1
|
Ding R, Hong W, Huang L, Shao J, Yu W, Xu X. Examination of the effects of microRNA-145-5p and phosphoserine aminotransferase 1 in colon cancer. Bioengineered 2022; 13:12794-12806. [PMID: 35615948 PMCID: PMC9275947 DOI: 10.1080/21655979.2022.2071010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previous studies manifested that microRNA-145-5p is pivotal in the development of various cancers. Nevertheless, the potential function of microRNA-145-5p in colorectal cancer remains unclear. This study attempted to investigate the potential role and possible mechanism of microRNA-145-5p in colon cancer. MicroRNA-145-5p and phosphoserine aminotransferase 1 (PSAT1) levels in colon cancer cells were assayed via quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell proliferation and cell cycle status were assessed using Cell Counting Kit-8, colony formation, and flow cytometry. The target binding relationship of microRNA-145-5p and PSAT1 was identified using bioinformatics analysis and dual-luciferase reporter gene assay. The result of qRT-PCR disclosed that microRNA-145-5p was markedly down-regulated and PSAT1 level was up-regulated in colon cancer cell lines. Besides, enforced microRNA-145-5p level repressed proliferation of colon cancer cells, and cells were arrested in G0-G1 phase. Bioinformatics analysis and dual-luciferase reporter genes confirmed that PSAT1 was a downstream target of microRNA-145-5p. Enforced PSAT1 level remarkably modulated cell cycle and fostered cell proliferation. Furthermore, rescue experiments displayed that microRNA-145-5p restrained cell cycle progression and cell proliferation and forced PSAT1 level could partially reverse this process. Taken together, our findings demonstrated that microRNA-145-5p repressed colon cancer cell cycle progression and cell proliferation via targeting PSAT1. Our findings identified microRNA-145-5p as an essential tumor repressor gene in colon cancer and may provide a novel biomarker for colon cancer.
Collapse
Affiliation(s)
- Ruliang Ding
- Department of Anorectal Surgery, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Weiwen Hong
- Department of Anorectal Surgery, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Liang Huang
- Department of Anorectal Surgery, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Jinfan Shao
- Department of Anorectal Surgery, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Wenfeng Yu
- Department of Anorectal Surgery, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Xijuan Xu
- Department of Anorectal Surgery, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| |
Collapse
|
2
|
Function of miRNA-145-5p in the pathogenesis of human disorders. Pathol Res Pract 2022; 231:153780. [DOI: 10.1016/j.prp.2022.153780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/08/2022] [Accepted: 01/22/2022] [Indexed: 01/09/2023]
|
3
|
Yang CC, Meng GX, Dong ZR, Li T. Role of Rab GTPases in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:1389-1397. [PMID: 34824998 PMCID: PMC8610749 DOI: 10.2147/jhc.s336251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
The Rab GTPase family contains almost 70 genes in the human genome and acts as the key regulator of intracellular membrane trafficking in human cells. The dysregulation of Rab GTPase has been shown to be associated with multiple human diseases, ranging from neurodegeneration, and infection to cancer. Rab GTPases not only play important roles in genome replication, morphogenesis and the release of hepatitis B virus (HBV) or hepatitis C virus (HCV), but also contribute to hepatitis-related hepatocarcinogenesis and hepatocellular carcinoma (HCC) progression. The alteration of Rab GTPase expression in HCC plays an important role in tumour cell proliferation, invasion and migration. Notably, the expression of Rab genes can be regulated by some noncoding RNAs, such as miRNAs and circRNAs. Thus, Rab GTPases can serve as promising rational and therapeutic targets for HCC treatments. In this review, we summarized recent advancements in this field focusing on Rab GTPases in HCC.
Collapse
Affiliation(s)
- Chun-Cheng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Guang-Xiao Meng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, People's Republic of China.,Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
4
|
Zhou R, Jia W, Gao X, Deng F, Fu K, Zhao T, Li Z, Fu W, Liu G. CircCDYL Acts as a Tumor Suppressor in Wilms' Tumor by Targeting miR-145-5p. Front Cell Dev Biol 2021; 9:668947. [PMID: 34485273 PMCID: PMC8415843 DOI: 10.3389/fcell.2021.668947] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNA) have been reported to exert evident functions in many human carcinomas. However, the possible mechanisms concerning the circRNA in various tumors are still elusive. In this research, we analyzed the expression profile and biological functions of circular RNA CDYL (circCDYL, circBase ID: hsa_circ_0008285) in Wilms' tumor. Here, miRNA and gene expression were examined by real-time PCR in Wilms' tumor tissues and cell lines. The functions of circCDYL and its potential targets to influence cell proliferation, migration, and invasion in Wilms' tumor cells were determined by biological functional experiments in vitro and in vivo. We predicted and analyzed potential miRNA targets through online bioinformatic tools. To validate the interactions between circCDYL and its targets, we performed RNA fluorescence in situ hybridization, biotin-coupled miRNA capture assay, and biotin-coupled probe pull-down assay. Tight junction protein l (TJP1) was proved to be the target gene of the predicted miRNA by dual-luciferase reporter assay. The expression level of TJP1 in Wilms' tumor cells was identified via Western blot. We showed that circCDYL was downregulated in WT tissue compared with adjacent non-tumor tissue. Upregulation of circCDYL could reduce cell proliferation, migration, and invasion. Mechanically, circCDYL, functioning as a miRNA sponge, decreased the expression level of miR-145-5p and TJP1 3'UTR was validated as the target of miR-145-5p, facilitating the circCDYL/miR-145-5p/TJP1 axis. In conclusion, our study suggested circCDYL as a novel biomarker and therapeutic target for WT treatment.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaofeng Gao
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fuming Deng
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kai Fu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tianxin Zhao
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhongmin Li
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen Fu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guochang Liu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Yang K, Wang Z. Rab18 interacted with V-set and immunoglobulin domain-containing 4 (VSIG4) to involve in the apoptosis of glioma and the sensitivity to temozolomide. Bioengineered 2021; 12:1391-1402. [PMID: 33904378 PMCID: PMC8806276 DOI: 10.1080/21655979.2021.1919012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rab18 and V-set and immunoglobulin domain-containing 4 (VSIG4) were reportedly implicated in the malignant progression of glioma. In this study, their relationship was further explored, accompanied by the investigation into their effects on the sensitivity of temozolomide (TMZ). The proliferation and apoptosis of U87-MG and U251-MG were detected after Rab18 silencing through CCK8 assay and flow cytometry, respectively. The interaction between Rab18 and VSIG4 was predicted through database and verified by immunoprecipitation assay. The suspicion that whether the sensitivity of glioma to temozolomide was affected by the Rab18-VSIG4 interaction was explored through CCK8 assay. We observed decreased proliferation and increased apoptosis and TMZ sensitivity in U87-MG and U251-MG treated by siRNA-Rab18. Not only was the interaction predicted using database, but also it was confirmed by IP assay. Intriguingly, VSIG4 overexpression effectively reversed above biological process and TMZ sensitivity caused by Rab18 silencing. To conclude, the Rab18-VSIG4 interaction was implicated in the proliferation and apoptosis of glioma, as well as TMZ sensitivity. Targeting the interaction between Rab18 and VSIG4 may help exploit new therapies to enhance TMZ sensitivity for treating patients with glioma.
Collapse
Affiliation(s)
- Kai Yang
- Department of Neurosurgery, The First People's Hospital of Jinzhong, Jinzhong, China
| | - Zhi Wang
- Department of Neurosurgery, The First People's Hospital of Jinzhong, Jinzhong, China
| |
Collapse
|
6
|
Wang S, Wang T, Gu P. microRNA-145-5p Inhibits Migration, Invasion, and Metastasis in Hepatocellular Carcinoma by Inhibiting ARF6. Cancer Manag Res 2021; 13:3473-3484. [PMID: 33907470 PMCID: PMC8071082 DOI: 10.2147/cmar.s300678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) has the fourth highest rate of mortality among the different types of cancer worldwide. This study aimed to investigate the functions of microRNA-145-5p and AFR6 on migration, invasion and metastasis in HCC. Methods A total of 150 pairs of tumor and their matched adjacent nontumor liver tissues were collected from HCC patients. Expressions of microRNA-145-5p and AFR6 were measured by real-time PCR in HCC tissues and in HCC cell lines. The correlations between microRNA-145-5p and HCC prognosis were investigated. The proliferation, migration, invasion, cell cycle progression, and apoptosis of HCCLM3 cells were evaluated with CCK8, wound healing, transwell, and flow cytometric experiments. Results The expression of miR-145-5p was confirmed to be downregulated not only in HCC tissues but also in several HCC cell lines compared with normal controls. A low expression level of miR-145-5p was notably associated with poor prognosis in patients with HCC and certain characteristics of metastatic tumors. In vitro, miR-145-5p negatively regulated cell proliferation, migration, and invasion and induced apoptosis in HCCLM3 cells. Subsequent experiments further verified that ARF6 is a novel target of miR-145-5p and is significantly overexpressed in HCC tissues. Overexpression of ARF6 circumvented the effects of miR-145-5p in HCCLM3 cells. Conclusion miR-145-5p may play a pivotal role in HCC metastasis via regulating ARF6, and these findings may both provide further insights into the key factors of HCC metastasis and prove to be useful in the development of novel treatment options for HCC.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Orthopedics Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Tianjiao Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, People's Republic of China
| | - Pengcheng Gu
- Department of Orthopedics Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
| |
Collapse
|
7
|
Ghafouri-Fard S, Honarmand Tamizkar K, Hussen BM, Taheri M. MicroRNA signature in liver cancer. Pathol Res Pract 2021; 219:153369. [PMID: 33626406 DOI: 10.1016/j.prp.2021.153369] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Liver cancer is the 7th utmost frequent neoplasm and the 4th principal source of cancer deaths. This malignancy is linked with several environmental and lifestyle-related factors emphasizing the role of epigenetics in its pathogenesis. MicroRNAs (miRNAs) have been regarded as potent epigenetic mechanisms partaking in the pathogenesis of liver cancer. Dysregulation of miRNAs has been related with poor outcome of patients with liver cancer. In the current manuscript, we provide a concise review of the results of recent studies about the role of miRNAs in the progression of liver cancer and their diagnostic and prognostic utility.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Su Y, Yu T, Wang Y, Huang X, Wei X. Circular RNA circDNM3OS Functions as a miR-145-5p Sponge to Accelerate Cholangiocarcinoma Growth and Glutamine Metabolism by Upregulating MORC2. Onco Targets Ther 2021; 14:1117-1129. [PMID: 33628035 PMCID: PMC7898209 DOI: 10.2147/ott.s289241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is the second most common liver malignant tumor. CircRNA hsa_circ_0005230 (circDNM3OS) has been reported to exert an oncogenic role in CCA. However, the mechanisms related to circDNM3OS in CAA progression have not been fully elucidated. Methods The expression of circDNM3OS, microRNA (miR)-145-5p, and MORC2 (MORC Family CW-Type Zinc Finger 2) mRNA were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, colony formation, migration, invasion, and apoptosis were evaluated by Cell Counting Kit-8 (CCK-8), colony formation, transwell, wound-healing, and flow cytometry assays. The levels of glutamine, α-KG (α-ketoglutarate), and ATP (adenosine triphosphate) were detected using commercial kits. The relationship between circDNM3OS or MORC2 and miR-145-5p was verified by dual-luciferase reporter and/or RNA immunoprecipitation (RIP) assays. Protein level of MORC2 was measured by Western blotting. The role of circDNM3OS in CCA growth was verified by xenograft experiment. Results CircDNM3OS and MORC2 were upregulated while miR-145-5p was downregulated in CCA tissues and cells. Inhibition of circDNM3OS reduced xenograft tumor growth in vivo and constrained proliferation, colony formation, migration, invasion, induced apoptosis, and reduced glutamine metabolism of CCA cells in vitro. CircDNM3OS sponged miR-145-5p to elevate MORC2 expression. MiR-145-5p silencing overturned circDNM3OS knockdown-mediated influence on malignancy and glutamine metabolism of CCA cells. Also, MORC2 overexpression reversed the repressive impact of miR-145-5p mimic on malignancy and glutamine metabolism of CCA cells. Conclusion CircDNM3OS facilitates CCA growth and glutamine metabolism by regulating the miR-145-5p/MORC2 pathway, offering a novel mechanism to understand the progression of CCA.
Collapse
Affiliation(s)
- Yongfeng Su
- Department of General Oncology, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Ting Yu
- Department of General Oncology, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Yaqi Wang
- Department of General Oncology, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Xianming Huang
- Department of Pathology, Jiangxi Provincial Cancer Hospital, Jiangxi, 330029, People's Republic of China
| | - Xiaoyong Wei
- Department of Hepatobiliary Surgery, Jiangxi Provincial Cancer Hospital, Jiangxi, 330029, People's Republic of China
| |
Collapse
|
9
|
Huang ZG, Sun Y, Chen G, Dang YW, Lu HP, He J, Cheng JW, He ML, Li SH. MiRNA-145-5p expression and prospective molecular mechanisms in the metastasis of prostate cancer. IET Syst Biol 2021; 15:1-13. [PMID: 33527765 PMCID: PMC8675798 DOI: 10.1049/syb2.12011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023] Open
Abstract
The clinicopathological implication and prospective molecular mechanisms of miRNA-145-5p in the metastasis of prostate cancer (PCa) stand unclear. Herein, it is found that miRNA-145-5p expression was remarkably reduced in 131 cases of metastatic PCa than 1371 cases of localised ones, as the standardised mean differences (SMD) was -1.26 and the area under the curve (AUC) was 0.86, based on miRNA-chip and miRNA-sequencing datasets. The potential targets of miRNA-145-5p in metastatic PCa (n = 414) was achieved from the intersection of miRNA-145-5p transfected metastatic PCa cell line data, differential expression of metastatic PCa upregulated genes and online prediction databases. TOP2A was screened as one of the target hub genes by PPI network analysis, which was adversely related to miRNA-145-5p expression in both metastatic PCa (r = -0.504) and primary PCa (r = -0.281). Gene-chip and RNA-sequencing datasets, as well as IHC performed on clinical PCa samples, showed consistent upregulated expression of TOP2A mRNA and protein in PCa compared with non-PCa. The expression of TOP2A mRNA was also significantly higher in metastatic than localised PCa with the SMD being 1.72 and the AUC of sROC being 0.91. In summary, miRNA-145-5p may participate in PCa metastasis by binding TOP2A and be useful as a biomarker for the detection of metastatic PCa.
Collapse
Affiliation(s)
- Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yu Sun
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Hui-Ping Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Juan He
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Ji-Wen Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Mao-Lin He
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Sheng-Hua Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
10
|
Yin D, Liu L, Shi Z, Zhang L, Yang Y. Ropivacaine Inhibits Cell Proliferation, Migration and Invasion, Whereas Induces Oxidative Stress and Cell Apoptosis by circSCAF11/miR-145-5p Axis in Glioma. Cancer Manag Res 2020; 12:11145-11155. [PMID: 33173347 PMCID: PMC7648566 DOI: 10.2147/cmar.s274975] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background Glioma is a heterogeneous aggressive tumor. Ropivacaine, a widely used anesthetic, has been shown to repress the progression of multiple cancers, including glioma. In this study, the effects of ropivacaine on cell proliferation, migration, invasion and apoptosis in glioma were revealed. Methods The expression levels of circSCAF11 and miR-145-5p were detected by quantitative real-time polymerase chain reaction (qRT-PCR) in glioma tissues and cells. The expression levels of epithelial–mesenchymal transition (EMT)-related proteins were determined by Western blot. Oxidative stress was evaluated by the measurement of reactive oxygen species (ROS) and determination of mitochondrial 8-hydroxy-2-deoxyguanosine (8-OHdG) assay in glioma cells. Cell proliferation was determined by cell counting kit-8 (CCK-8) assay and cell colony formation assay. Cell apoptosis and metastasis were detected by flow cytometry analysis and transwell assay, respectively. The binding relationship between circSCAF11 and miR-145-5p was predicted by circular RNA Interactome and identified by dual-luciferase reporter assay and RNA immunoprecipitation assay. In vivo tumor formation assay was performed to reveal the effects between ropivacaine and circSCAF11 overexpression on tumorigenesis in vivo. Results CircSCAF11 expression was obviously upregulated and miR-145-5p was significantly downregulated in glioma tissues and cells compared with control groups. Ropivacaine treatment upregulated E-cadherin protein expression and repressed the protein expression of Vimentin. Functionally, ropivacaine exposure promoted ROS and 8-OHdG production and cell apoptosis, whereas inhibited cell proliferation, migration and invasion; however, these effects were hindered by circSCAF11 overexpression. Mechanistically, circSCAF11 was a sponge of miR-145-5p. In addition, ropivacaine was revealed to inhibit tumor growth in vivo by regulating circSCAF11 and miR-145-5p expression. Conclusion Ropivacaine suppressed glioma progression by regulating circSCAF11 and miR-145-5p, which might provide a theoretical foundation in glioma treatment.
Collapse
Affiliation(s)
- Danqin Yin
- Department of Anesthesiology, Danyang People's Hospital of Jiangsu, Danyang City, Jiangsu Province, People's Republic of China
| | - Li Liu
- Department of Anesthesiology, Tianjin Fourth Central Hospital, Tianjin City, People's Republic of China
| | - Zhengyuan Shi
- Department of Anesthesiology, Danyang People's Hospital of Jiangsu, Danyang City, Jiangsu Province, People's Republic of China
| | - Lihui Zhang
- Department of Anesthesiology, Hulunbeier Municipal People's Hospital (Hulunbuir Hospital Affiliated to Suzhou University), Hulunbeier City, Inner Mongolia Province, People's Republic of China
| | - Yan Yang
- Department of Anesthesiology, The First People's Hospital of Jiangxia District, Wuhan City, Hubei Province, People's Republic of China
| |
Collapse
|
11
|
Lv Q, Ma C, Li H, Tan X, Wang G, Zhang Y, Wang P. Circular RNA microarray expression profile and potential function of circ0005875 in clear cell renal cell carcinoma. J Cancer 2020; 11:7146-7156. [PMID: 33193877 PMCID: PMC7646169 DOI: 10.7150/jca.48770] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/04/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Circular RNAs (circRNAs), a novel class of endogenous noncoding RNAs, are involved in a variety of diseases, including several types of cancers. We hypothesized that circRNAs are involved in the tumorigenesis and development of clear cell renal cell carcinoma (ccRCC). Methods: To verify our hypothesis, we explored the circRNA expression profiles in 4 pairs of ccRCC tissues and their adjacent non-carcinoma tissues via microarray analysis. Selected circRNAs were further validated by qPCR. Moreover, hsa_circ_0005875 was selected for further study and the potential clinical values of hsa_circ_0005875 were investigated in 60 pairs of ccRCC tissues and adjacent normal controls. In addition, the role of hsa_circ_0005875 in ccRCC progression were performed using colony formation assay, Transwell assay and Martrigel-Transwell assay respectively. Finally, interactions between the circRNAs and miRNAs were predicted using Arraystar's miRNA target prediction software. Luciferase reporter assays were performed to evaluate the interaction between hsa_circ_0005875 and hsa_miR-145-5p. Results: The microarray data showed 1988 circRNAs were significantly dysregulated circRNAs, including 1033 upregulated and 955 downregulated ones in the ccRCC tissues. Hsa_circ_0005875 was confirmed to be significantly upregulated in the ccRCC tumor tissues and renal carcinoma cells. Further analysis revealed that hsa_circ_0005875 expression was associated with tumor size, pathological TNM stage, histological differentiation, and lymphatic metastasis. Functional experiments demonstrated that overexpression of hsa_circ_0005875 increased proliferation, migration and invasion abilities. Moreover, bioinformatics analysis and luciferase reporter assays suggest that hsa_circ_0005875 may serve as a ceRNA (competing endogenous RNA) of miR-145-5p to relieve the repressive effect of miR-145-5p on target ZEB2. Conclusions: These data indicate that hsa_circ_0005875 might play a role in promoting tumor growth and metastasis and be a potential biomarker of ccRCC.
Collapse
Affiliation(s)
- Qi Lv
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun road No. 389, Shanghai, China
| | - Chunhui Ma
- Department of Orthopedics, Shanghai general hospital of Shanghai Jiaotong university, WujinRoad No. 85, 200080, shanghai, China
| | - Haoming Li
- Department of Human Anatomy and Neurobiology, Nantong University, School of Medicine, Qixiu road No. 19, Nantong 226001, Jiangsu, China
| | - Xuefeng Tan
- Department of Human Anatomy and Neurobiology, Nantong University, School of Medicine, Qixiu road No. 19, Nantong 226001, Jiangsu, China
| | - Gangmin Wang
- Department of Urology, Huashan Hospital, Fudan University, Urumuqi Road No.12, 200040, Shanghai, China
| | - Yinan Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No.324, Jinan 250001, Shandong, China
| | - Peijun Wang
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun road No. 389, Shanghai, China
| |
Collapse
|
12
|
Chen G, Xu C, Gillette TG, Huang T, Huang P, Li Q, Li X, Li Q, Ning Y, Tang R, Huang C, Xiong Y, Tian X, Xu J, Xu J, Chang L, Wei C, Jin C, Hill JA, Yang Y. Cardiomyocyte-derived small extracellular vesicles can signal eNOS activation in cardiac microvascular endothelial cells to protect against Ischemia/Reperfusion injury. Am J Cancer Res 2020; 10:11754-11774. [PMID: 33052245 PMCID: PMC7546010 DOI: 10.7150/thno.43163] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: The crosstalk between cardiac microvascular endothelial cells (CMECs) and cardiomyocytes (CMs) has emerged as a key component in the development of, and protection against, cardiac diseases. For example, activation of endothelial nitric oxide synthase (eNOS) in CMECs, by therapeutic strategies such as ischemic preconditioning, plays a critical role in the protection against myocardial ischemia/reperfusion (I/R) injury. However, much less is known about the signals produced by CMs that are able to regulate CMEC biology. Here we uncovered one such mechanism using Tongxinluo (TXL), a traditional Chinese medicine, that alleviates myocardial ischemia/reperfusion (I/R) injury by activating CMEC eNOS. The aim of our study is to identify the signals produced by CMs that can regulate CMEC biology during I/R. Methods: Ex vivo, in vivo, and in vitro settings of ischemia-reperfusion were used in our study, with the protective signaling pathways activated in CMECs identified using genetic inhibition (p70s6k1 siRNA, miR-145-5p mimics, etc.), chemical inhibitors (the eNOS inhibitor, L-NNA, and the small extracellular vesicles (sEVs) inhibitor, GW4869) and Western blot analyses. TritonX-100 at a dose of 0.125% was utilized to inactivate the eNOS activity in endothelium to investigate the role of CMEC-derived eNOS in TXL-induced cardioprotection. Results: We found that while CMEC-derived eNOS activity was required for the cardioprotection of TXL, activation of eNOS in CMECs by TXL did not occur directly. Instead, eNOS activation in CMECs required a crosstalk between CMs and CMECs through the uptake of CM-derived sEVs. We further demonstrate that TXL induced CM-sEVs contain increased levels of Long Intergenic Non-Protein Coding RNA, Regulator Of Reprogramming (Linc-ROR). Upon uptake into CMECs, linc-ROR downregulates its target miR-145-5p leading to activation of the eNOS pathway by facilitating the expression of p70s6k1 in these cells. The activation of CMEC-derived eNOS works to increase survival in both the CMECs and the CMs themselves. Conclusions: These data uncover a mechanism by which the crosstalk between CMs and CMECs leads to the increased survival of the heart after I/R injury and point to a new therapeutic target for the blunting of myocardial I/R injury.
Collapse
|
13
|
MiR-145-5p suppresses the proliferation, migration and invasion of gastric cancer epithelial cells via the ANGPT2/NOD_LIKE_RECEPTOR axis. Cancer Cell Int 2020; 20:416. [PMID: 32874130 PMCID: PMC7456024 DOI: 10.1186/s12935-020-01483-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Objective This study aimed to investigate the relationship among miR-145-5p, ANGPT2 and the NOD_LIKE_RECEPTOR pathway, thereby revealing the molecular mechanism of these three factors underlying the proliferation, migration and invasion of gastric cancer (GC) epithelial cells. Methods qRT-PCR was carried out to detect the expression of miR-145-5p and ANGPT2 mRNA. Western blot was performed to test the protein levels of ANGPT2 as well as NOD1, NOD2 and NF-κB in the NOD_LIKE_RECEPTOR pathway. The targeting relationship between miR-145-5p and ANGPT2 was verified via a dual-luciferase reporter gene assay. The proliferation, migration and invasion of GC cells were detected through MTT and Transwell assays, respectively. Results The expression of miR-145-5p was significantly down-regulated in GC cells, while that of ANGPT2 was notably up-regulated. MiR-145-5p directly bound with the 3′-UTR of ANGPT2 mRNA, thereby targeting ANGPT2 after transcription. Overexpression of miR-145-5p inhibited the proliferation, migration and invasion of GC cells by suppressing ANGPT2. Moreover, low expression of ANGPT2 affected the protein levels of NOD1, NOD2 and NF-κB in the NOD_LIKE_RECEPTOR pathway, thus weakening the abilities of cell proliferation, migration and invasion. Conclusions MiR-145-5p plays an important role in GC epithelial cells, and it can affect cell proliferation, migration and invasion of GC cells by targeting ANGPT2 and regulating the NOD_LIKE_RECEPTOR pathway. Overall, our study further elucidates the molecular mechanism underlying the malignant progression of GC.
Collapse
|
14
|
Guadagno NA, Margiotta A, Bjørnestad SA, Haugen LH, Kjos I, Xu X, Hu X, Bakke O, Margadant F, Progida C. Rab18 regulates focal adhesion dynamics by interacting with kinectin-1 at the endoplasmic reticulum. J Cell Biol 2020; 219:151855. [PMID: 32525992 PMCID: PMC7337506 DOI: 10.1083/jcb.201809020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 07/17/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
The members of the Rab family of small GTPases are molecular switches that regulate distinct steps in different membrane traffic pathways. In addition to this canonical function, Rabs can play a role in other processes, such as cell adhesion and motility. Here, we reveal the role of the small GTPase Rab18 as a positive regulator of directional migration in chemotaxis, and the underlying mechanism. We show that knockdown of Rab18 reduces the size of focal adhesions (FAs) and influences their dynamics. Furthermore, we found that Rab18, by directly interacting with the endoplasmic reticulum (ER)-resident protein kinectin-1, controls the anterograde kinesin-1–dependent transport of the ER required for the maturation of nascent FAs and protrusion orientation toward a chemoattractant. Altogether, our data support a model in which Rab18 regulates kinectin-1 transport toward the cell surface to form ER–FA contacts, thus promoting FA growth and cell migration during chemotaxis.
Collapse
Affiliation(s)
| | | | | | | | - Ingrid Kjos
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Xiaochun Xu
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Xian Hu
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Felix Margadant
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Shi W, Gao Z, Song J, Wang W. Silence of FOXD2-AS1 inhibited the proliferation and invasion of esophagus cells by regulating miR-145-5p/CDK6 axis. Histol Histopathol 2020; 35:1013-1021. [PMID: 32524576 DOI: 10.14670/hh-18-232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study aimed to investigate the function of long non-coding RNA FOXD2 adjacent opposite strand RNA 1 (lncRNA FOXD2-AS1) during the progression of esophagus cancer (EC) and explore its underlying molecular mechanisms. The level of FOXD2-AS1 in EC tissues and paracancerous tissues was detected by using RT-qPCR; ROC curve was used to evaluate the diagnostic value of FOXD2-AS1 for EC. In addition, CCK8 assay and immunofluorescence staining assay were used to detect the proliferation of Eca-109 and TE-1 cells. To investigate the function of FOXD2-AS1 on cell apoptosis and cell cycle, flow cytometry was performed. To detect the invasion ability of EC cells, transwell invasion assay was performed. Starbase3.0 and Targetscan were used to predict the target genes of FOXD2-AS1 and miR-145-5p, and protein expressions were detected with western blot. We found FOXD2-AS1 was significantly upregulated in EC tissues compared with adjacent normal tissues, which was positively correlated with clinicopathological parameters of patients with EC. Downregulation of FOXD2-AS1 inhibited the proliferation and invasion by inducing apoptosis of EC cells. Moreover, FOXD2-AS1 may regulate the expression of CDK6 by targeting miR-145-3p. Meanwhile, silencing of FOXD2-AS1 caused G1 phase arrest of EC cells by reducing the expression of CDK6. In conclusion, silening FOXD2-AS1 significantly inhibited the proliferation and invasion of EC cells by regulating the miR-145-5p/CDK6 axis. Therefore, FOXD2-AS1 might be used as diagnostic biomarker and therapeutic target for EC.
Collapse
Affiliation(s)
- Woda Shi
- Department of Cardio-Thoracic Surgery, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Zhengya Gao
- Department of Cardio-Thoracic Surgery, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Jianxiang Song
- Department of Cardio-Thoracic Surgery, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Wencai Wang
- Department of Cardio-Thoracic Surgery, Yancheng Third People's Hospital, Yancheng, Jiangsu, China.
| |
Collapse
|
16
|
Liu J, Yang J, Gao F, Li S, Nie S, Meng H, Sun R, Wan Y, Jiang Y, Ma X, Cheng W. A microRNA-Messenger RNA Regulatory Network and Its Prognostic Value in Cervical Cancer. DNA Cell Biol 2020; 39:1328-1346. [PMID: 32456463 DOI: 10.1089/dna.2020.5590] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer (CC) is the fourth commonest cancer in women worldwide. Increasing evidence proves that microRNA (miRNA)-messenger RNA (mRNA) network is involved in CC. In this study, miRNA and mRNA expression profiles were downloaded from The Cancer Genome Atlas (TCGA) database. Differently expressed miRNAs (DE-miRNAs) and mRNAs (DE-mRNAs) were obtained by "Empirical Analysis of Digital Gene Expression Data in R (EdgeR)" package. Then, functional analyses were conducted. With Cytoscape software, a protein-protein interaction (PPI) network was established to identify hub genes that were used for building an miRNA-hub gene network. Next, a prognostic signature based on hub genes was constructed by Cox regression analysis, and its prognostic value was assessed by a nomogram. Finally, the relationship between immune cell infiltration and the three genes in the prognostic model was investigated by using the CIBERSORT algorithm. We screened out 5096 DE-mRNAs and 114 DE-miRNAs between healthy cervical and CC tissues. Then, 102 target DE-mRNAs of upregulated DE-miRNAs and 150 target DE-mRNAs of downregulated DE-miRNAs were obtained. PPI network demonstrated 20 hub nodes with higher connectivity. DE-mRNAs were mostly enriched in pathways in cancer, cell cycle, and proteoglycans in cancer. The miRNA-hub gene network showed that most hub genes could be potentially modulated by miR-200c-3p, miR-23b-3p, and miR-106b-5p. Quantitative real-time PCR proved that 10 miRNAs were downregulated and 6 mRNAs were upregulated markedly in CC tissues. Furthermore, a prognostic signature was established based on enhancer of zeste homolog 2 (EZH2), Fms-related tyrosine kinase 1 (FLT1), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The area under the curve value of the 5-year receiver operating characteristic curve was 0.609. The three genes were also found to be related to the infiltration of six types of immune cells, including dendritic cells, macrophages M0 and M1, mast cells, and monocytes. In conclusion, the development of CC is regulated by the miRNA-mRNA network we proposed in this study.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Gao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siyue Li
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sipei Nie
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huangyang Meng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Sun
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoling Ma
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Li H, Pan R, Lu Q, Ren C, Sun J, Wu H, Wen J, Chen H. MicroRNA‑145‑5p inhibits osteosarcoma cell proliferation by targeting E2F transcription factor 3. Int J Mol Med 2020; 45:1317-1326. [PMID: 32323741 PMCID: PMC7138290 DOI: 10.3892/ijmm.2020.4504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma is a common type of bone tumor that primarily occurs in children and young adults. MicroRNA (miRNA/miR) dysregulation is associated with the progression of osteosarcoma; therefore, the aim of the present study was to investigate the biological functions and molecular mechanisms of miR-145-5p in osteosarcoma. The expression of miR-145-5p in osteosarcoma tissues and cell lines was quantified using reverse transcription-quantitative PCR (RT-qPCR). The effect of miR-145-5p on the proliferation of osteosarcoma cells was detected using Cell Counting Kit-8 and colony formation assays, as well as cell cycle distribution analysis. The effect of miR-145-5p on tumor growth was further investigated in vivo using a subcutaneous tumor model in nude mice. The interaction between miR-145-5p and E2F transcription factor 3 (E2F3) was determined using bioinformatics analysis, a luciferase assay, RT-qPCR and western blotting. The results revealed that miR-145-5p expression was decreased in osteosarcoma cell lines and tissues compared with the corresponding normal controls. Increased miR-145-5p expression inhibited the proliferation and colony formation ability of osteosarcoma cells, and induced G1 phase arrest. Furthermore, mice injected with tumor cells overexpressing miR-145-5p exhibited smaller tumors than those in the control group. Further investigation revealed that miR-145-5p binds to and decreases the expression of E2F3. In addition, the mRNA levels of E2F3 were negatively associated with miR-145-5p in osteosarcoma tissues, and increasing E2F3 expression abrogated the inhibitory effects of miR-145-5p on osteosarcoma cells. Collectively, the results obtained in the present study suggest that miR-145-5p may suppress the progression of osteosarcoma, and may serve as a useful biomarker for the diagnosis of osteosarcoma, as well as a therapeutic target.
Collapse
Affiliation(s)
- Hao Li
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou 550000, P.R. China
| | - Runsang Pan
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou 550000, P.R. China
| | - Qiaoying Lu
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou 550000, P.R. China
| | - Chong Ren
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou 550000, P.R. China
| | - Junkang Sun
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou 550000, P.R. China
| | - Huaping Wu
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou 550000, P.R. China
| | - Jing Wen
- Department of Pathology, Renmin Hospital of Guizhou, Guiyang, Guizhou 550000, P.R. China
| | - Houping Chen
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou 550000, P.R. China
| |
Collapse
|
18
|
Wang J, Zhang H, Situ J, Li M, Sun H. KCNQ1OT1 aggravates cell proliferation and migration in bladder cancer through modulating miR-145-5p/PCBP2 axis. Cancer Cell Int 2019; 19:325. [PMID: 31827399 PMCID: PMC6889643 DOI: 10.1186/s12935-019-1039-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022] Open
Abstract
Background The large involvement of long non-coding RNAs (LncRNAs) in the biological progression of numerous cancers has been reported. The function of lncRNA KCNQ1OT1 in bladder cancer (BC) remains largely unknown. This study aimed to explore the critical role of KCNQ1OT1 in BC. Materials and methods The qRT-PCR was applied to test the expression of RNAs. Cell proliferation was detected by CCK-8 and colony formation assays. Cell apoptosis was measured by TUNEL and flow cytometry experiments. Wound healing and transwell assays were employed to evaluate cell migration and invasion ability respectively. Western blot assay was used to measure relevant protein expression. Immunofluorescence (IF) staining was used to observe EMT process in BC. Results KCNQ1OT1 was significantly overexpressed in BC tissue and cell lines. KCNQ1OT1 depletion repressed cell proliferation, migration and invasion, whereas encouraged cell apoptosis. KCNQ1OT1 was a negatively/positively correlated with miR-145-5p/PCBP2 in respect with expression. Mechanically, KCNQ1OT1 was sponge of miR-145-5p and up-regulated the expression of PCBP2. MiR-145-5p inhibition and PCBP2 up-regulation could countervail the tumor-inhibitor role of KCNQ1OT1 knockdown in BC. Conclusion KCNQ1OT1 serves as competing endogenous RNA (ceRNA) to up-regulate PCBP2 via sponging miR-145-5p in BC progression.
Collapse
Affiliation(s)
- Jingyu Wang
- 1Department of Urology, Affiliated Hospital of Beihua University, No.12, Jiefangzhong Road, Jilin, 132001 Jilin China
| | - Hao Zhang
- 2Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000 Guangdong China
| | - Jie Situ
- 2Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000 Guangdong China
| | - Mingzhao Li
- 2Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000 Guangdong China
| | - Hua Sun
- 3Department of Endocrinology, Affiliated Hospital of Beihua University, No.12, Jiefangzhong Road, Jilin, 132001 Jilin China
| |
Collapse
|