1
|
Tang MY, Shen X, Yuan RS, Li HY, Li XW, Jing YM, Zhang Y, Shen HH, Wang ZS, Zhou L, Yang YC, Wen HX, Su F. Plexin domain-containing 1 may be a biomarker of poor prognosis in hepatocellular carcinoma patients, may mediate immune evasion. World J Gastrointest Oncol 2024; 16:2091-2112. [PMID: 38764846 PMCID: PMC11099457 DOI: 10.4251/wjgo.v16.i5.2091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND For the first time, we investigated the oncological role of plexin domain-containing 1 (PLXDC1), also known as tumor endothelial marker 7 (TEM7), in hepatocellular carcinoma (HCC). AIM To investigate the oncological profile of PLXDC1 in HCC. METHODS Based on The Cancer Genome Atlas database, we analyzed the expression of PLXDC1 in HCC. Using immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting, we validated our results. The prognostic value of PLXDC1 in HCC was analyzed by assessing its correlation with clinicopathological features, such as patient survival, methylation level, tumor immune microenvironment features, and immune cell surface checkpoint expression. Finally, to assess the immune evasion potential of PLXDC1 in HCC, we used the tumor immune dysfunction and exclusion (TIDE) website and immunohistochemical staining assays. RESULTS Based on immunohistochemistry, qRT-PCR, and Western blot assays, overexpression of PLXDC1 in HCC was associated with poor prognosis. Univariate and multivariate Cox analyses indicated that PLXDC1 might be an independent prognostic factor. In HCC patients with high methylation levels, the prognosis was worse than in patients with low methylation levels. Pathway enrichment analysis of HCC tissues indicated that genes upregulated in the high-PLXDC1 subgroup were enriched in mesenchymal and immune activation signaling, and TIDE assessment showed that the risk of immune evasion was significantly higher in the high-PLXDC1 subgroup compared to the low-PLXDC1 subgroup. The high-risk group had a significantly lower immune evasion rate as well as a poor prognosis, and PLXDC1-related risk scores were also associated with a poor prognosis. CONCLUSION As a result of this study analyzing PLXDC1 from multiple biological perspectives, it was revealed that it is a biomarker of poor prognosis for HCC patients, and that it plays a role in determining immune evasion status.
Collapse
Affiliation(s)
- Ming-Yue Tang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Xue Shen
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Run-Sheng Yuan
- Otolaryngology and Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Hui-Yuan Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Xin-Wei Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Yi-Ming Jing
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Yue Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Hong-Hong Shen
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Zi-Shu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Yun-Chuan Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - He-Xin Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Fang Su
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| |
Collapse
|
2
|
Isogai T, Murali VS, Zhou F, Wang X, Rajendran D, Perez-Castro L, Venkateswaran N, Conacci-Sorrell M, Danuser G. Anchorage-independent cell proliferation promoted by fascin's F-actin bundling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592404. [PMID: 38746129 PMCID: PMC11092747 DOI: 10.1101/2024.05.04.592404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The actin filament (F-actin) bundling protein fascin-1 is highly enriched in many metastatic cancers. Fascin's contribution to metastasis have been ascribed to its enhancement of cell migration and invasion. However, mouse genetic studies clearly point to functions also in tumorigenesis, yet without mechanistic underpinnings. Here, we show that fascin expression promotes the formation of a non-canonical signaling complex that enables anchorage-independent proliferation. This complex shares similarities to focal adhesions and we refer to them as pseudo-adhesion signaling scaffolds (PASS). PASS are enriched with tyrosine phosphorylated proteins and require fascin's F-actin-bundling activity for its assembly. PASS serve as hubs for the Rac1/PAK/JNK proliferation signaling axis, driven by PASS-associated Rac-specific GEFs. Experimental disruption of either fascin or RacGEF function abrogates sustained proliferation of aggressive cancers in vitro and in vivo . These results add a new molecular element to the growing arsenal of metabolic and oncogenic signaling programs regulated by the cytoskeleton architecture.
Collapse
|
3
|
Zhang N, Bian Q, Gao Y, Wang Q, Shi Y, Li X, Ma X, Chen H, Zhao Z, Yu H. The Role of Fascin-1 in Human Urologic Cancers: A Promising Biomarker or Therapeutic Target? Technol Cancer Res Treat 2023; 22:15330338231175733. [PMID: 37246525 PMCID: PMC10240877 DOI: 10.1177/15330338231175733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/30/2023] Open
Abstract
Human cancer statistics show that an increased incidence of urologic cancers such as bladder cancer, prostate cancer, and renal cell carcinoma. Due to the lack of early markers and effective therapeutic targets, their prognosis is poor. Fascin-1 is an actin-binding protein, which functions in the formation of cell protrusions by cross-linking with actin filaments. Studies have found that fascin-1 expression is elevated in most human cancers and is related to outcomes such as neoplasm metastasis, reduced survival, and increased aggressiveness. Fascin-1 has been considered as a potential therapeutic target for urologic cancers, but there is no comprehensive review to evaluate these studies. This review aimed to provide an enhanced literature review, outline, and summarize the mechanism of fascin-1 in urologic cancers and discuss the therapeutic potential of fascin-1 and the possibility of its use as a potential marker. We also focused on the correlation between the overexpression of fascin-1 and clinicopathological parameters. Mechanistically, fascin-1 is regulated by several regulators and signaling pathways (such as long noncoding RNA, microRNA, c-Jun N-terminal kinase, and extracellular regulated protein kinases). The overexpression of fascin-1 is related to clinicopathologic parameters such as pathological stage, bone or lymph node metastasis, and reduced disease-free survival. Several fascin-1 inhibitors (G2, NP-G2-044) have been evaluated in vitro and in preclinical models. The study proved the promising potential of fascin-1 as a newly developing biomarker and a potential therapeutic target that needs further investigation. The data also highlight the inadequacy of fascin-1 to serve as a novel biomarker for prostate cancer.
Collapse
Affiliation(s)
- Naibin Zhang
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
- Clinical Medical College, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Qiang Bian
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
- Department of Pathophysiology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Yankun Gao
- Clinical Medical College, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Qianqian Wang
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Ying Shi
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Xiangling Li
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Xiaolei Ma
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Huiyuan Chen
- College of Radiology, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Zhankui Zhao
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Honglian Yu
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong, People's Republic of China
| |
Collapse
|
4
|
Li M, Gao Z, Ding H, Wang Z, Mu H, Zhang L, Wei J, Ma Z. FSCN1 Promotes Glycolysis and Epithelial-Mesenchymal Transition in Prostate Cancer through a YAP/TAZ Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6245647. [PMID: 35815268 PMCID: PMC9259215 DOI: 10.1155/2022/6245647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
Objective The aim of the study is to investigate the role and possible mechanism of fascin-1 (FSCN1) in the invasion, migration, glycolysis, and epithelial-mesenchymal transition (EMT) of prostate cancer. Methods Real-time quantitative polymerase chain reaction (qRT-PCR) was utilized to determine the mRNA expression level of FSCN1 in prostate cancer tissues and prostate cancer cells PC-3 and DU145. The transwell and the scratch test were applied to detect the invasion and migration abilities of cells, respectively. A metabolic assay was used for measuring the glucose consumption, lactate production, and the extracellular acidification rate (ECAR) in cells; western blot was used for checking FSCN1, EMT, and yes-associated protein/transcriptional co-activators with the PDZ-binding motif (YAP/TAZ) signaling pathway-related protein expression level in cells or tissues. Results FSCN1 was significantly highly expressed in prostate cancer tissues and cells. On the one hand, interference with the expression of FSCN1 could inhibit the invasion, migration, EMT, and glycolysis of prostate cancer cells. On the other hand, overexpression of FSCN1 promoted the invasion, migration, EMT, and glycolysis of prostate cancer cells. Besides, further mechanistic studies revealed that FSCN1 could activate the YAP/TAZ signaling pathway in prostate cancer cells. Conclusion FSCN1 promotes invasion, migration, EMT, and glycolysis in prostate cancer cells by activating the YAP/TAZ signaling pathway. FSCN1 may be used as a biomarker for the diagnosis or treatment in prostate cancer.
Collapse
Affiliation(s)
- Minghui Li
- Department of Urology, Affiliated Hospital of Chifeng University, Chifeng, Neimenggu 024050, China
| | - Zhiming Gao
- Department of Urology, Affiliated Hospital of Chifeng University, Chifeng, Neimenggu 024050, China
| | - Honglin Ding
- Department of Urology, Affiliated Hospital of Chifeng University, Chifeng, Neimenggu 024050, China
| | - Zhanhua Wang
- Department of Urology, Affiliated Hospital of Chifeng University, Chifeng, Neimenggu 024050, China
| | - Hada Mu
- Department of Urology, Affiliated Hospital of Chifeng University, Chifeng, Neimenggu 024050, China
| | - Lei Zhang
- Department of Urology, Affiliated Hospital of Chifeng University, Chifeng, Neimenggu 024050, China
| | - Jiufu Wei
- Department of Urology, Affiliated Hospital of Chifeng University, Chifeng, Neimenggu 024050, China
| | - Zhanshu Ma
- Department of Radiotherapy, Affiliated Hospital of Chifeng University, Chifeng, Neimenggu 024050, China
| |
Collapse
|
5
|
Cai H, Wang R, Tang Z, Lu T, Cui Y. FSCN1 Promotes Esophageal Carcinoma Progression Through Downregulating PTK6 via its RNA-Binding Protein Effect. Front Pharmacol 2022; 13:868296. [PMID: 35401239 PMCID: PMC8984143 DOI: 10.3389/fphar.2022.868296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Esophageal squamous cell carcinoma (ESCC) causes many deaths worldwide every year. Fascin actin-bundling protein 1(FSCN1) has been reported to be a promoter of ESCC via its actin-binding function, however, its new role as an RNA-binding protein (RBP) has not been investigated. Here, we explored the RBP role of FSCN1 in the development of ESCC. Methods: Whole-genome expression sequencing was performed to screen for altered genes after FSCN1 knockdown. RNA immunoprecipitation was performed to determine the target mRNA of FSCN1 as an RBP. In vitro experiments with ECA-109 and KYSE-150 and ex vivo experiments in tumor-bearing mice were performed to investigate the effects of FSCN1 and Protein Tyrosine Kinase 6 (PTK6) on ESCC progression. Results: FSCN1 could downregulate mRNA and the protein level of PTK6. The binding position of PTK6 (PTK6-T2) pre-mRNA to FSCN1 was determined. PTK6-T2 blocked the binding between FSCN1 and the pre-mRNA of PTK6, and thus reversed the promotion effect of FSCN1 on ESCC tumor progression via the AKT/GSK3β signaling pathway. Conclusion: A novel effect of FSCN1, RBP-binding with the pre-mRNA of PTK6, was confirmed to play an important role in ESCC progression. PTK6-T2, which is a specific inhibitor of FSCN1 binding to the pre-mRNA of PTK6, could impede the development of ESCC.
Collapse
Affiliation(s)
- Hongfei Cai
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Rui Wang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China.,Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Ze Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Tianyu Lu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Youbin Cui
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Liu YJ, Hounye AH, Wang Z, Liu X, Yi J, Qi M. Identification and Validation of Three Autophagy-Related Long Noncoding RNAs as Prognostic Signature in Cholangiocarcinoma. Front Oncol 2021; 11:780601. [PMID: 34926294 PMCID: PMC8674813 DOI: 10.3389/fonc.2021.780601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is featured by common occurrence and poor prognosis. Autophagy is a biological process that has been extensively involved in the progression of tumors. Long noncoding RNAs (lncRNAs) have been discovered to be critical in diagnosing and predicting various tumors. It may be valuable to elaborate autophagy-related lncRNAs (ARlncRNAs) in CCA, and indeed, there are still few studies concerning the role of ARlncRNAs in CCA. Here, a prognostic ARlncRNA signature was constructed to predict the survival outcome of CCA patients. Through identification, three differentially expressed ARlncRNAs (DEARlncRNAs), including CHRM3.AS2, MIR205HG, and LINC00661, were screened and were considered predictive signatures. Furthermore, the overall survival (OS) of patients with high-risk scores was significantly lower than that of patients with low scores. Interestingly, the risk score was an independent factor for the OS of patients with CCA. Moreover, receiver operating characteristic (ROC) curve analysis showed that the screened and constructed prognosis signature for 1 year (AUC = 0.884), 3 years (AUC =0.759), and 5 years (AUC = 0.788) presented a high score of accuracy in predicting OS of CCA patients. Gene set enrichment analysis (GSEA) revealed that the three DEARlncRNAs were significantly enriched in CCA-related signaling pathways, including “pathways of basal cell carcinoma”, “glycerolipid metabolism”, etc. Quantitative real-time PCR (qRT-PCR) showed that expressions of CHRM3.AS2, MIR205HG, and LINC00661 were higher in CCA tissues than those in normal tissues, similar to the trends detected in the CCA dataset. Furthermore, Pearson’s analysis reported an intimate correlation of the risk score with immune cell infiltration, indicating a predictive value of the signature for the efficacy of immunotherapy. In addition, the screened lncRNAs were found to have the ability to modulate the expression of mRNAs by interacting with miRNAs based on the established lncRNA-miRNA-mRNA network. In conclusion, our study develops a novel nomogram with good reliability and accuracy to predict the OS of CCA patients, providing a significant guiding value for developing tailored therapy for CCA patients.
Collapse
Affiliation(s)
- Ya Jun Liu
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, China
| | | | - Zheng Wang
- School of Mathematics and Statistics, Central South University, Changsha, China.,Information Science and Engineering School, Hunan First Normal University, Changsha, China
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, China
| | - Jun Yi
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, China
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
7
|
Liu H, Zhang Y, Li L, Cao J, Guo Y, Wu Y, Gao W. Fascin actin-bundling protein 1 in human cancer: promising biomarker or therapeutic target? Mol Ther Oncolytics 2021; 20:240-264. [PMID: 33614909 PMCID: PMC7873579 DOI: 10.1016/j.omto.2020.12.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fascin actin-bundling protein 1 (FSCN1) is a highly conserved actin-bundling protein that cross links F-actin microfilaments into tight, parallel bundles. Elevated FSCN1 levels have been reported in many types of human cancers and have been correlated with aggressive clinical progression, poor prognosis, and survival outcomes. The overexpression of FSCN1 in cancer cells has been associated with tumor growth, migration, invasion, and metastasis. Currently, FSCN1 is recognized as a candidate biomarker for multiple cancer types and as a potential therapeutic target. The aim of this study was to provide a brief overview of the FSCN1 gene and protein structure and elucidate on its actin-bundling activity and physiological functions. The main focus was on the role of FSCN1 and its upregulatory mechanisms and significance in cancer cells. Up-to-date studies on FSCN1 as a novel biomarker and therapeutic target for human cancers are reviewed. It is shown that FSCN1 is an unusual biomarker and a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Li Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| |
Collapse
|
8
|
Deng C, Si C, Ye X, Zhou Q, Zeng T, Huang Z, Huang W, Zhu P, Zhong Q, Wu Z, Zhu H, Lin Q, Zhang W, Fu L, Zheng Y, Qian T. Prognostic significance of FSCN family in multiple myeloma. J Cancer 2021; 12:1936-1944. [PMID: 33753991 PMCID: PMC7974516 DOI: 10.7150/jca.53675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic tumor with monoclonal proliferation of malignant plasma cells in the bone marrow. Fascin (FSCN) is an actin-binding protein that plays a crucial role in cell migration and invasion, contributing to tumor metastasis. There are three members (FSCN1-3) in FSCN family. However, the prognostic role of FSCN family in MM remains unclear. In this study, we used four independent Gene Expression Omnibus (GEO) datasets to explore the relationships between FSCN1-3 expression profiles and patient survival in MM. We found that FSCN1 was dramatically down-regulated in MM compared to normal donors (p < 0.001) and monoclonal gammopathy of undetermined significance (MGUS) (p = 0.032). Patients with high expression of FSCN1 and FSCN2 had significantly longer OS (p = 0.023 and 0.028, respectively). Univariate and multivariate analysis showed that FSCN1 (p = 0.003, 0.002) and FSCN2 (p = 0.018, 0.013) were independent favorable prognostic factors for OS in MM. Moreover, the combination of high expression of FSCN1 and FSCN2 could effectively predict both longer EFS (p = 0.046) and OS (p = 0.015). Our study suggested that FSCN1 and FSCN2 can be used as favorable biomarkers for predicting clinical outcomes in MM.
Collapse
Affiliation(s)
- Cong Deng
- Department of Clinical laboratory, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China
| | - Chaozeng Si
- Department of Information Center, China-Japan Friendship Hospital, 100029 Beijing, China
| | - Xu Ye
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China
| | - Qiang Zhou
- Department of Clinical laboratory, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China
| | - Tiansheng Zeng
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Zeyong Huang
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Wenhui Huang
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Pei Zhu
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Qingfu Zhong
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Zhihua Wu
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Huoyan Zhu
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Qing Lin
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Wenjuan Zhang
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, Huaihe Hospital of Henan University, 475000 Kaifeng, China.,Department of Hematology, Huaihe Hospital of Henan University, 475000 Kaifeng, China
| | - Yongjiang Zheng
- Department of Hematology, Institute of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, 510630 Guangzhou, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| |
Collapse
|
9
|
Jiang ZM, Li HB, Chen SG. PIMREG, a Marker of Proliferation, Facilitates Aggressive Development of Cholangiocarcinoma Cells Partly Through Regulating Cell Cycle-Related Markers. Technol Cancer Res Treat 2020; 19:1533033820979681. [PMID: 33356974 PMCID: PMC7768323 DOI: 10.1177/1533033820979681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Phosphatidylinositol binding clathrin assembly protein interacting mitotic regulator (PIMREG) is a protein associated with cell proliferation. Its aberrant expression was reported to be correlated with the development in multiple tumors. However, its role in cholangiocarcinoma (CAA) has not yet been evaluated in detail. METHODS Data were acquired from the public TCGA database for evaluating the expression pattern of PIMREG and assessing its clinical relevance as well as its correlation with overall survival. RBE and HUH28 cell lines were selected to perform loss- and gain-of-function of PIMREG assays respectively. Quantitative real-time PCR (RT-qPCR) and western blot analyses were used to measure the mRNA and protein levels of PIMREG. Cell Counting Kit-8, colony formation tests, and Transwell assays served to measure the effect of PIMREG on the proliferative, invasive and migratory capacities of CAA cells, appropriately. Gene set enrichment analysis (GSEA) was conducted to identify PIMREG associated gene set, which was further confirmed by western blot. RESULTS PIMREG was found to be highly expressed in CAA tissues and cell lines according to the public dataset and RT-qPCR analysis, and negatively related to the prognosis of patients with CAA. Moreover, knockdown of PIMREG suppressed and overexpression of PIMREG promoted the proliferation, invasion and migration of CAA cells. Furthermore, GSEA revealed that high PIMREG expression was positively associated with cell cycle signaling. And the next western blot analysis demonstrated that silencing PIMREG resulted in a reduction on the levels of p-CDK1, CCNE1, and CCNB1, whereas PIMREG overexpression led to an opposite result. CONCLUSION The results suggested that PIMREG facilitates the growth, invasion and migration of CAA cells partly by regulating the cell cycle relative biomarkers, revealing that PIMREG may be a crucial molecule in the progression of CAA.
Collapse
Affiliation(s)
- Zhao-Ming Jiang
- Department of General Surgery, Mengyin County People’s Hospital,
Mengyin, People’s Republic of China
| | - Hong-Bin Li
- Second Department of Surgery, Menglianggu Branch of Mengyin County
People’s Hospital, Duozhuang Town, Mengyin, People’s Republic of China
| | - Shu-Guo Chen
- Department of General Surgery, Mengyin County People’s Hospital,
Mengyin, People’s Republic of China
| |
Collapse
|
10
|
Fascin is secreted in male's serum: results of a pilot study. Future Sci OA 2018; 4:FSO273. [PMID: 29568562 PMCID: PMC5859328 DOI: 10.4155/fsoa-2017-0098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023] Open
Abstract
Aim: Fascin is a 55 kDa globular protein with an important role in cell migration. Aim of study was to investigate serum fascin in healthy males. Materials & methods: From 1 July 2016 to 31 December 2016, we collected serum from 46 males. Serum fascin level was performed using ELISA kit from USBiological (Salem, MA, USA). Results: Median age was 64 years. Mean fascin serum level was 9.84 ng/ml, mean prostate-specific antigen (PSA) was 2.74 ng/ml and mean prostate volume was 37.64 cc. The 51–60 years group had a mean of 10.53 ng/ml, the 61–70 group a mean of 9.7 ng/ml and the 71–80 group had a mean of 9.41 ng/ml fascin serum level. Conclusion: Fascin serum level did not differ according to age in males. Fascin protein was previously associated with high-grade malignancies. This study presents the determination of fascin serum levels in 46 healthy males, providing a reference number in further determinations. The patients were divided into three subgroups according to age. The study presents the mean levels of each group, in association with PSA level and the mean prostate volumes. In conclusion, the study states that fascin is secreted in healthy male controls and the levels did not differ according to age.
Collapse
|
11
|
Zheng HC, Zhao S. The meta and bioinformatics analysis of fascin expression in gastric cancer: a potential marker for aggressiveness and worse prognosis. Oncotarget 2017; 8:105574-105583. [PMID: 29285273 PMCID: PMC5739660 DOI: 10.18632/oncotarget.22325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/08/2017] [Indexed: 01/09/2023] Open
Abstract
Fascin is a FSCN1-encoded actin bundling protein, and positively associated with proliferation, migration and metastasis of malignancies. Here, we performed a systematic meta and bioinformatics analysis through multiple online databases up to March 14, 2017. We found up-regulated fascin expression in gastric cancer, compared with normal mucosa (p<0.05). Fascin expression was positively with lymph node metastasis, TNM staging and worse prognosis of gastric cancer (p<0.05). According to bioinformatics database, FSCN1 mRNA expression was higher in gastric cancer than normal tissues (p<0.05). According to Kaplan-Meier plotter, we found that a higher FSCN1 expression was negatively correlated with overall and progression-free survival rates of all cancer patients, even stratified by aggressive parameters (p<0.05). These findings indicated that fascin expression might be employed as a potential marker to indicate gastric carcinogenesis and subsequent progression, even prognosis.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shuang Zhao
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
12
|
Wang X, Nichols L, Grunz-Borgmann EA, Sun Z, Meininger GA, Domeier TL, Baines CP, Parrish AR. Fascin2 regulates cisplatin-induced apoptosis in NRK-52E cells. Toxicol Lett 2016; 266:56-64. [PMID: 27989596 DOI: 10.1016/j.toxlet.2016.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/01/2016] [Accepted: 11/27/2016] [Indexed: 01/09/2023]
Abstract
Previous studies have shown that the aging kidney has a marked loss of α(E)-catenin in proximal tubular epithelium. α-Catenin, a key regulator of the actin cytoskeleton, interacts with a variety of actin-binding proteins. Cisplatin-induced loss of fascin2, an actin bundling protein, was observed in cells with a stable knockdown of α(E)-catenin (C2 cells), as well as in aging (24 mon), but not young (4 mon), kidney. Fascin2 co-localized with α-catenin and the actin cytoskeleton in NRK-52E cells. Knockdown of fascin2 increased the susceptibility of tubular epithelial cells to cisplatin-induced injury. Overexpression of fascin2 in C2 cells restored actin stress fibers and attenuated the increased sensitivity of C2 cells to cisplatin-induced apoptosis. Interestingly, fascin2 overexpression attenuated cisplatin-induced mitochondrial dysfunction and oxidative stress in C2 cells. These data demonstrate that fascin2, a putative target of α(E)-catenin, may play important role in preventing cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - LaNita Nichols
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Elizabeth A Grunz-Borgmann
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Zhe Sun
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, United States; Dalton Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Gerald A Meininger
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, United States; Dalton Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Timothy L Domeier
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Christopher P Baines
- Dalton Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65212, United States; Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Alan R Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, United States.
| |
Collapse
|
13
|
Kwon RJ, Han ME, Kim JY, Liu L, Kim YH, Jung JS, Oh SO. ZHX1 Promotes the Proliferation, Migration and Invasion of Cholangiocarcinoma Cells. PLoS One 2016; 11:e0165516. [PMID: 27835650 PMCID: PMC5105949 DOI: 10.1371/journal.pone.0165516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023] Open
Abstract
Zinc-fingers and homeoboxes 1 (ZHX1) is a transcription repressor that has been associated with the progressions of hepatocellular carcinoma, gastric cancer, and breast cancer. However, the functional roles of ZHX1 in cholangiocarcinoma (CCA) have not been determined. We investigated the expression and roles of ZHX1 during the proliferation, migration, and invasion of CCA cells. In silico analysis and immunohistochemical studies showed amplification and overexpression of ZHX1 in CCA tissues. Furthermore, ZHX1 knockdown using specific siRNAs decreased CCA cell proliferation, migration, and invasion, whereas ZHX1 overexpression promoted all three characteristics. In addition, results suggested EGR1 might partially mediate the effect of ZHX1 on the proliferation of CCA cells. Taken together, these results show ZHX1 promotes CCA cell proliferation, migration, and invasion, and present ZHX1 as a potential target for the treatment of CCA.
Collapse
Affiliation(s)
- Ryuk-Jun Kwon
- Department of Anatomy, School of Medicine, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
- Gene & Therapy Research Center for Vessel-associated Diseases, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
- Gene & Therapy Research Center for Vessel-associated Diseases, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Ji-young Kim
- Department of Anatomy, School of Medicine, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
- Gene & Therapy Research Center for Vessel-associated Diseases, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Liangwen Liu
- Department of Anatomy, School of Medicine, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
- Gene & Therapy Research Center for Vessel-associated Diseases, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Yun-Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
- Gene & Therapy Research Center for Vessel-associated Diseases, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Jin-Sup Jung
- Department of Physiology, School of Medicine, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
- Gene & Therapy Research Center for Vessel-associated Diseases, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
- * E-mail:
| |
Collapse
|
14
|
Mao X, Duan X, Jiang B. Fascin Induces Epithelial-Mesenchymal Transition of Cholangiocarcinoma Cells by Regulating Wnt/β-Catenin Signaling. Med Sci Monit 2016; 22:3479-3485. [PMID: 27680563 PMCID: PMC5045920 DOI: 10.12659/msm.897258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Our preliminary study suggested that the expression of Fascin was increased in cholangiocarcinoma, which indicating poor prognosis The present study aimed to explore the roles and mechanisms of Fascin during the progression of cholangiocarcinoma. Material/Methods We evaluated the knockdown effect of endogenous Fascin expression by Short hairpin RNA (shRNA) in QBC939 cells. Cell proliferation was confirmed by MTS assay. Migration and invasion assay was used to examine the cell invasive ability. Tumorigenesis abilities in vivo were analyzed with a xenograft tumor model. Western blot analysis was used to test epithelial-mesenchymal transition (EMT) biomarkers and critical proteins in the Wnt/β-catenin signaling pathway. Results shRNA-mediated gene knockdown of Fascin significantly inhibited cell proliferation, invasion, and EMT, and shRNA-Fascin markedly inhibited the xenograft tumor volume. Silencing of Fascin up-regulated phosphorylation of β-catenin and decreased its nuclear localization. Additionally, knockdown of Fascin led to the upregulation of β-catenin and E-cadherin expression in plasma membrane fraction of QBC939 cells. Conclusions Our data indicate a key role of Fascin in cell proliferation, migration, and invasion in cholangiocarcinoma. Fascin promotes EMT of cholangiocarcinoma cells, in part through regulating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xianhai Mao
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan, China (mainland)
| | - Xiaohui Duan
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan, China (mainland)
| | - Bo Jiang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan, China (mainland)
| |
Collapse
|