dose and associated anatomical changes of esophagus using weekly Magnetic Resonance Imaging acquired during radiotherapy of locally advanced lung cancer. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2020; 13:36-43. [PMID: 32411833 PMCID: PMC7224352 DOI: 10.1016/j.phro.2020.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MRI is suited for tracking volumetric changes/accumulating doses in the esophagus. Introduced medial axis of esophagus to calculate inter-fraction positional uncertainty. Planned and accumulated esophagus dose-volume parameter differences are significant. Longitudinal expansion of esophagus may link to acute esophagitis.
Background and purpose Minimizing acute esophagitis (AE) in locally advanced non-small cell lung cancer (LA-NSCLC) is critical given the proximity between the esophagus and the tumor. In this pilot study, we developed a clinical platform for quantification of accumulated doses and volumetric changes of esophagus via weekly Magnetic Resonance Imaging (MRI) for adaptive radiotherapy (RT). Material and methods Eleven patients treated via intensity-modulated RT to 60–70 Gy in 2–3 Gy-fractions with concurrent chemotherapy underwent weekly MRIs. Eight patients developed AE grade 2 (AE2), 3–6 weeks after RT started. First, weekly MRI esophagus contours were rigidly propagated to planning CT and the distances between the medial esophageal axes were calculated as positional uncertainties. Then, the weekly MRI were deformably registered to the planning CT and the total dose delivered to esophagus was accumulated. Weekly Maximum Esophagus Expansion (MEex) was calculated using the Jacobian map. Eventually, esophageal dose parameters (Mean Esophagus Dose (MED), V90% and D5cc) between the planned and accumulated dose were compared. Results Positional esophagus uncertainties were 6.8 ± 1.8 mm across patients. For the entire cohort at the end of RT: the median accumulated MED was significantly higher than the planned dose (24 Gy vs. 21 Gy p = 0.006). The median V90% and D5cc were 12.5 cm3 vs. 11.5 cm3 (p = 0.05) and 61 Gy vs. 60 Gy (p = 0.01), for accumulated and planned dose, respectively. The median MEex was 24% and was significantly associated with AE2 (p = 0.008). Conclusions MRI is well suited for tracking esophagus volumetric changes and accumulating doses. Longitudinal esophagus expansion could reflect radiation-induced inflammation that may link to AE.
Collapse
Affiliation(s)
- Sadegh Alam
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Maria Thor
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Si-Yuan Zhang
- Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Li Cheng Kuo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Saad Nadeem
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Wei Lu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Yu-Chi Hu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Pengpeng Zhang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|