1
|
Bao Y, Deng H, Wang X, Zuo H, Ma C. Development of a digital breast phantom for photoacoustic computed tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:1391-1406. [PMID: 33796361 PMCID: PMC7984796 DOI: 10.1364/boe.416406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/16/2021] [Accepted: 01/26/2021] [Indexed: 05/18/2023]
Abstract
Photoacoustic (PA) imaging provides morphological and functional information about angiogenesis and thus is potentially suitable for breast cancer diagnosis. However, the development of PA breast imaging has been hindered by inadequate patients and a lack of ground truth images. Here, we report a digital breast phantom with realistic acoustic and optical properties, with which a digital PA-ultrasound imaging pipeline is developed to create a diverse pool of virtual patients with three types of masses: ductal carcinoma in situ, invasive breast cancer, and fibroadenoma. The experimental results demonstrate that our model is realistic, flexible, and can be potentially useful for accelerating the development of PA breast imaging technology.
Collapse
Affiliation(s)
- Youwei Bao
- The Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
| | - Handi Deng
- The Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
| | - Xuanhao Wang
- The Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
| | - Hongzhi Zuo
- The Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
| | - Cheng Ma
- The Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Innovation Center for Future Chip, Beijing, 100084, China
- Corresponding author:
| |
Collapse
|
2
|
Cochran JM, Busch DR, Lin L, Minkoff DL, Schweiger M, Arridge S, Yodh AG. Hybrid time-domain and continuous-wave diffuse optical tomography instrument with concurrent, clinical magnetic resonance imaging for breast cancer imaging. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 30680976 PMCID: PMC6345326 DOI: 10.1117/1.jbo.24.5.051409] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/10/2018] [Indexed: 05/10/2023]
Abstract
Diffuse optical tomography has demonstrated significant potential for clinical utility in the diagnosis and prognosis of breast cancer, and its use in combination with other structural imaging modalities improves lesion localization and the quantification of functional tissue properties. Here, we introduce a hybrid diffuse optical imaging system that operates concurrently with magnetic resonance imaging (MRI) in the imaging suite, utilizing commercially available MR surface coils. The instrument acquires both continuous-wave and time-domain diffuse optical data in the parallel-plate geometry, permitting both absolute assignment of tissue optical properties and three-dimensional tomography; moreover, the instrument is designed to incorporate diffuse correlation spectroscopic measurements for probing tissue blood flow. The instrument is described in detail here. Image reconstructions of a tissue phantom are presented as an initial indicator of the system's ability to accurately reconstruct optical properties and the concrete benefits of the spatial constraints provided by concurrent MRI. Last, we briefly discuss how various data combinations that the instrument could facilitate, including tissue perfusion, can enable more comprehensive assessment of lesion physiology.
Collapse
Affiliation(s)
- Jeffrey M. Cochran
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- Address all correspondence to Jeffrey M. Cochran, E-mail:
| | - David R. Busch
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- University of Texas Southwestern Medical Center, Department of Anesthesiology and Pain Management, Dallas, Texas, United States
- University of Texas Southwestern Medical Center, Department of Neurology and Neurotherapeutics, Dallas, Texas, United States
- Children’s Hospital of Philadelphia, Department of Neurology, Philadelphia, Pennsylvania, United States
| | - Li Lin
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- California Institute of Technology, Department of Medical Engineering, Pasadena, California, United States
| | - David L. Minkoff
- Emory University, Department of Medicine, Atlanta, Georgia, United States
| | - Martin Schweiger
- University College London, Centre for Medical Image Computing, London, United Kigdom
| | - Simon Arridge
- University College London, Centre for Medical Image Computing, London, United Kigdom
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| |
Collapse
|
3
|
Oraevsky A, Clingman B, Zalev J, Stavros A, Yang W, Parikh J. Clinical optoacoustic imaging combined with ultrasound for coregistered functional and anatomical mapping of breast tumors. PHOTOACOUSTICS 2018; 12:30-45. [PMID: 30306043 PMCID: PMC6172480 DOI: 10.1016/j.pacs.2018.08.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 05/04/2023]
Abstract
Optoacoustic imaging, based on the differences in optical contrast of blood hemoglobin and oxyhemoglobin, is uniquely suited for the detection of breast vasculature and tumor microvasculature with the inherent capability to differentiate hypoxic from the normally oxygenated tissue. We describe technological details of the clinical ultrasound (US) system with optoacoustic (OA) imaging capabilities developed specifically for diagnostic imaging of breast cancer. The combined OA/US system provides co-registered and fused images of breast morphology based upon gray scale US with the functional parameters of total hemoglobin and blood oxygen saturation in the tumor angiogenesis related microvasculature based upon OA images. The system component that enabled clinical utility of functional OA imaging is the hand-held probe that utilizes a linear array of ultrasonic transducers sensitive within an ultrawide-band of acoustic frequencies from 0.1 MHz to 12 MHz when loaded to the high-impedance input of the low-noise analog preamplifier. The fiberoptic light delivery system integrated into a dual modality probe through a patented design allowed acquisition of OA images while minimizing typical artefacts associated with pulsed laser illumination of skin and the probe components in the US detection path. We report technical advances of the OA/US imaging system that enabled its demonstrated clinical viability. The prototype system performance was validated in well-defined tissue phantoms. Then a commercial prototype system named Imagio™ was produced and tested in a multicenter clinical trial termed PIONEER. We present examples of clinical images which demonstrate that the spatio-temporal co-registration of functional and anatomical images permit radiological assessment of the vascular pattern around tumors, microvascular density of tumors as well as the relative values of the total hemoglobin [tHb] and blood oxygen saturation [sO2] in tumors relative to adjacent normal breast tissues. The co-registration technology enables increased accuracy of radiologist assessment of malignancy by confirming, upgrading and/or downgrading US categorization of breast tumors according to Breast Imaging Reporting And Data System (BI-RADS). Microscopic histologic examinations on the biopsied tissue of the imaged tumors served as a gold standard in verifying the functional and anatomic interpretations of the OA/US image feature analysis.
Collapse
Affiliation(s)
- A.A. Oraevsky
- TomoWave Laboratories, Houston, TX, United States
- Corresponding author.
| | - B. Clingman
- Seno Medical Instruments, San Antonio, TX, United States
| | - J. Zalev
- Department of Physics, Ryerson University, Toronto, Canada
| | - A.T. Stavros
- Seno Medical Instruments, San Antonio, TX, United States
| | - W.T. Yang
- Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - J.R. Parikh
- Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
4
|
Godavarty A, Rodriguez S, Jung YJ, Gonzalez S. Optical imaging for breast cancer prescreening. BREAST CANCER-TARGETS AND THERAPY 2015; 7:193-209. [PMID: 26229503 PMCID: PMC4516032 DOI: 10.2147/bctt.s51702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Breast cancer prescreening is carried out prior to the gold standard screening using X-ray mammography and/or ultrasound. Prescreening is typically carried out using clinical breast examination (CBE) or self-breast examinations (SBEs). Since CBE and SBE have high false-positive rates, there is a need for a low-cost, noninvasive, non-radiative, and portable imaging modality that can be used as a prescreening tool to complement CBE/SBE. This review focuses on the various hand-held optical imaging devices that have been developed and applied toward early-stage breast cancer detection or as a prescreening tool via phantom, in vivo, and breast cancer imaging studies. Apart from the various optical devices developed by different research groups, a wide-field fiber-free near-infrared optical scanner has been developed for transillumination-based breast imaging in our Optical Imaging Laboratory. Preliminary in vivo studies on normal breast tissues, with absorption-contrasted targets placed in the intramammary fold, detected targets as deep as 8.8 cm. Future work involves in vivo imaging studies on breast cancer subjects and comparison with the gold standard X-ray mammography approach.
Collapse
Affiliation(s)
- Anuradha Godavarty
- Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Suset Rodriguez
- Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Young-Jin Jung
- Department of Radiological Science, Dongseo University, Busan, South Korea
| | - Stephanie Gonzalez
- Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| |
Collapse
|
5
|
Pearlman PC, Adams A, Elias SG, Mali WPTM, Viergever MA, Pluim JPW. Mono- and multimodal registration of optical breast images. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:080901-1. [PMID: 23224161 DOI: 10.1117/1.jbo.17.8.080901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Optical breast imaging offers the possibility of noninvasive, low cost, and high sensitivity imaging of breast cancers. Poor spatial resolution and a lack of anatomical landmarks in optical images of the breast make interpretation difficult and motivate registration and fusion of these data with subsequent optical images and other breast imaging modalities. Methods used for registration and fusion of optical breast images are reviewed. Imaging concerns relevant to the registration problem are first highlighted, followed by a focus on both monomodal and multimodal registration of optical breast imaging. Where relevant, methods pertaining to other imaging modalities or imaged anatomies are presented. The multimodal registration discussion concerns digital x-ray mammography, ultrasound, magnetic resonance imaging, and positron emission tomography.
Collapse
Affiliation(s)
- Paul C Pearlman
- University Medical Center Utrecht, Image Sciences Institute, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
6
|
Liu Q. Role of optical spectroscopy using endogenous contrasts in clinical cancer diagnosis. World J Clin Oncol 2011; 2:50-63. [PMID: 21603314 PMCID: PMC3095461 DOI: 10.5306/wjco.v2.i1.50] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/17/2010] [Accepted: 10/24/2010] [Indexed: 02/06/2023] Open
Abstract
Optical spectroscopy has been intensively studied for cancer management in the past two decades. This review paper first introduces the background of optical spectroscopy for cancer management, which includes the advantages of optical techniques compared to other established techniques, the principle of optical spectroscopy and the typical setup of instrumentation. Then the recent progress in optical spectroscopy for cancer diagnosis in the following organs is reviewed: the brain, breast, cervix, lung, stomach, colon, prostate and the skin. Reviewed papers were selected from the PubMed database with keywords combining the terms of individual optical spectroscopy techniques and cancers. The primary focus is on the in vivo applications of optical spectroscopy in clinical studies. Ex vivo studies are also included for some organs to highlight special applications or when there are few in vivo results in the literature. Practical considerations of applying optical spectroscopy in clinical settings such as the speed, cost, complexity of operation, accuracy and clinical value are discussed. A few commercially available clinical instruments that are based on optical spectroscopy techniques are presented. Finally several technical challenges and standard issues are discussed and firm conclusions are made.
Collapse
Affiliation(s)
- Quan Liu
- Quan Liu, Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, N1.3-B2-06, 70 Nanyang Drive, Singapore 637457, Singapore
| |
Collapse
|
7
|
Wang J, Jiang S, Li Z, diFlorio-Alexander RM, Barth RJ, Kaufman PA, Pogue BW, Paulsen KD. In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography. Med Phys 2010; 37:3715-24. [PMID: 20831079 DOI: 10.1118/1.3455702] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE A NIR tomography system that combines frequency domain (FD) and continuous wave (CW) measurements was used to image normal and malignant breast tissues. METHODS FD acquisitions were confined to wavelengths less than 850 nm because of detector limitations, whereas light from longer wavelengths (up to 948 nm) was measured in CW mode with CCD-coupled spectrometer detection. The two data sets were combined and processed in a single spectrally constrained reconstruction to map concentrations of hemoglobin, water, and lipid, as well as scattering parameters in the breast. RESULTS Chromophore concentrations were imaged in the breasts of nine asymptomatic volunteers to evaluate their intrasubject and intersubject variability. Normal subject data showed physiologically expected trends. Images from three cancer patients indicate that the added CW data is critical to recovering the expected increases in water and decreases in lipid content within malignancies. Contrasts of 1.5 to twofold in hemoglobin and water values were found in cancers. CONCLUSIONS In vivo breast imaging with instrumentation that combines FD and CW NIR data acquisition in a single spectral reconstruction produces more accurate hemoglobin, water, and lipid results relative to FD data alone.
Collapse
Affiliation(s)
- Jia Wang
- Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Regalado S, Erickson SJ, Zhu B, Ge J, Godavarty A. Automated coregistered imaging using a hand-held probe-based optical imager. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2010; 81:023702. [PMID: 20192497 DOI: 10.1063/1.3271019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Near-infrared optical imaging holds a promise as a noninvasive technology toward cancer diagnostics and other tissue imaging applications. In recent years, hand-held based imagers are of great interest toward the clinical translation of the technology. However hand-held imagers developed to date are typically designed to obtain surface images and not tomography information due to lack of coregistration facilities. Herein, a recently developed hand-held probe-based optical imager in our Optical Imaging Laboratory has been implemented with novel coregistration facilities toward real-time and tomographic imaging of tissue phantoms. Continuous-wave fluorescence-enhanced optical imaging studies were performed using an intensified charge coupled device camera based imaging system in order to demonstrate the feasibility of automated coregistered imaging of flat phantom surfaces, using a flexible probe that can also contour to curvatures. Three-dimensional fluorescence tomographic reconstructions were also demonstrated using coregistered frequency-domain measurements obtained using the hand-held based optical imager. It was also observed from preliminary studies on cubical phantoms that multiple coregistered scans differentiated deeper targets (approximately 3 cm) from artifacts that were not feasible from a single coregistered scan, demonstrating the possibility of improved target depth detectability in the future.
Collapse
Affiliation(s)
- Steven Regalado
- Department of Biomedical Engineering, Optical Imaging Laboratory, Florida International University, Miami, Florida 33174, USA
| | | | | | | | | |
Collapse
|
9
|
Erickson SJ, Godavarty A. Hand-held based near-infrared optical imaging devices: A review. Med Eng Phys 2009; 31:495-509. [DOI: 10.1016/j.medengphy.2008.10.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/12/2008] [Accepted: 10/15/2008] [Indexed: 11/15/2022]
|
10
|
van de Ven SMWY, Elias SG, Wiethoff AJ, van der Voort M, Nielsen T, Brendel B, Bontus C, Uhlemann F, Nachabe R, Harbers R, van Beek M, Bakker L, van der Mark MB, Luijten P, Mali WPTM. Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging. Eur Radiol 2009; 19:1108-13. [PMID: 19137304 DOI: 10.1007/s00330-008-1268-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 11/14/2008] [Accepted: 11/27/2008] [Indexed: 10/21/2022]
Abstract
This paper presents an evaluation of a prototype diffuse optical tomography (DOT) system. Seventeen women with 18 breast lesions (10 invasive carcinomas, 2 fibroadenomas, and 6 benign cysts; diameters 13-54 mm) were evaluated with DOT and magnetic resonance imaging (MRI). A substantial fraction of the original 36 recruited patients could not be examined using this prototype due to technical problems. A region of interest (ROI) was drawn at the lesion position as derived from MRI and at the mirror image site in the contralateral healthy breast. ROIs were assessed quantitatively and qualitatively by two observers independently in two separate readings. Intra- and interobserver agreements were calculated using kappa statistics (k) and intraclass correlation coefficients (ICCs). Discriminatory values for presence of malignancy were determined by receiver operating characteristic (ROC) analyses. Intraobserver agreements were excellent (k 0.88 and 0.88; ICC 0.978 and 0.987), interobserver agreements were good to excellent (k 0.77-0.95; ICC 0.96-0.98). Discriminatory values for presence of malignancy were 0.92-0.93 and 0.97-0.99 for quantitative and qualitative ROC analysis, respectively. This DOT system has the potential to discriminate malignant from benign breast tissue in a reproducible qualitative and quantitative manner. Important technical improvements are required before this technique is ready for clinical application.
Collapse
Affiliation(s)
- Stephanie M W Y van de Ven
- Department of Radiology, University Medical Center Utrecht, E.01.132, Heidelberglaan 100, PO Box 85500, 3508 GA Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
van de Ven SMWY, Elias SG, van den Bosch MAAJ, Luijten P, Mali WPTM. Optical imaging of the breast. Cancer Imaging 2008; 8:206-15. [PMID: 19028613 PMCID: PMC2590880 DOI: 10.1102/1470-7330.2008.0032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review provides a summary of the current state of optical breast imaging and describes its potential future clinical applications in breast cancer imaging. Optical breast imaging is a novel imaging technique that uses near-infrared light to assess the optical properties of breast tissue. In optical breast imaging, two techniques can be distinguished, i.e. optical imaging without contrast agent, which only makes use of intrinsic tissue contrast, and optical imaging with a contrast agent, which uses exogenous fluorescent probes. In this review the basic concepts of optical breast imaging are described, clinical studies on optical imaging without contrast agent are summarized, an outline of preclinical animal studies on optical breast imaging with contrast agents is provided, and, finally, potential applications of optical breast imaging in clinical practice are addressed. Based on the present literature, diagnostic performance of optical breast imaging without contrast agent is expected to be insufficient for clinical application. Development of contrast agents that target specific molecular changes associated with breast cancer formation is the opportunity for clinical success of optical breast imaging.
Collapse
Affiliation(s)
- S M W Y van de Ven
- Department of Radiology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
12
|
Abstract
Despite technical advances in many areas of diagnostic radiology, the detection and imaging of human cancer remains poor. A meaningful impact on cancer screening, staging, and treatment is unlikely to occur until the tumor-to-background ratio improves by three to four orders of magnitude (ie, 10(3)- to 10(4)-fold), which in turn will require proportional improvements in sensitivity and contrast agent targeting. This review analyzes the physics and chemistry of cancer imaging and highlights the fundamental principles underlying the detection of malignant cells within a background of normal cells. The use of various contrast agents and radiotracers for cancer imaging is reviewed, as are the current limitations of ultrasound, x-ray imaging, magnetic resonance imaging (MRI), single-photon emission computed tomography, positron emission tomography (PET), and optical imaging. Innovative technologies are emerging that hold great promise for patients, such as positron emission mammography of the breast and spectroscopy-enhanced colonoscopy for cancer screening, hyperpolarization MRI and time-of-flight PET for staging, and ion beam-induced PET scanning and near-infrared fluorescence-guided surgery for cancer treatment. This review explores these emerging technologies and considers their potential impact on clinical care. Finally, those cancers that are currently difficult to image and quantify, such as ovarian cancer and acute leukemia, are discussed.
Collapse
Affiliation(s)
- John V Frangioni
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, Rm SL-B05, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Konecky SD, Choe R, Corlu A, Lee K, Wiener R, Srinivas SM, Saffer JR, Freifelder R, Karp JS, Hajjioui N, Azar F, Yodh AG. Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography. Med Phys 2008; 35:446-55. [PMID: 18383664 DOI: 10.1118/1.2826560] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We acquire and compare three-dimensional tomographic breast images of three females with suspicious masses using diffuse optical tomography (DOT) and positron emission tomography (PET). Co-registration of DOT and PET images was facilitated by a mutual information maximization algorithm. We also compared DOT and whole-body PET images of 14 patients with breast abnormalities. Positive correlations were found between total hemoglobin concentration and tissue scattering measured by DOT, and fluorodeoxyglucose (18F-FDG) uptake. In light of these observations, we suggest potential benefits of combining both PET and DOT for characterization of breast lesions.
Collapse
Affiliation(s)
- Soren D Konecky
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
New Trends of MRI in Breast Cancer Diagnosis. Breast Cancer 2007. [DOI: 10.1007/978-3-540-36781-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Leff DR, Warren OJ, Enfield LC, Gibson A, Athanasiou T, Patten DK, Hebden J, Yang GZ, Darzi A. Diffuse optical imaging of the healthy and diseased breast: A systematic review. Breast Cancer Res Treat 2007; 108:9-22. [PMID: 17468951 DOI: 10.1007/s10549-007-9582-z] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 03/26/2007] [Indexed: 11/28/2022]
Abstract
Screening X-ray mammography is limited by false positives and negatives leading to unnecessary physical and psychological morbidity. Diffuse Optical Imaging using harmless near infra red light, provides lesion detection based on functional abnormalities and represents a novel diagnostic arm that could complement traditional mammography. Reviews of optical breast imaging have not been systematic, are focused mainly on technological developments, and have become superseded by rapid technological advancement. The aim of this study is to review clinically orientated studies involving approximately 2,000 women in whom optical mammography has been used to evaluate the healthy or diseased breast. The results suggest that approximately 85% of breast lesions are detectable on optical mammography. Spectroscopic resolution of tissue haemoglobin composition and oxygen saturation may improve the detectability of breast diseases. Results suggest that breast lesions contain approximately twice the haemoglobin concentration of background tissue. Current evidence suggests that it is not possible to distinguish benign from malignant disease using optical imaging techniques in isolation. Methods to improve the performance of Diffuse Optical Imaging, such as better spectral coverage with additional wavelengths, improved modelling of light transport in tissues and the use of extrinsic dyes may augment lesion detection and characterisation. Future research should involve large clinical trials to determine the overall sensitivity and specificity of optical imaging techniques as well as to establish patient satisfaction and economic viability.
Collapse
Affiliation(s)
- Daniel Richard Leff
- Department of Biosurgery and Surgical Technology, Imperial College London, St Mary's Hospital, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Demos SG, Vogel AJ, Gandjbakhche AH. Advances in optical spectroscopy and imaging of breast lesions. J Mammary Gland Biol Neoplasia 2006; 11:165-81. [PMID: 17091396 DOI: 10.1007/s10911-006-9022-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A review is presented of recent advances in optical imaging and spectroscopy and the use of light for addressing breast cancer issues. Spectroscopic techniques offer the means to characterize tissue components and obtain functional information in real time. Three-dimensional optical imaging of the breast using various illumination and signal collection schemes in combination with image reconstruction algorithms may provide a new tool for cancer detection and treatment monitoring.
Collapse
Affiliation(s)
- Stavros G Demos
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94551, USA.
| | | | | |
Collapse
|
17
|
|