1
|
Han L, Chen W, Zong Y, Zhao Y, Li J, He Z, Du R. Analysis of the mechanism of fibrauretine alleviating Alzheimer's disease based on transcriptomics and proteomics. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:361-377. [PMID: 38926843 PMCID: PMC11211758 DOI: 10.4196/kjpp.2024.28.4.361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 06/28/2024]
Abstract
The dried rattan stem of the Fibraurea Recisa Pierre plant contains the active ingredient known as fibrauretine (FN). Although it greatly affects Alzheimer's disease (AD), the mechanism of their effects still remains unclear. Proteomics and transcriptomics analysis methods were used in this study to determine the mechanism of FN in the treatment of AD. AD model is used through bilateral hippocampal injection of Aβ1-40. After successful modeling, FN was given for 30 days. The results showed that FN could improve the cognitive dysfunction of AD model rats, reduce the expression of Aβ and P-Tau, increase the content of acetylcholine and reduce the activity of acetylcholinesterase. The Kyoto Encyclopedia of Genes and Genomes enriched differentially expressed genes and proteins are involved in signaling pathways including metabolic pathway, AD, pathway in cancer, PI3K-AKT signaling pathway, and cAMP signaling pathway. Transcriptomics and proteomics sequencing resulted in 19 differentially expressed genes and proteins. Finally, in contrast to the model group, after FN treatment, the protein expressions and genes associated with the PI3K-AKT pathway were significantly improved in RT-qPCR and Western blot and assays. This is consistent with the findings of transcriptomic and proteomic analyses. Our study found that, FN may improve some symptoms of AD model rats through PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Lu Han
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education of China, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer of China, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education of China, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer of China, Changchun 130118, China
| |
Collapse
|
2
|
Kessler JR, Bluemn TS, DeCero SA, Dutta P, Thatcher K, Mahnke DK, Knas MC, Kazik HB, Menon V, Lincoln J. Exploring molecular profiles of calcification in aortic vascular smooth muscle cells and aortic valvular interstitial cells. J Mol Cell Cardiol 2023; 183:1-13. [PMID: 37579636 PMCID: PMC10592135 DOI: 10.1016/j.yjmcc.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Cardiovascular calcification can occur in vascular and valvular structures and is commonly associated with calcium deposition and tissue mineralization leading to stiffness and dysfunction. Patients with chronic kidney disease and associated hyperphosphatemia have an elevated risk for coronary artery calcification (CAC) and calcific aortic valve disease (CAVD). However, there is mounting evidence to suggest that the susceptibility and pathobiology of calcification in these two cardiovascular structures may be different, yet clinically they are similarly treated. To better understand diversity in molecular and cellular processes that underlie hyperphosphatemia-induced calcification in vascular and valvular structures, we exposed aortic vascular smooth muscle cells (AVSMCs) and aortic valve interstitial cells (AVICs) to high (2.5 mM) phosphate (Ph) conditions in vitro, and examined cell-specific responses. To further identify hyperphosphatemic-specific responses, parallel studies were performed using osteogenic media (OM) as an alternative calcific stimulus. Consistent with clinical observations made by others, we show that AVSMCs are more susceptible to calcification than AVICs. In addition, bulk RNA-sequencing reveals that AVSMCs and AVICs activate robust ossification-programs in response to high phosphate or OM treatments, however, the signaling pathways, cellular processes and osteogenic-associated markers involved are cell- and treatment-specific. For example, compared to VSMCs, VIC-mediated calcification involves biological processes related to osteo-chondro differentiation and down regulation of 'actin cytoskeleton'-related genes, that are not observed in VSMCs. Furthermore, hyperphosphatemic-induced calcification in AVICs and AVSMCs is independent of P13K signaling, which plays a role in OM-treated cells. Together, this study provides a wealth of information suggesting that the pathogenesis of cardiovascular calcifications is significantly more diverse than previously appreciated.
Collapse
Affiliation(s)
- Julie R Kessler
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Theresa S Bluemn
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Samuel A DeCero
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Punashi Dutta
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Kaitlyn Thatcher
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Donna K Mahnke
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Makenna C Knas
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Hail B Kazik
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Vinal Menon
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Joy Lincoln
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
3
|
Hao B, Zhang Z, Lu Z, Xiong J, Fan T, Song C, He R, Zhang L, Pan S, Li D, Meng H, Lin W, Luo B, Yang J, Li N, Geng Q. Single-cell RNA sequencing analysis revealed cellular and molecular immune profiles in lung squamous cell carcinoma. Transl Oncol 2022; 27:101568. [PMID: 36270103 PMCID: PMC9586982 DOI: 10.1016/j.tranon.2022.101568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/05/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Although breakthroughs have been made in the treatment of non-small cell lung cancer, there are only a few choices for advanced-stage or recurrent lung squamous cell carcinoma (LUSC) patients. In our study, we identified 7 major cell types in thedepicted the immunolandscape of LUSC microenvironment using single-cell RNA sequencing. We found that an immunosuppressive receptor, T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), was highly expressed by regulatory T cells (Tregs) and exhausted CD8+T cells, suggesting that upregulation of TIGIT might promote an immunosuppressive microenvironment and inhibit the cytotoxic ability of CD8+T cells. We also identified tumor-associated neutrophil (TAN), characterized by CXCR2, CSF3R and CXCL8, in the tumor region, and TANs upregulated the expression of interleukin 1 receptor antagonist (IL1RN) which suggested that TAN might exert an immunosuppressive role via expressing IL1RN. Furthermore, the number of SPP1+ macrophages(SPP1+M) significantly increased in tumor microenvirnment, which was correlated with the poor survival of patients. Additionally, regulatory networks based on SPP1+M revealed that the disparities of several ligand-receptor pairs existed between tumor and normal tissues. Among these pairs, SPP1-CD44 showed the most interactions between SPP1+M and other cell types. Our results provided deep insight into the immune landscape of LUSC and an essential resource for drug discovery in the future.
Collapse
Affiliation(s)
- Bo Hao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ziyao Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zilong Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Juan Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tao Fan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lin Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shize Pan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Donghang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Heng Meng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Weichen Lin
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bin Luo
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinfeng Yang
- Department of Pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China,Corresponding author.
| |
Collapse
|
4
|
Xu N, Wang X, Wang L, Song Y, Zheng X, Hu H. Comprehensive analysis of potential cellular communication networks in advanced osteosarcoma using single-cell RNA sequencing data. Front Genet 2022; 13:1013737. [PMID: 36303551 PMCID: PMC9592772 DOI: 10.3389/fgene.2022.1013737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Osteosarcoma (OS) is a common bone cancer in children and adolescents, and metastasis and recurrence are the major causes of poor treatment outcomes. A better understanding of the tumor microenvironment is required to develop an effective treatment for OS. In this paper, a single-cell RNA sequencing dataset was taken to a systematic genetic analysis, and potential signaling pathways linked with osteosarcoma development were explored. Our findings revealed 25 clusters across 11 osteosarcoma tissues, with 11 cell types including “Chondroblastic cells”, “Osteoblastic cells”, “Myeloid cells”, “Pericytes”, “Fibroblasts”, “Proliferating osteoblastic cells”, “Osteoclasts”, “TILs”, “Endothelial cells”, “Mesenchymal stem cells”, and “Myoblasts”. The results of Cell communication analysis showed 17 potential cellular communication networks including “COLLAGEN signaling pathway network”, “CD99 signaling pathway network”, “PTN signaling pathway network”, “MIF signaling pathway network”, “SPP1 signaling pathway network”, “FN1 signaling pathway network”, “LAMININ signaling pathway network”, “FGF signaling pathway network”, “VEGF signaling pathway network”, “GALECTIN signaling pathway network”, “PERIOSTIN signaling pathway network”, “VISFATIN signaling pathway network”, “ITGB2 signaling pathway network”, “NOTCH signaling pathway network”, “IGF signaling pathway network”, “VWF signaling pathway network”, “PDGF signaling pathway network”. This research may provide novel insights into the pathophysiology of OS’s molecular processes.
Collapse
Affiliation(s)
- Ning Xu
- Departments of Orthopedics, Shanghai Eighth People’s Hospital, Shanghai, China
| | - Xiaojing Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lili Wang
- Departments of Orthopedics, Shanghai Eighth People’s Hospital, Shanghai, China
| | - Yuan Song
- Departments of Orthopedics, Shanghai Eighth People’s Hospital, Shanghai, China
- *Correspondence: Yuan Song, ; Xianyou Zheng, ; Hai Hu,
| | - Xianyou Zheng
- Departments of Orthopedics, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yuan Song, ; Xianyou Zheng, ; Hai Hu,
| | - Hai Hu
- Departments of Orthopedics, Shanghai Eighth People’s Hospital, Shanghai, China
- Departments of Orthopedics, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yuan Song, ; Xianyou Zheng, ; Hai Hu,
| |
Collapse
|
5
|
Wang C, Sun G, Wang H, Dai L, Zhang J, Du R. Serum anti-SPP1 autoantibody as a potential novel biomarker in detection of esophageal squamous cell carcinoma. BMC Cancer 2022; 22:932. [PMID: 36038839 PMCID: PMC9425987 DOI: 10.1186/s12885-022-10012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) has poor prognosis mainly due to lacking of effective diagnostic biomarkers. Aberrant expression of secreted phosphoprotein 1 (SPP1) protein has been observed in several cancers. The purpose of this study is to assess the feasibility of serum autoantibody to SPP1 in detection of ESCC. Methods The SPP1 protein levels in 108 ESCC tissues and 72 adjacent normal tissues were analyzed by immunohistochemistry. Discovery group containing 62 serum samples from ESCC patients and 62 serum samples from normal controls (NC) were used to detect the levels of anti-SPP1 autoantibody by enzyme-linked immunosorbent assay (ELISA). Validation group containing another 100 ESCC and 100 NC serum samples were tested to confirm the levels of autoantibody to SPP1. Western blotting was performed to further confirm the results of ELISA. Results SPP1 protein was significantly overexpressed in ESCC tissues compared to adjacent normal tissues. ELISA results showed that serum autoantibody to SPP1 was significantly increased in ESCC compared to NC in both discovery and validation groups. Autoantibody to SPP1 could discriminate patients with ESCC from NC with the area under curve (AUC) values of 0.653 and 0.739 in discovery and validation group, respectively. The results of ELISA and the occurrence of immunoreactivity to SPP1 in ESCC sera were confirmed by western blotting. Conclusion Our study indicated the potential significance of anti-SPP1 autoantibody as a novel biomarker for detection of ESCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10012-9.
Collapse
Affiliation(s)
- Chen Wang
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guiying Sun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, 450052, Henan, China.,College of Public Health, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Huimin Wang
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Liping Dai
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jianying Zhang
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China. .,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Renle Du
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China. .,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China. .,College of Public Health, Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
6
|
Ding XM, Wang YF, Lyu Y, Zou Y, Wang X, Ruan SM, Wu WH, Liu H, Sun Y, Zhang RL, Zhao H, Han Y, Zhao BT, Pan J, Han XY, Wang CR, Zhao HL, Yang GL, Liu LZ, Fang SS. The effect of influenza A (H1N1) pdm09 virus infection on cytokine production and gene expression in BV2 microglial cells. Virus Res 2022; 312:198716. [DOI: 10.1016/j.virusres.2022.198716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
|
7
|
Zhao K, Ma Z, Zhang W. Comprehensive Analysis to Identify SPP1 as a Prognostic Biomarker in Cervical Cancer. Front Genet 2022; 12:732822. [PMID: 35058964 PMCID: PMC8764398 DOI: 10.3389/fgene.2021.732822] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022] Open
Abstract
Background: SPP1, secreted phosphoprotein 1, is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family. Previous studies have proven SPP1 overexpressed in a variety of cancers and can be identified as a prognostic factor, while no study has explored the function and carcinogenic mechanism of SPP1 in cervical cancer. Methods: We aimed to demonstrate the relationship between SPP1 expression and pan-cancer using The Cancer Genome Atlas (TCGA) database. Next, we validated SPP1 expression of cervical cancer in the Gene Expression Omnibus (GEO) database, including GSE7803, GSE63514, and GSE9750. The receiver operating characteristic (ROC) curve was used to evaluate the feasibility of SPP1 as a differentiating factor by the area under curve (AUC) score. Cox regression and logistic regression were performed to evaluate factors associated with prognosis. The SPP1-binding protein network was built by the STRING tool. Enrichment analysis by the R package clusterProfiler was used to explore potential function of SPP1. The single-sample GSEA (ssGSEA) method from the R package GSVA and TIMER database were used to investigate the association between the immune infiltration level and SPP1 expression in cervical cancer. Results: Pan-cancer data analysis showed that SPP1 expression was higher in most cancer types, including cervical cancer, and we got the same result in the GEO database. The ROC curve suggested that SPP1 could be a potential diagnostic biomarker (AUC = 0.877). High SPP1 expression was associated with poorer overall survival (OS) (P = 0.032). Further enrichment and immune infiltration analysis revealed that high SPP1 expression was correlated with regulating the infiltration level of neutrophil cells and some immune cell types, including macrophage and DC. Conclusion: SPP1 expression was higher in cervical cancer tissues than in normal cervical epithelial tissues. It was significantly associated with poor prognosis and immune cell infiltration. Thus, SPP1 may become a promising prognostic biomarker for cervical cancer patients.
Collapse
Affiliation(s)
- Kaidi Zhao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhou Ma
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|