1
|
Chen Y, Cui F, Wu X, Zhao W, Xia Q. The expression and clinical significance of serum exosomal-long non-coding RNA DLEU1 in patients with cervical cancer. Ann Med 2025; 57:2442537. [PMID: 39687982 DOI: 10.1080/07853890.2024.2442537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/25/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Accumulating evidence has demonstrated that the long non-coding RNA (lncRNA) lymphocytic leukaemia deletion gene 1 (DLEU1) is abnormally overexpressed in many cancer types, including cervical cancer (CC). However, the potential clinical significance of DLEU1 in serum exosomes of patients with CC remains unclear. METHODS The expression of serum exosomal DLEU1 was detected by quantitative real-time polymerase chain reaction (qRT-PCR). A receiver operating characteristic (ROC) curve was plotted to evaluate the clinical diagnostic efficacy of DLEU1. The Kaplan-Meier survival curve and Cox proportional hazards model were used to assess the effect of DLEU1 on postoperative recurrence, metastasis and prognosis among patients with CC. RESULTS Our research showed that DLEU1 expression in the serum exosomes of patients with CC was significantly upregulated compared to that in patients with cervical intraepithelial neoplasia (CIN) and healthy controls (HCs) (both p < .001). DLEU1 relative expression was significantly correlated with tumour size, cervical invasion depth, pathological grade, International Federation of Gynecology and Obstetrics (FIGO) stage and lymph node metastasis among patients with CC (p < .01 all). The combined detection of DLEU1, carbohydrate antigen 125 (CA-125) and squamous cell carcinoma (SCC) exhibited significantly higher diagnostic efficiency (p < .01). Furthermore, the overall survival (OS) and disease-free survival (DFS) of CC patients in the high DLEU1 expression group were markedly lower than those in the low DLEU1 expression group (both p < .01). Cox univariate and multivariate regression analyses indicated that DLEU1 was an independent risk factor for postoperative recurrence and metastasis in CC patients. CONCLUSIONS Our findings suggest that serum exosome DLEU1 has certain clinical value for diagnosing, monitoring recurrence and metastasis, and evaluating CC prognosis.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, PR China
| | - Facai Cui
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xiaoyu Wu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Weifeng Zhao
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Qingxin Xia
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, PR China
| |
Collapse
|
2
|
Cao J, Feng B, Xv Y, Yu J, Cao S, Ma C. Continued attention: The role of exosomal long non-coding RNAs in tumors over the past three years. Int Immunopharmacol 2025; 144:113666. [PMID: 39577219 DOI: 10.1016/j.intimp.2024.113666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
This review summarizes the research on exosomal lncRNAs in tumors over the past three years. It highlights the significant roles of exosomal lncRNAs in modulating various cellular processes within the tumor microenvironment. Exosomal lncRNAs have been shown to influence the behavior of tumor cells, promoting proliferation, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, glycolysis, and contributing to tumor growth and metabolism. Moreover, exosomal lncRNAs have been found to interact with immune cells, such as modulating the functions of macrophages and influencing the overall immune response against tumors. Fibroblasts within the tumor microenvironment are also affected by exosomal lncRNAs, which can alter the extracellular matrix (ECM) and stromal composition. Notably, these exosomal lncRNAs hold promise in the diagnosis and treatment of tumors, offering potential biomarkers and therapeutic targets for improved clinical outcomes.
Collapse
Affiliation(s)
- Jiarui Cao
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Bo Feng
- Henan Province Hospital of TCM, Zhengzhou, Henan 450002, China.
| | - Yanchao Xv
- Henan Province Hospital of TCM, Zhengzhou, Henan 450002, China.
| | - Jiangfan Yu
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Shasha Cao
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Chunzheng Ma
- Henan Province Hospital of TCM, Zhengzhou, Henan 450002, China.
| |
Collapse
|
3
|
Cao J, Chao W, Zhang J, Mao J, Zeng J, Luo D, Huang S, Li J, He B, Pan H. Circulating exosomal PCAT1 as a complement of carcinoembryonic antigen for early colorectal cancer diagnosis. Heliyon 2024; 10:e39264. [PMID: 39640681 PMCID: PMC11620264 DOI: 10.1016/j.heliyon.2024.e39264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 12/07/2024] Open
Abstract
Backgrounds Given the global prevalence of colorectal cancer (CRC), advancements in prompt and accurate diagnosis are crucial. Long non-coding RNAs (lncRNAs) in serum exosomes are emerging as potential diagnostic biomarkers. This study evaluated the feasibility of using serum exosomal lncRNAs for early-stage CRC diagnosis in clinical practice. Methods Candidate serum exosomal lncRNAs were identified through an integrated analysis of two GEO datasets (GSE100206 and GSE100063) containing non-coding RNA expression profiles in serum exosomes. Exosomes isolated from participants' serum were validated using transmission electron microscopy (TEM) and immunoblotting. The expression levels of serum exosomal PCAT1 were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Diagnostic accuracy was assessed using receiver operating characteristic (ROC) analysis. Results Serum exosomal PCAT1 levels were evaluated in 150 CRC patients, 66 patients with benign colorectal lesions, and 128 healthy controls. ROC analysis demonstrated high diagnostic efficacy of serum exosomal PCAT1 for CRC. Notably, the predictive performance was sufficient to distinguish early-stage CRC patients. Additionally, the diagnostic value was significant for CRC patients with low serum carcinoembryonic antigen (CEA) levels. Measuring serum exosomal PCAT1 could complement CEA assessment, enhancing CRC diagnostic accuracy. Conclusions Serum exosomal PCAT1 can complement CEA assessment, aiding in early CRC diagnosis and helping to differentiate the disease, especially in patients with low CEA levels.
Collapse
Affiliation(s)
- Jinghe Cao
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Shandong, China
| | - Wei Chao
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Jiansheng Zhang
- Medical Science Experimental Center of Guangxi Medical University, Guangxi, China
| | - Jiajia Mao
- Department of Scientific Research and Education, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Jianchao Zeng
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Delan Luo
- Department of Gastroenterology, the First People's Hospital of Neijiang City, Sichuan, China
| | - Shishun Huang
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Jiashu Li
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Baoyu He
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Shandong, China
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Hongli Pan
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Shandong, China
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Guangxi, China
| |
Collapse
|
4
|
Zabeti Touchaei A, Norollahi SE, Najafizadeh A, Babaei K, Bakhshalipour E, Vahidi S, Samadani AA. Therapeutic combinations of exosomes alongside cancer stem cells (CSCs) and of CSC-derived exosomes (CSCEXs) in cancer therapy. Cancer Cell Int 2024; 24:334. [PMID: 39369258 PMCID: PMC11453077 DOI: 10.1186/s12935-024-03514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
Exosomes which are membrane vesicles released by cells have gained significant interest in the field of cancer therapy as a novel means of intercellular communication. Their role in immune activation and their pathophysiological functions in cancer therapy have been recognized. Exosomes carry diverse bioactive components including proteins, mRNA, microRNAs, and bioactive lipids. These molecules have therapeutic potential in promoting tissue regeneration, supporting stem cell activity, preventing cell death, modulating immune responses, and promoting the growth of new blood vessels. However, the precise roles of exosomes derived from mesenchymal stem cells (MSCs) in the treatment of various cancers are still not fully understood. Consequently, cancer stem cells (CSCs) can self-renew and differentiate into various cell types. Understanding the mechanisms that sustain their persistence is crucial for developing effective therapies. Exosomes have recently gained interest as vehicles for intercellular communication between CSCs and non-CSCs, influencing cancer progression and the microenvironment. Research is ongoing on the utilization of exosomes derived from cancer stem cells (CSC-Exosome) for cancer treatment. The composition of extracellular vesicles is influenced by the specific type and condition of the cells from which they are secreted. Circulating exosomes contain stable RNA molecules such as mRNAs, microRNAs, and long non-coding RNAs (lncRNAs). In this review, we will explore the significance of exosomes and their diverse cellular combinations in the context of cancer therapy.
Collapse
Affiliation(s)
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Najafizadeh
- School of Paramedicine Sciences, Guilan University of Medical Sciences, Langarud, Iran
| | - Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Elahe Bakhshalipour
- School of Paramedicine Sciences, Guilan University of Medical Sciences, Langarud, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
5
|
Chatterjee M, Gupta S, Mukherjee T, Parashar D, Kumar U, Maitra A, Das K. The role of extracellular vesicles in the pathogenesis of gynecological cancer. Front Oncol 2024; 14:1477610. [PMID: 39391238 PMCID: PMC11464257 DOI: 10.3389/fonc.2024.1477610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Gynecological cancer, the most common form of cancers in women worldwide, initiates in the reproductive organs of females. More often, the common treatment measures, i.e. surgery, radiation, and medical oncology are found to be unsuccessful in the treatment of gynecological tumors. Emerging evidence indicates that extracellular vesicles (EVs) play a significant role in the pathogenesis of gynecological cancers by distinct mechanisms. The present review highlights how EVs contribute to the progression of different types of gynecological cancers such as cervical cancer, endometrial cancer, ovarian cancer, vaginal cancer, uterine sarcoma, gestational trophoblastic disease (GTD), and vulvar cancer. The primary focus is to understand how EVs' cargo alters the phenotypic response of the recipient cells, thereby contributing to the progression of the disease, thus can be considered as a prognostic and diagnostic biomarker. A brief discussion on the role of EVs in the diagnosis and prognosis of different gynecological cancer types is also highlighted. Targeting the biogenesis of the EVs, their inside cargo, and EVs uptake by the recipient cells could be a potential therapeutic approach in the treatment of gynecological cancer beside conventional therapeutic means.
Collapse
Affiliation(s)
- Madhura Chatterjee
- Department of Biotechnology, Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Saurabh Gupta
- Department of Biotechnology, Ganesh Lal Agarwal (GLA) University, Mathura, India
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX, United States
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Umesh Kumar
- Department of Biosciences, Institute of Management Studies (IMS) Ghaziabad (University Courses Campus), Ghaziabad, Uttar Pradesh, India
| | - Arindam Maitra
- Department of Biotechnology, Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Kaushik Das
- Department of Biotechnology, Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| |
Collapse
|
6
|
Song X, Duan L, Dong Y. Diagnostic Accuracy of Exosomal Long Noncoding RNAs in Diagnosis of NSCLC: A Meta-Analysis. Mol Diagn Ther 2024; 28:455-468. [PMID: 38837024 DOI: 10.1007/s40291-024-00715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE Globally, non-small cell lung cancer (NSCLC) is the primary cause of cancer-related mortality, both early and accurate diagnosis are essential for effective treatment and improved patient outcomes. Exosomal noncoding RNAs (ncRNAs) have emerged as promising biomarkers for NSCLC diagnosis. This meta-analysis aims to assess the diagnostic accuracy of exosomal long noncoding RNAs (lncRNAs) for diagnosing NSCLC. METHODS A comprehensive literature search was conducted to identify relevant studies that assessed the diagnostic performance of exosomal lncRNAs in NSCLC. Quality assessment and data extraction were performed independently by two reviewers. Pooled sensitivity, specificity, and other relevant diagnostic parameters were calculated using a bivariate random-effects model. Subgroup analyses and meta-regression were conducted to explore potential sources of heterogeneity. RESULTS Sixteen studies, comprising 1843 NSCLC cases and 1298 controls, were included in this meta-analysis. The pooled sensitivity and specificity of nine exosomal lncRNAs for diagnosing NSCLC were 0.74 [95% confidence interval (CI) 0.69-0.79] and 0.78 (95% CI 0.68-0.85). The pooled area under the receiver operating characteristic curve (AUC) for fifteen lncRNAs was 0.80 (95% CI 0.768-0.831). Meta-regression could not find any source for interstudy heterogeneity. CONCLUSION Exosomal lncRNAs, particularly AL139294.1, GAS5, LUCAT1, and SOX2-OT, have excellent diagnostic accuracy and promising diagnostic potential in NSCLC. Therefore, they can be used as diagnostic tools for early detection of NSCLC.
Collapse
Affiliation(s)
- Xiaodong Song
- Lung Disease Department, Yantai Hospital of Traditional Chinese Medicine, Yantai, 264000, Shandong, China
| | - Linlin Duan
- Blood Disease Department, Yantai Hospital of Traditional Chinese Medicine, Yantai, 264000, Shandong, China
| | - Yongshuai Dong
- General Surgery, Yantai Hospital of Traditional Chinese Medicine, Yantai, 264000, Shandong, China.
| |
Collapse
|
7
|
Gonzales LR, Blom S, Henriques R, Bachem CWB, Immink RGH. LncRNAs: the art of being influential without protein. TRENDS IN PLANT SCIENCE 2024; 29:770-785. [PMID: 38368122 DOI: 10.1016/j.tplants.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
The plant long noncoding (lnc)RNA field is on the brink of transitioning from large-scale identification of lncRNAs to their functional characterization. Due to the cross-kingdom conservation of interaction types and molecular functions, there is much to be learned from mammalian lncRNA research. Here, we discuss the different molecular processes involving lncRNAs from the regulation of chromatin to splicing. Furthermore, we discuss the lncRNA interactome, which includes proteins, other RNAs, and DNA. We explore and discuss how mammalian lncRNA functionalities could be reflected in similar pathways in plants and hypothesize that several breakthroughs in mammalian research could lead to the discovery of novel plant lncRNA molecular functions. Expanding our knowledge of the biological role of lncRNAs and their multiple applications paves the way for future agricultural applications.
Collapse
Affiliation(s)
| | - Suze Blom
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands; Bioscience, Wageningen University and Research, Wageningen, The Netherlands
| | - Rossana Henriques
- School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Christian W B Bachem
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands; Bioscience, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
8
|
Xu C, Xu P, Zhang J, He S, Hua T, Huang A. Exosomal noncoding RNAs in gynecological cancers: implications for therapy resistance and biomarkers. Front Oncol 2024; 14:1349474. [PMID: 38737906 PMCID: PMC11082286 DOI: 10.3389/fonc.2024.1349474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Gynecologic cancers, including ovarian cancer (OC), cervical cancer (CC), and endometrial cancer (EC), pose a serious threat to women's health and quality of life due to their high incidence and lethality. Therapeutic resistance in tumors refers to reduced sensitivity of tumor cells to therapeutic drugs or radiation, which compromises the efficacy of treatment or renders it ineffective. Therapeutic resistance significantly contributes to treatment failure in gynecologic tumors, although the specific molecular mechanisms remain unclear. Exosomes are nanoscale vesicles released and received by distinct kinds of cells. Exosomes contain proteins, lipids, and RNAs closely linked to their origins and functions. Recent studies have demonstrated that exosomal ncRNAs may be involved in intercellular communication and can modulate the progression of tumorigenesis, aggravation and metastasis, tumor microenvironment (TME), and drug resistance. Besides, exosomal ncRNAs also have the potential to become significant diagnostic and prognostic biomarkers in various of diseases. In this paper, we reviewed the biological roles and mechanisms of exosomal ncRNAs in the drug resistance of gynecologic tumors, as well as explored the potential of exosomal ncRNAs acting as the liquid biopsy molecular markers in gynecologic cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Aiwu Huang
- Department of Gynecology and Obstetrics , Hangzhou Lin'an Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Liu C, Xu P, Shao S, Wang F, Zheng Z, Li S, Liu W, Li G. The value of urinary exosomal lncRNA SNHG16 as a diagnostic biomarker for bladder cancer. Mol Biol Rep 2023; 50:8297-8304. [PMID: 37592177 PMCID: PMC10520200 DOI: 10.1007/s11033-023-08667-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/06/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE To detect the expression level of urinary exosomal lncRNA SNHG16 in patients with bladder cancer and healthy individuals and explore its clinical application value in the diagnosis of bladder cancer. METHODS Urine samples were collected from 42 patients with bladder cancer and 42 healthy volunteers who visited Lu'an Hospital of Anhui Medical University and the Second Hospital of Tianjin Medical University from January 2020 to December 2022. The expression levels of lncRNA SNHG16 in urinary exosomes of the two groups were detected by RT‒qPCR, and their correlation with clinical pathological parameters of bladder cancer patients was analysed. An Receiver Operating Characteristic(ROC) curve was drawn to analyse the diagnostic value of urinary exosomal lncRNA SNHG16 for bladder cancer and compared with urinary cytology. RESULTS The expression of urinary exosomal lncRNA SNHG16 in patients with bladder cancer was significantly higher (P < 0.05), and the expression level had no correlation with the age, sex, pathological T stage, pathological grade, or tumour size of bladder cancer patients (P > 0.05). The Area Under Curve(AUC) of urinary exosomal lncRNA SNHG16 in diagnosing bladder cancer was 0.791, which was superior to that of urinary cytology (AUC = 0.597). CONCLUSION Urinary exosomal lncRNA SNHG16 with high expression can serve as a potential diagnostic biological marker for bladder cancer.
Collapse
Affiliation(s)
- Chengyi Liu
- Department of Urology, Lu'an People's Hospital of Anhui Province, Lu'an Hospital of Anhui Medical University, No.21, Wanxi West Road, Lu'an, 237000, Anhui, China
| | - Pengcheng Xu
- Department of Urology, Lu'an People's Hospital of Anhui Province, Lu'an Hospital of Anhui Medical University, No.21, Wanxi West Road, Lu'an, 237000, Anhui, China
| | - Song Shao
- Department of Orthopaedic, Lu'an People's Hospital of Anhui Province, Lu'an Hospital of Anhui Medical University, Lu'an, 237000, China
| | - Fang Wang
- Department of Pharmacy, Lu'an People's Hospital of Anhui Province, Lu'an Hospital of Anhui Medical University, Lu'an, 237000, China
| | - Zhiwen Zheng
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shuangjie Li
- Department of Urology, Lu'an People's Hospital of Anhui Province, Lu'an Hospital of Anhui Medical University, No.21, Wanxi West Road, Lu'an, 237000, Anhui, China
| | - Wei Liu
- Department of Urology, Lu'an People's Hospital of Anhui Province, Lu'an Hospital of Anhui Medical University, No.21, Wanxi West Road, Lu'an, 237000, Anhui, China
| | - Guangyuan Li
- Department of Urology, Lu'an People's Hospital of Anhui Province, Lu'an Hospital of Anhui Medical University, No.21, Wanxi West Road, Lu'an, 237000, Anhui, China.
- The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, An Hui Sheng, China.
| |
Collapse
|
10
|
Dou Q, Wang J, Yang Y, Zhuo W. Roles of exosome-derived non-coding RNA in tumor micro-environment and its clinical application. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:429-438. [PMID: 37643977 PMCID: PMC10495245 DOI: 10.3724/zdxbyxb-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Tumor-derived exosomes play an important role in the tumor micro-environment. The exosome-derived non-coding RNAs are transmitted in the tumor microenvironment in three ways, communication between tumor cells, normal cells affecting tumor cells, and tumor cells affecting normal cells. Through these three ways, exosomal non-coding RNAs are involved in the regulation of tumor progression, affecting tumor angiogenesis, tumor invasiveness, drug resistance, stemness, tumor metabolic repro-gramming and immune escape, resulting in dual roles in promoting or inhibiting tumor development. Exosomes have a membranous structure and their contents are resistant to degradation by extracellular proteases and remain highly stable in body fluids, thus exosome-derived non-coding RNAs are expected to serve as diagnostic and prognostic indicators for a variety of cancers. In addition, exosomes can be used to deliver non-coding RNAs for targeted therapy, or to knock down or modify tumor-promoting non-coding RNAs for tumor therapy. This article reviews the function and communication mechanism of exosomal non-coding RNAs in the tumor microenvironment, including their pathways of action, effects, potential values for tumor biomarkers and treatment targets. This article also points out the issues that need to be further studied in order to promote the progress of extracellular non-coding RNAs in cancer research and their application in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Qinyi Dou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Center for Medical Research and Innovation in Digestive System Tumors of the Ministry of Education, Hangzhou 310020, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Jiazheng Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Center for Medical Research and Innovation in Digestive System Tumors of the Ministry of Education, Hangzhou 310020, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Yingshuo Yang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Center for Medical Research and Innovation in Digestive System Tumors of the Ministry of Education, Hangzhou 310020, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Wei Zhuo
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Center for Medical Research and Innovation in Digestive System Tumors of the Ministry of Education, Hangzhou 310020, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| |
Collapse
|
11
|
Goswami M, Schlom J, Donahue RN. Peripheral surrogates of tumor burden to guide chemotherapeutic and immunotherapeutic strategies for HPV-associated malignancies. Oncotarget 2023; 14:758-774. [PMID: 38958745 PMCID: PMC11221564 DOI: 10.18632/oncotarget.28487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/22/2023] [Indexed: 07/04/2024] Open
Abstract
With the rapid adoption of immunotherapy into clinical practice for HPV-associated malignancies, assessing tumor burden using "liquid biopsies" would further our understanding of clinical outcomes mediated by immunotherapy and allow for tailoring of treatment based on real-time tumor dynamics. In this review, we examine translational studies on peripheral surrogates of tumor burden derived from peripheral blood in HPV-associated malignancies, including levels and methylation of circulating tumor DNA (ctDNA), miRNA derived from extracellular vesicles, circulating tumor cells (CTCs), and HPV-specific antibodies and T cell responses. We review their utility as prognostic and predictive biomarkers of response to chemotherapy and radiation, with a focus on how they may inform and guide immunotherapies to treat locally advanced and metastatic HPV-associated malignancies. We also highlight unanswered questions that must be addressed to translate and integrate these peripheral tumor biomarkers into the clinic.
Collapse
Affiliation(s)
- Meghali Goswami
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Renee N. Donahue
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Dabi Y, Favier A, Razakamanantsoa L, Suisse S, Marie Y, Touboul C, Ferrier C, Bendifallah S, Daraï E. Value of non-coding RNAs to assess lymph node status in cervical cancer. Front Oncol 2023; 13:1144672. [PMID: 37234986 PMCID: PMC10206114 DOI: 10.3389/fonc.2023.1144672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Cervical cancer (CC) is the fourth cancer in women and is the leading cause of cancer death in 42 countries. Lymph node metastasis is a determinant prognostic factor, as underlined in the latest FIGO classification. However, assessment of lymph node status remains difficult, despite the progress of imaging such as PET-CT and MRI. In the specific setting of CC, all data underlined the need for new biomarkers easily available to assess lymph node status. Previous studies have underlined the potential value of ncRNA expression in gynecological cancers. In this review, we aimed to evaluate the contribution of ncRNAs in tissue and biofluid samples to determine lymph node status in CC with potential impact on both surgical and adjuvant therapies. In tissue samples, our analysis found that there are arguments to support the role of ncRNAs in physiopathology, differential diagnosis from normal tissue, preinvasive and invasive tumors. In biofluids, despite small studies especially concerning miRNAs expression, promising data opens up new avenue to establish a non-invasive signature for lymph node status as well as a tool to predict response to neo- and adjuvant therapies, thus improving management algorithm of patients with CC.
Collapse
Affiliation(s)
- Yohann Dabi
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Amelia Favier
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Léo Razakamanantsoa
- Sorbonne University, Inserm UMR S 938, Centre de recherche de saint Antoine (CRSA), Hôpital Saint Antoine, Paris, France
- Department of Radiology imaging and Interventional speciality imaging, Tenon Hospital, Paris, France
| | | | - Yannick Marie
- Gentoyping and Sequencing core facility, iGenSeq, Institut du Cerveau et de la Moelle épinière, Institut du Cerveau et de la Moelle (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Cyril Touboul
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Clément Ferrier
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Sofiane Bendifallah
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Emile Daraï
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| |
Collapse
|
13
|
Ranga S, Yadav R, Chhabra R, Chauhan MB, Tanwar M, Yadav C, Kadian L, Ahuja P. Long non-coding RNAs as critical regulators and novel targets in cervical cancer: current status and future perspectives. Apoptosis 2023:10.1007/s10495-023-01840-6. [PMID: 37095313 PMCID: PMC10125867 DOI: 10.1007/s10495-023-01840-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
Cervical cancer is among the leading causes of cancer-associated mortality in women. In spite of vaccine availability, improved screening procedures, and chemoradiation therapy, cervical cancer remains the most commonly diagnosed cancer in 23 countries and the leading cause of cancer deaths in 36 countries. There is, therefore, a need to come up with novel diagnostic and therapeutic targets. Long non-coding RNAs (lncRNAs) play a remarkable role in genome regulation and contribute significantly to several developmental and disease pathways. The deregulation of lncRNAs is often observed in cancer patients, where they are shown to affect multiple cellular processes, including cell cycle, apoptosis, angiogenesis, and invasion. Many lncRNAs are found to be involved in the pathogenesis as well as progression of cervical cancer and have shown potency to track metastatic events. This review provides an overview of lncRNA mediated regulation of cervical carcinogenesis and highlights their potential as diagnostic and prognostic biomarkers as well as therapeutic targets for cervical cancer. In addition, it also discusses the challenges associated with the clinical implication of lncRNAs in cervical cancer.
Collapse
Affiliation(s)
- Shalu Ranga
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Yadav
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Ravindresh Chhabra
- Assistant Professor, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India.
| | - Meenakshi B Chauhan
- Department of Obstetrics and Gynaecology, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, 124001, India
| | - Mukesh Tanwar
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Chetna Yadav
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Lokesh Kadian
- School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Parul Ahuja
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
14
|
Zhao M, Li N, Wan C, Zhang Q, Wang H, Jiang C. LncRNA CRNDE is involved in the pathogenesis of renal fibrosis by regulating renal epithelial cell mesenchymal-epithelial transition via targeting miR-29a-3p. Mutat Res 2023; 826:111817. [PMID: 37178498 DOI: 10.1016/j.mrfmmm.2023.111817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Results of previous studies suggested that renal fibrosis and epithelial-mesenchymal transition (EMT) plays an important role in the process of renal fibrosis, but the underlying mechanism remains unclear. Long coding RNA (lncRNA) CRNDE has emerged as potent regulators of EMT programs, therefore, in present work, we examined the roles of LncRNA CRNDE/miR-29a-3p axis in renal fibrosis and the underlying mechanism. We found that in both renal fibrosis animal and cell models, lncRNA CRNDE was dynamically upregulated in animal models or cells by the treatment of TGF-β. Furthermore, knockdown of CRNDE to rat significantly inhibited EMT, prevented renal fibrosis. Finally, CRNDE regulates renal fibrosis through suppression of miR-29a-3p expression. Together, our results demonstrated that CRNDE acted as a regulator of renal fibrosis via targeting miR-29a-3p. Our findings may provide a potential therapeutic target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Min Zhao
- Department of Nephrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Nan Li
- Department of Nephrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Cheng Wan
- Department of Nephrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Qingyan Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Hengjin Wang
- Department of Nephrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing 210008, Jiangsu, PR China.
| | - Chunming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing 210008, Jiangsu, PR China.
| |
Collapse
|
15
|
Zheng F, Wang J, Wang D, Yang Q. Clinical Application of Small Extracellular Vesicles in Gynecologic Malignancy Treatments. Cancers (Basel) 2023; 15:cancers15071984. [PMID: 37046644 PMCID: PMC10093031 DOI: 10.3390/cancers15071984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Small extracellular vesicles (sEVs) are the key mediators of intercellular communication. They have the potential for clinical use as diagnostic or therapeutic biomarkers and have been explored as vectors for drug delivery. Identification of reliable and noninvasive biomarkers, such as sEVs, is important for early diagnosis and precise treatment of gynecologic diseases to improve patient prognosis. Previous reviews have summarized routine sEVs isolation and identification methods; however, novel and unconventional methods have not been comprehensively described. This review summarizes a convenient method of isolating sEVs from body fluids and liquid biopsy-related sEV markers for early, minimally invasive diagnosis of gynecologic diseases. In addition, the characteristics of sEVs as drug carriers and in precision treatment and drug resistance are introduced, providing a strong foundation for identifying novel and potential therapeutic targets for sEV therapy. We propose potential directions for further research on the applications of sEVs in the diagnosis and treatment of gynecologic diseases.
Collapse
|
16
|
Wu T, Liu Y, Ali NM, Zhang B, Cui X. Effects of Exosomes on Tumor Bioregulation and Diagnosis. ACS OMEGA 2023; 8:5157-5168. [PMID: 36816660 PMCID: PMC9933233 DOI: 10.1021/acsomega.2c06567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Exosomes are lipid bilayer vesicles in biological fluids, which can participate in biological processes by mediating intercellular communication and activating intracellular signaling pathways, especially cancerogenic processes, such as proliferation, metastasis, invasion, and immune regulation of cancer cells. Besides, cancer-derived exosomes are also involved in tumor diagnosis and therapy as biomarkers and nanotransport devices. This article reviews the latest research progress on the biological regulation and disease diagnosis of exosomes in tumors, with the aim of providing new ideas for the clinical treatment of cancers.
Collapse
Affiliation(s)
- Tong Wu
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Ying Liu
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
- Department
of Oncology, Affiliated Zhongshan Hospital
of Dalian University, Dalian 116011, P.R. China
| | - Nasra Mohamoud Ali
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Bin Zhang
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Xiaonan Cui
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| |
Collapse
|
17
|
Wang KH, Ding DC. The Role and Applications of Exosomes in Gynecological Cancer: A Review. Cell Transplant 2023; 32:9636897231195240. [PMID: 37632354 PMCID: PMC10467393 DOI: 10.1177/09636897231195240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023] Open
Abstract
Exosomes are phospholipid bilayer vesicles that are released by all types of cells, containing proteins, lipids, and nucleic acids such as DNAs and RNAs. Exosomes can be transferred between cells and play a variety of physiological and pathological regulatory functions. Noncoding RNAs, including micro RNAs, long noncoding RNAs, and circular RNAs, are the most studied biomolecules from exosomes and more and more studies found that noncoding RNAs play an important role in the diagnosis, prognosis, and treatment of diseases, including various types of cancer. Gynecological malignancies such as ovarian, endometrial, and cervical cancer seriously threaten women's life. Therefore, this article reviews the roles and applications of exosomes in gynecological malignancies, including the promotion or inhibition of tumor progression and regulation of tumor microenvironments, and as potential therapeutic targets for treating gynecological cancers.
Collapse
Affiliation(s)
- Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, R.O.C
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, R.O.C
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| |
Collapse
|
18
|
Wu S, Mu C, Sun JJ, Hu XR, Yao YH. Role of Exosomal Non-Coding RNA in the Tumour Microenvironment of Genitourinary System Tumours. Technol Cancer Res Treat 2023; 22:15330338231198348. [PMID: 37981789 PMCID: PMC10664451 DOI: 10.1177/15330338231198348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 11/21/2023] Open
Abstract
In recent years, genitourinary system tumors are common in people of all ages, seriously affecting the quality of life of patients, the pathogenesis and treatment of these diseases are constantly being updated and improved. Exosomes, with a lipid bilayer that enable delivery of their contents into body fluids or other cells. Exosomes can regulate the tumor microenvironment, and play an important role in tumor development. In turn, cellular and non-cellular components of tumor microenvironment also affect the occurrence, progression, invasion and metastasis of tumor. Non-coding RNAs have been shown to be able to be ingested and released by exosomes, and are seen as a potential tool in cancer diagnosis and treatment. Here, we summarize the effect of non-coding RNAs of exosome contents on the tumor microenvironment of genitourinary system tumor, expound the significance of non-coding RNAs of exosome in the occurrence, development, diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Shuang Wu
- Basic Medical College, Department of Pathology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Chao Mu
- Basic Medical College, Department of Pathology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jia-jia Sun
- Basic Medical College, Department of Pathology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Xin-rong Hu
- Basic Medical College, Department of Pathology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yun-hong Yao
- Professor in Basic Medical College, Department of Pathology, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
19
|
Zhang R, Zou Y, Luo J. Application of Extracellular Vesicles in Gynecologic Cancer Treatment. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120740. [PMID: 36550946 PMCID: PMC9774372 DOI: 10.3390/bioengineering9120740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Ovarian, cervical, and endometrial cancer are the three most common gynecological malignancies that seriously threaten women's health. With the development of molecular biology technology, immunotherapy and targeted therapy for gynecologic tumors are being carried out in clinical treatment. Extracellular vesicles are nanosized; they exist in various body fluids and play an essential role in intercellular communication and in the regulation of various biological process. Several studies have shown that extracellular vesicles are important targets in gynecologic cancer treatment as they promote tumor growth, progression, angiogenesis, metastasis, chemoresistance, and immune system escape. This article reviews the progress of research into extracellular vesicles in common gynecologic tumors and discusses the role of extracellular vesicles in gynecologic tumor treatment.
Collapse
Affiliation(s)
- Renwen Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yixing Zou
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| |
Collapse
|
20
|
Advances in Exosomes as Diagnostic and Therapeutic Biomarkers for Gynaecological Malignancies. Cancers (Basel) 2022; 14:cancers14194743. [PMID: 36230667 PMCID: PMC9563301 DOI: 10.3390/cancers14194743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary The three major gynaecological cancers are ovarian cancer, endometrial cancer, and cervical cancer, which endanger women’s health worldwide. Significant progress has been made in the study of exosomes, which have been proven to be an important form of intercellular communication, as well as an important carrier for the uptake, transport, and release of cargo. Exosomes may also be promising diagnostic or prognostic markers for gynaecologic malignancies, which may improve the level of treatment of gynaecologic malignancies. This article reviews the latest research progress and systematic knowledge of exosomes in gynaecological malignant tumours in recent years, in order to provide a new perspective for the treatment of gynaecological tumours and promote the clinical application of exosomes in gynaecological malignancies. Abstract Background: Exosomes are extracellular vesicles that can be released by practically all types of cells. They have a diameter of 30–150 nm. Exosomes control the exchange of materials and information between cells. This function is based on its special cargo-carrying and transporting functions, which can load a variety of useful components and guarantee their preservation. Recently, exosomes have been confirmed to play a significant role in the pathogenesis, diagnosis, treatment, and prognosis of gynaecological malignancies. Particularly, participation in liquid biopsy was studied extensively in gynaecological cancer, which holds the advantages of noninvasiveness and individualization. Literature Review: This article reviews the latest research progress of exosomes in gynaecological malignancies and discusses the involvement of humoral and cell-derived exosomes in the pathogenesis, progression, metastasis, drug resistance and treatment of ovarian cancer, cervical cancer, and endometrial cancer. Advances in the clinical application of exosomes in diagnostic technology, drug delivery, and overcoming tumour resistance are also presented. Conclusion: Exosomes are potentially diagnostic and prognostic biomarkers in gynaecological malignancies, and also provide new directions for the treatment of gynaecological tumours, showing great clinical potential.
Collapse
|
21
|
Zhao Y, Li P. Strategies of LncRNA DLX6-AS1 on Study and Therapeutics. Front Genet 2022; 13:871988. [PMID: 35719380 PMCID: PMC9198352 DOI: 10.3389/fgene.2022.871988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence has revealed the vital regulatory roles of lncRNA DLX6-AS1 in various tumors at pre-transcriptional, transcriptional, and post-transcriptional levels, which makes it a potential prognosis factor and therapeutic target. In addition, the presence of lncRNA DLX6-AS1 in the exosomes of peripheral blood of patients with tumors may also contribute to it being a possible cancer-related biomarker. However, most literature studies are devoted to studying the effect of lncRNA DLX6-AS1 as a sponging molecule of miRNAs, the research of which is likely to get stuck into a dilemma. Literature studies published already have demonstrated an exciting cell malignant phenotype inhibition with the knockdown of lncRNA DLX6-AS1 in various tumor cell lines. With the comprehensive development of delivery systems, high-throughput sequencing, and aptamers, the problems of finding novel research methods and exploring the therapeutic options which are based on lncRNA DLX6-AS1 in vivo could come into a period to deal with. This review aims to summarize the research statuses of lncRNA DLX6-AS1, discuss other study methodologies and therapeutic strategies on it, which might be of help to the deep learning of lncRNA DLX6-AS1 and its application from basic to clinical research.
Collapse
Affiliation(s)
- Yanyan Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Ran Z, Wu S, Ma Z, Chen X, Liu J, Yang J. Advances in exosome biomarkers for cervical cancer. Cancer Med 2022; 11:4966-4978. [PMID: 35578572 PMCID: PMC9761094 DOI: 10.1002/cam4.4828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 02/03/2023] Open
Abstract
Cervical cancer (CC) ranks as the fourth most frequently diagnosed malignancy in females worldwide. Exosomes are a subclass of extracellular vesicles released by nearly all types of cells that act as cargo transport vehicles, carrying proteins, and genetic material (such as miRNAs, long noncoding RNAs, and mRNAs) derived from their parent cells may affect receiving cells and thus have emerged as key players in several biological processes, including inflammatory pathways. In this review, we concentrated on the findings of exosome investigations in CC, particularly their components. They direct the actions of CC cells by inducing surface molecules associated with various biological pathways. We summarized the current knowledge of exosomal RNAs and proteins from CC cells and discussed the feasibility of exosomes as potential biomarkers for CC. We suggest that cancer-derived exosomes promote metastasis in CC by supporting EMT, controlling the proliferation, invasion, or migration of cancer cells, as well as influencing immune escape and aiding angiogenesis. Overall, cancer-derived exosomes are critical in the progression of CC, and further studies are necessary to advance our understanding of the clinical value of exosomes in CC.
Collapse
Affiliation(s)
- Zihan Ran
- Department of ResearchShanghai University of Medicine & Health Sciences Affiliated Zhoupu HospitalShanghaiChina,Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Shaobo Wu
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Zijng Ma
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Xiuwen Chen
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Jing Liu
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina
| | - Jingcheng Yang
- The Genius Medicine Consortium (TGMC)ShanghaiChina,State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer CenterFudan UniversityShanghaiChina,Greater Bay Area Institute of Precision MedicineGuangzhouChina
| |
Collapse
|
23
|
Li L, Bi Y, Diao S, Li X, Yuan T, Xu T, Huang C, Li J. Exosomal LncRNAs and hepatocellular Carcinoma: From basic research to clinical practice. Biochem Pharmacol 2022; 200:115032. [PMID: 35395241 DOI: 10.1016/j.bcp.2022.115032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with poor prognosis. The incidences of HCC and HCC-related deaths have increased over the last several decades. However, the treatment options for advanced HCC are very limited. Long noncoding RNAs (lncRNAs) wrapped in exosomes can change the expression of their target genes in recipient cells, thereby regulating the behavior of recipient cells. Increasing evidence has demonstrated that there is a correlation between the activation of exosomal lncRNAs and the development of HCC. In this review article, we highlighted the functions of exosomal lncRNAs in the development of HCC, showing that exosomal lncRNAs play a vital role in the growth and progression of HCC and are targets for HCC.
Collapse
Affiliation(s)
- Liangyun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Yihui Bi
- The Second Affiliated Hospital of Anhui Medical University, China
| | - Shaoxi Diao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Tong Yuan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China.
| |
Collapse
|
24
|
Ye M, Wang J, Pan S, Zheng L, Wang ZW, Zhu X. Nucleic acids and proteins carried by exosomes of different origins as potential biomarkers for gynecologic cancers. Mol Ther Oncolytics 2022; 24:101-113. [PMID: 35024437 PMCID: PMC8718571 DOI: 10.1016/j.omto.2021.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Lihong Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
- Corresponding author Zhi-Wei Wang, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
- Corresponding author Xueqiong Zhu, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
25
|
Ghafouri-Fard S, Najafi S, Hussen BM, Ganjo AR, Taheri M, Samadian M. DLX6-AS1: A Long Non-coding RNA With Oncogenic Features. Front Cell Dev Biol 2022; 10:746443. [PMID: 35281110 PMCID: PMC8916230 DOI: 10.3389/fcell.2022.746443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a heterogeneous group of ncRNAs with characteristic size of more than 200 nucleotides. An increasing number of lncRNAs have been found to be dysregulated in many human diseases particularly cancer. However, their role in carcinogenesis is not precisely understood. DLX6-AS1 is an lncRNAs which has been unveiled to be up-regulated in various number of cancers. In different cell studies, DLX6-AS1 has shown oncogenic role via promoting oncogenic phenotype of cancer cell lines. Increase in tumor cell proliferation, migration, invasion, and EMT while suppressing apoptosis in cancer cells are the effects of DLX6-AS1 in development and progression of cancer. In the majority of cell experiment, mediator miRNAs have been identified which are sponged and negatively regulated by DLX6-AS1, and they in turn regulate expression of a number of transcription factors, eventually affecting signaling pathways involved in carcinogenesis. These pathways form axes through which DLX6-AS1 promotes carcinogenicity of cancer cells. Xenograft animal studies, also have confirmed enhancing effect of DLX6-AS1 on tumor growth and metastasis. Clinical evaluations in cancerous patients have also shown increased expression of DLX6-AS1 in tumor tissues compared to healthy tissues. High DLX6-AS1 expression has shown positive association with advanced clinicopathological features in cancerous patients. Survival analyses have demonstrated correlation between high DLX6-AS1 expression and shorter survival. In cox regression analysis, DLX6-AS1 has been found as an independent prognostic factor for patients with various types of cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Aryan R. Ganjo
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Mohammad Samadian,
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Mohammad Samadian,
| |
Collapse
|
26
|
Abstract
Long non-coding RNAs (lncRNAs) have important roles in regulating the expression of genes and act as biomarkers in the initial development of different cancers. Increasing research studies have verified that dysregulation of lncRNAs occurs in various pathological processes including tumorigenesis and cancer progression. Among the different lncRNAs, DLX6-AS1 has been reported to act as an oncogene in the development and prognoses of different cancers, by affecting many different signalling pathways. This review summarises and analyses the recent research studies describing the biological functions of DLX6-AS1, its overall effect on signalling pathways and the molecular mechanisms underlying its action on the expression of genes in multiple human cancers. Our critical analysis suggests that different signalling pathways associated to this lncRNA may be used as a biomarker for diagnosis, or targets of treatment in cancers.
Collapse
|
27
|
Li M, Wang J, Ma H, Gao L, Zhao K, Huang T. Extracellular Vesicles Long Non-Coding RNA AGAP2-AS1 Contributes to Cervical Cancer Cell Proliferation Through Regulating the miR-3064-5p/SIRT1 Axis. Front Oncol 2021; 11:684477. [PMID: 34796103 PMCID: PMC8593909 DOI: 10.3389/fonc.2021.684477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
Cervical cancer is one of the most severe and prevalent female malignancies and a global health issue. The molecular mechanisms underlying cervical cancer development are poorly investigated. As a type of extracellular membrane vesicles, EVs from cancer cells are involved in cancer progression by delivering regulatory factors, such as proteins, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). In this study, we identified an innovative function of extracellular vesicle (EV) lncRNA AGAP2-AS1 in regulating cervical cancer cell proliferation. The EVs were isolated from the cervical cancer cells and were observed by transmission electron microscopy (TEM) and were confirmed by analyzing exosome markers. The depletion of AGAP2-AS1 by siRNA significantly reduced its expression in the exosomes from cervical cancer and in the cervical cancer treated with AGAP2-AS1-knockdown exosomes. The expression of AGAP2-AS1 was elevated in the clinical cervical cancer tissues compared with the adjacent normal tissues. The depletion of EV AGAP2-AS1 reduced cell viabilities and Edu-positive cervical cancer cells, while it enhanced cervical cancer cell apoptosis. Tumorigenicity analysis in nude mice showed that the silencing of EV AGAP2-AS1 attenuated cervical cancer cell growth in vivo. Regarding the mechanism, we identified that AGAP2-AS1 increased SIRT1 expression by sponging miR-3064-5p in cervical cancer cells. The overexpression of SIRT1 or the inhibition of miR-3064-5p reversed EV AGAP2-AS1 depletion-inhibited cancer cell proliferation in vitro. Consequently, we concluded that EV lncRNA AGAP2-AS1 contributed to cervical cancer cell proliferation through regulating the miR-3064-5p/SIRT1 axis. The clinical values of EV lncRNA AGAP2-AS1 and miR-3064-5p deserve to be explored in cervical cancer diagnosis and treatments.
Collapse
Affiliation(s)
- Min Li
- Pathology Department, Jinan Second Maternal and Child Health Care Hospital, Jinan, China,*Correspondence: Min Li,
| | - Jing Wang
- The Second Children & Women’s Healthcare of Jinan City, Jinan, China
| | - Hongli Ma
- Department of Obstetrics, Tai’an City Central Hospital, Tai’an, China
| | - Li Gao
- Department of Obstetrics, Tai’an City Central Hospital, Tai’an, China
| | - Kunxiang Zhao
- Department of Obstetrics and Gynecology, Pengquan Community Health Service Center, Jinan, China
| | - Tingting Huang
- Department of Obstetrics, Tai’an City Central Hospital, Tai’an, China
| |
Collapse
|
28
|
Zhang J, Ding N, He Y, Tao C, Liang Z, Xin W, Zhang Q, Wang F. Bioinformatic identification of genomic instability-associated lncRNAs signatures for improving the clinical outcome of cervical cancer by a prognostic model. Sci Rep 2021; 11:20929. [PMID: 34686717 PMCID: PMC8536663 DOI: 10.1038/s41598-021-00384-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
The research is executed to analyze the connection between genomic instability-associated long non-coding RNAs (lncRNAs) and the prognosis of cervical cancer patients. We set a prognostic model up and explored different risk groups' features. The clinical datasets and gene expression profiles of 307 patients have been downloaded from The Cancer Genome Atlas database. We established a prognostic model that combined somatic mutation profiles and lncRNA expression profiles in a tumor genome and identified 35 genomic instability-associated lncRNAs in cervical cancer as a case study. We then stratified patients into low-risk and high-risk groups and were further checked in multiple independent patient cohorts. Patients were separated into two sets: the testing set and the training set. The prognostic model was built using three genomic instability-associated lncRNAs (AC107464.2, MIR100HG, and AP001527.2). Patients in the training set were divided into the high-risk group with shorter overall survival and the low-risk group with longer overall survival (p < 0.001); in the meantime, similar comparable results were found in the testing set (p = 0.046), whole set (p < 0.001). There are also significant differences in patients with histological grades, FIGO stages, and different ages (p < 0.05). The prognostic model focused on genomic instability-associated lncRNAs could predict the prognosis of cervical cancer patients, paving the way for further research into the function and resource of lncRNAs, as well as a key approach to customizing individual care decision-making.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Nan Ding
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yongxing He
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chengbin Tao
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Zhongzhen Liang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Wenhu Xin
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Qianyun Zhang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Fang Wang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
29
|
Luo Y, Ge P, Wang M, Chen H, Liu J, Wei T, Jiang Y, Qu J, Chen H. Research progress of DLX6-AS1 in human cancers. Hum Cell 2021; 34:1642-1652. [PMID: 34508305 DOI: 10.1007/s13577-021-00613-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a kind of translational-repressor RNAs composed of more than 200 nucleotides and formerly considered as "transcriptional noise". Recently studies have shown that lncRNAs could bind to multiple biomolecules such as DNA, transcription factors, RNA, chromatin complexes and proteins, and regulate target gene expression at multi-levels, thus playing an essential role in human tumors. DLX6-AS1, a recently discovered oncogenic lncRNA, is highly expressed in various human tumors, including lung cancer, liver cancer and pancreatic cancer. This paper mainly reviewed the regulatory mechanism of DLX6-AS1 as a competitive endogenous RNA (ceRNA) in tumor cell proliferation, cell apoptosis, angiogenesis, epithelial-mesenchymal transformation, chemotherapy resistance and metabolic changes. Furthermore, the translational value of DLX6-AS1 in cancer was also elucidated, which suggested its potential as a diagnostic or prognostic biomarker in cancer. In summary, this present article not only makes an in-depth analysis of the expression changes and carcinogenic mechanism of DLX6-AS1 in various human cancers, but also provides a new breakthrough for the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Mengfei Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Haiyang Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Jiayue Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Tianfu Wei
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Yuankuan Jiang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Jialin Qu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China. .,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China. .,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China. .,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.
| |
Collapse
|
30
|
Liquid Biopsy in Cervical Cancer: Hopes and Pitfalls. Cancers (Basel) 2021; 13:cancers13163968. [PMID: 34439120 PMCID: PMC8394398 DOI: 10.3390/cancers13163968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Cervical cancer is the fourth most common cancer in women worldwide, and its incidence is variably distributed between developed and less-resourced countries, in which socio-economic issues and religious beliefs often limit the widespread diffusion and the access to screening campaigns. In the “liquid biopsy” era, the application of non-invasive and repeatable techniques to the identification of diagnostic, prognostic, and predictive biomarkers might facilitate the management of this disease and, hopefully, improve its outcome. The purpose of this review is to explore the progress status of liquid biopsy in cervical cancer patients. Several methods are described, which include the analysis of circulating tumor cells, the search for pathogenic mutations on circulating tumor DNA, as well as the identification of circulating RNAs, focusing on their potential clinical applications and current limitations. Abstract Cervical cancer (CC) is the fourth most common cancer in women worldwide, with about 90% of cancer-related deaths occurring in developing countries. The geographical influence on disease evolution reflects differences in the prevalence of human papilloma virus (HPV) infection, which is the main cause of CC, as well as in the access and quality of services for CC prevention and diagnosis. At present, the most diffused screening and diagnostic tools for CC are Papanicolaou test and the more sensitive HPV-DNA test, even if both methods require gynecological practices whose acceptance relies on the woman’s cultural and religious background. An alternative (or complimentary) tool for CC screening, diagnosis, and follow-up might be represented by liquid biopsy. Here, we summarize the main methodologies developed in this context, including circulating tumor cell detection and isolation, cell tumor DNA sequencing, coding and non-coding RNA detection, and exosomal miRNA identification. Moreover, the pros and cons of each method are discussed, and their potential applications in diagnosis and prognosis of CC, as well as their role in treatment monitoring, are explored. In conclusion, it is evident that despite many advances obtained in this field, further effort is needed to validate and standardize the proposed methodologies before any clinical use.
Collapse
|
31
|
Extracellular Vesicles in Cervical Cancer and HPV Infection. MEMBRANES 2021; 11:membranes11060453. [PMID: 34202942 PMCID: PMC8235012 DOI: 10.3390/membranes11060453] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
Since their description, extracellular vesicles (EVs) have shown growing relevance in cancer progression. These cell structures contain and transfer molecules such as nucleic acids (including DNA and RNA), proteins, and lipids. Despite the rising information about EVs’ relationship with cancer, there is still scarce evidence about their content and function in cervical cancer. Interestingly, the composition and purposes of some cellular molecules and the expression of oncogenic proteins packaged in EVs seem modified in HPV-infected cells; and, although only the E6 oncogenic protein has been detected in exosomes from HPV-positive cells, both E6/E7 oncogenes mRNA has been identified in EVs; however, their role still needs to be clarified. Given that EVs internalizing into adjacent or distant cells could modify their cellular behavior or promote cancer-associated events like apoptosis, proliferation, migration, or angiogenesis in receptor cells, their comprehensive study will reveal EV-associated mechanisms in cervical cancer. This review summarizes the current knowledge in composition and functions of cervical cancer and HPV Infection-derived EVs.
Collapse
|