1
|
Moghbeli M. MicroRNAs as the pivotal regulators of cisplatin resistance in osteosarcoma. Pathol Res Pract 2023; 249:154743. [PMID: 37549518 DOI: 10.1016/j.prp.2023.154743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Osteosarcoma (OS) is an aggressive bone tumor that originates from mesenchymal cells. It is considered as the eighth most frequent childhood cancer that mainly affects the tibia and femur among the teenagers and young adults. OS can be usually diagnosed by a combination of MRI and surgical biopsy. The intra-arterial cisplatin (CDDP) and Adriamycin is one of the methods of choices for the OS treatment. CDDP induces tumor cell death by disturbing the DNA replication. Although, CDDP has a critical role in improving the clinical complication in OS patients, a high ratio of CDDP resistance is observed among these patients. Prolonged CDDP administrations have also serious side effects in normal tissues and organs. Therefore, the molecular mechanisms of CDDP resistance should be clarified to define the novel therapeutic modalities in OS. Multidrug resistance (MDR) can be caused by various cellular and molecular processes such as drug efflux, detoxification, and signaling pathways. MicroRNAs (miRNAs) are the key regulators of CDDP response by the post transcriptional regulation of target genes involved in MDR. In the present review we have discussed all of the miRNAs associated with CDDP response in OS cells. It was observed that the majority of reported miRNAs increased CDDP sensitivity in OS cells through the regulation of signaling pathways, apoptosis, transporters, and autophagy. This review highlights the miRNAs as reliable non-invasive markers for the prediction of CDDP response in OS patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Huang Z, Huang L, Liu L, Wang L, Lin W, Zhu X, Su W, Lv C. Knockdown of microRNA-203 reduces cisplatin chemo-sensitivity to osteosarcoma cell lines MG63 and U2OS in vitro by targeting RUNX2. J Chemother 2021; 33:328-341. [PMID: 33764270 DOI: 10.1080/1120009x.2021.1899441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Clinical studies have reported that miRNAs abnormal expression are associated with the generation of cisplatin-resistant to osteosarcoma. Our previous research found that miR-203 is downregulated in osteosarcoma cells and overexpressed miR-203 exerts antitumor properties on osteosarcoma cells. However, the role and mechanism of miR-203 in regulating the sensitivity of cisplatin in osteosarcoma cells remains unclear. This study aimed to investigate the effects of miR-203 in cisplatin therapy for osteosarcoma cells in vitro and determined the underlying mechanism. In this study, we found that miR-203 was significantly upregulated in osteosarcoma cells after exposure to cisplatin. miR-203 knockdown reduced the sensitivity of osteosarcoma cells to cisplatin by suppressing cell apoptosis, cell cycle arrest, and inducing invasion. Meanwhile, we found that miR-203 knockdown reduces the therapeutic sensitivity of osteosarcoma cells by upregulating RUNX2. Moreover, we found that RUNX2 silencing sensitizes osteosarcoma cells to chemotherapy treatment of cisplatin. In summary, our findings demonstrated that miR-203 knockdown reduces cisplatin chemo-sensitivity to osteosarcoma cells in vitro by targeting RUNX2, and speculated that miR-203 may be a target for drug resistance of osteosarcoma to cisplatin.
Collapse
Affiliation(s)
- Zhengxiang Huang
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lintuo Huang
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lue Liu
- Department of Orthopedics, the Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, China
| | - Lu Wang
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjun Lin
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiongbai Zhu
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Su
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chen Lv
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Taheri M, Shoorei H, Tondro Anamag F, Ghafouri-Fard S, Dinger ME. LncRNAs and miRNAs participate in determination of sensitivity of cancer cells to cisplatin. Exp Mol Pathol 2021; 123:104602. [PMID: 33422487 DOI: 10.1016/j.yexmp.2021.104602] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023]
Abstract
Cisplatin is an extensively used chemotherapeutic substance for various types of human malignancies including sarcomas, carcinomas and lymphomas. Yet, the vast application of this drug is hampered by the emergence of chemoresistance in some treated patients. Several mechanisms such as degradation of the membrane transporters by cisplatin have been implicated in the pathogenesis of this event. Recent researches have also indicated the role of long non-coding RNAs (lncRNAs) as well as micoRNAs (miRNAs) in the emergence of resistance to cisplatin in several cancer types. For instance, up-regulation of miR-21 has been associated with resistance to this agent in ovarian cancer, oral squamous cell cancer, gastric malignancy and non-small cell lung cancer (NSCLC). On the other hand, down-regulation of miR-218 has been implicated in emergence of chemoresistance in breast cancer and esophageal squamous cell carcinoma. MALAT1 is implicated in the chemoresistance of bladder cancer cells, NSCLC, gastric cancer and cervical cancer. Most notably, the expression profile of resistance-associated miRNAs and lncRNAs can predict overall survival of cancer patients. Mechanistic assays have revealed that interference with expression of some miRNAs and lncRNAs can reverse the resistance phenotype in cancer cells. In this paper, we review the scientific writings on the role of lncRNAs and miRNAs in the evolution of chemoresistance to cisplatin in cancer cells.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Peng B, Theng PY, Le MTN. Essential functions of miR-125b in cancer. Cell Prolif 2020; 54:e12913. [PMID: 33332677 PMCID: PMC7848968 DOI: 10.1111/cpr.12913] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small and highly conserved non-coding RNAs that silence target mRNAs, and compelling evidence suggests that they play an essential role in the pathogenesis of human diseases, especially cancer. miR-125b, which is the mammalian orthologue of the first discovered miRNA lin-4 in Caenorhabditis elegans, is one of the most important miRNAs that regulate various physiological and pathological processes. The role of miR-125b in many types of cancer has been well established, and so here we review the current knowledge of how miR-125b is deregulated in different types of cancer; its oncogenic and/or tumour-suppressive roles in tumourigenesis and cancer progression; and its regulation with regard to treatment response, all of which are underlined in multiple studies. The emerging information that elucidates the essential functions of miR-125b might help support its potentiality as a diagnostic and prognostic biomarker as well as an effective therapeutic tool against cancer.
Collapse
Affiliation(s)
- Boya Peng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Poh Ying Theng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,N.1 Institute for Health, National University of Singapore, Singapore, Singapore.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
5
|
Bozgeyik I, Karadag A. The role of miR-125b-5p- AKT serine/threonine kinase 1 axis in osteosarcoma. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Soghli N, Qujeq D, Yousefi T, Soghli N. The regulatory functions of circular RNAs in osteosarcoma. Genomics 2020; 112:2845-2856. [DOI: 10.1016/j.ygeno.2020.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
|
7
|
Otoukesh B, Abbasi M, Gorgani HOL, Farahini H, Moghtadaei M, Boddouhi B, Kaghazian P, Hosseinzadeh S, Alaee A. MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma. Cancer Cell Int 2020; 20:254. [PMID: 32565738 PMCID: PMC7302353 DOI: 10.1186/s12935-020-01342-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) involved in key signaling pathways and aggressive phenotypes of osteosarcoma (OS) was discussed, including PI3K/AKT/MTOR, MTOR AND RAF-1 signaling, tumor suppressor P53- linked miRNAs, NOTCH- related miRNAs, miRNA -15/16 cluster, apoptosis related miRNAs, invasion-metastasis-related miRNAs, and 14Q32-associated miRNAs cluster. Herrin, we discussed insights into the targeted therapies including miRNAs (i.e., tumor-suppressive miRNAs and oncomiRNAs). Using bioinformatics tools, the interaction network of all OS-associated miRNAs and their targets was also depicted.
Collapse
Affiliation(s)
- Babak Otoukesh
- Orthopedic Surgery Fellowship in Département Hospitalo-Universitaire MAMUTH « Maladies musculo-squelettiques et innovations thérapeutiques » , Université Pierre et Marie-Curie, Sorbonne Université, Paris, France.,Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Mehdi Abbasi
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib-O-Lah Gorgani
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Hossein Farahini
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Mehdi Moghtadaei
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Bahram Boddouhi
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Peyman Kaghazian
- Department of Orthopedic and Traumatology, Universitätsklinikum Bonn, Bonn, Germany
| | - Shayan Hosseinzadeh
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA USA
| | - Atefe Alaee
- Department of Information Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Lin H, Zhao Z, Hao Y, He J, He J. Long noncoding RNA HIF1A-AS2 facilitates cell survival and migration by sponging miR-33b-5p to modulate SIRT6 expression in osteosarcoma. Biochem Cell Biol 2020; 98:284-292. [PMID: 31626739 DOI: 10.1139/bcb-2019-0171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as vital regulators in various physiological and pathological processes. It was recently found that lncRNA HIF1A-AS2 could play oncogenic roles in several cancers. However, the function and regulatory mechanism of lncRNA HIF1A-AS2 in osteosarcoma (OS) remain largely unclear. In this study, we demonstrated that HIF1A-AS2 was overexpressed in OS tissues and cells. Downregulation of HIF1A-AS2 significantly affects multiple biological functions in OS cells, including cell proliferation, cell cycle progression, cell apoptosis, cell migration, and cell invasiveness. Mechanistic investigations demonstrated that HIF1A-AS2 can interact with miR-33b-5p and negatively regulate its expression, thereby upregulating the protein expression of miR-33b-5p’s target SIRT6. Additionally, in vivo experiments using a xenograft tumor mouse model revealed that downregulation of HIF1A-AS2 suppresses tumor growth in OS. Taken together, a newly identified regulatory mechanism for the lncRNA HIF1A-AS2–miR-33b-5p–SIRT6 axis was systematically studied in OS, which could be a promising target for the treatment of OS.
Collapse
Affiliation(s)
- Hang Lin
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
| | - Zhenxu Zhao
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
| | - Yi Hao
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
| | - Jun He
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
| | - Jian He
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
| |
Collapse
|
9
|
Wang Y, Zeng G, Jiang Y. The Emerging Roles of miR-125b in Cancers. Cancer Manag Res 2020; 12:1079-1088. [PMID: 32104088 PMCID: PMC7024862 DOI: 10.2147/cmar.s232388] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, noncoding, single-stranded RNA molecules of 22 nucleotides in length. MiRNAs have both tumor-suppressive properties and oncogenic properties that can control critical processes in tumors. Mature miR-125b originates from miR-125b-1 and miR-125b-2 and leads to the degradation of target mRNAs or the inhibition of translation through binding to the 3′ untranslated regions (3′-UTR) of target mRNAs. Importantly, miR-125b is involved in regulating NF-κB, p53, PI3K/Akt/mTOR, ErbB2, Wnt, and another signaling pathways, thereby controlling cell proliferation, differentiation, metabolism, apoptosis, drug resistance and tumor immunity. This review aims to summarize the recent literature on the role of miR-125b in the regulation of tumorigenesis and to explore its potential clinical application in the diagnosis, prognosis and clinical treatment of tumors.
Collapse
Affiliation(s)
- Ying Wang
- Department of Oncology, The Fifth People's Hospital of Chengdu, Chengdu, People's Republic of China
| | - Guilin Zeng
- Department of Oncology, The Fifth People's Hospital of Chengdu, Chengdu, People's Republic of China
| | - Yicheng Jiang
- Department of Oncology, The People's Hospital of Chongqing Hechuan, Chongqing, People's Republic of China
| |
Collapse
|
10
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
11
|
Yu L, Meng M, Bao Y, Zhang C, Gao B, Sa R, Luo W. miR-1301/TRIAP1 Axis Participates in Epirubicin-Mediated Anti-Proliferation and Pro-Apoptosis in Osteosarcoma. Yonsei Med J 2019; 60:832-841. [PMID: 31433581 PMCID: PMC6704023 DOI: 10.3349/ymj.2019.60.9.832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/25/2019] [Accepted: 06/13/2019] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Epirubicin is one of the most effective drugs against osteosarcoma. miR-1301 is involved in the occurrence and development of osteosarcoma. Whether miR-1301 is responsible for the chemosensitivity of osteosarcoma cells to epirubicin remains largely unknown. MATERIALS AND METHODS U2OS and SAOS-2 cells were treated with various concentrations of epirubicin. Flow cytometry was employed to evaluate cell apoptotic rate. Cell proliferation was measured by Cell Counting Kit-8 assay. Western blot and quantitative real-time polymerase chain reaction were utilized to detect the expressions of B-cell lymphoma-2 (Bcl-2), Bcl-2 assaciated X protein (Bax), cleaved-caspase-3, cleaved-poly (ADP-ribose) polymerases (PARP1), TP53-regulated inhibitor of apoptosis 1 (TRIAP1), and microRNA-1301 (miR-1301). The relationship between miR-1301 and TRIAP1 was determined by luciferase reporter assay. RESULTS Epirubicin inhibited proliferation in a dose-dependent manner, induced apoptosis, decreased the expression of Bcl-2, and increased the expressions of Bax, cleaved-caspase-3, and cleaved-PARP1 in osteosarcoma cells. miR-1301 was downregulated in U2OS and SAOS-2 cells. Importantly, epirubicin significantly increased the levels of miR-1301. Overexpression of miR-1301 suppressed proliferation and promoted apoptosis. Interestingly, those effects were enhanced by epirubicin. In contrast, miR-1301 depletion attenuated the epirubicin-mediated anti-osteosarcoma effect. miR-1301 negatively regulated the expression of TRIAP1 in U2OS and SAOS-2 cells. Furthermore, epirubicin inhibited the mRNA and protein levels of TRIAP1 by upregulating miR-1301 levels. Epirubicin suppressed cell proliferation by downregulating TRIAP1. CONCLUSION miR-1301 was implicated in the chemosensitivity of osteosarcoma to epirubicin by modulating TRIAP1.
Collapse
Affiliation(s)
- Lijun Yu
- Department of Pharmacy, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Min Meng
- Department of Pharmacy, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yun Bao
- Department of Pharmacy, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Chao Zhang
- Department III of Orthopedic, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Bei Gao
- Department of Pharmacy, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Rina Sa
- Department of Pharmacy, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Wenyuan Luo
- Department III of Orthopedic, Gansu Provincial Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
12
|
El-Khazragy N, Elshimy AA, Hassan SS, Matbouly S, Safwat G, Zannoun M, Riad RA. Dysregulation of miR-125b predicts poor response to therapy in pediatric acute lymphoblastic leukemia. J Cell Biochem 2019; 120:7428-7438. [PMID: 30390332 DOI: 10.1002/jcb.28017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is the most well-known sort of leukemia in children. In spite of favorable survival rates, some patients relapse and achieve a poor outcome. METHODS We analyzed miR-125b and Bcl-2 expressions in pediatric patients with ALL and evaluated their clinical utility as molecular markers for the prediction of disease outcomes. RESULTS Downregulation of miR-125b and increased Bcl-2 expression levels in pediatric patients with ALL were associated with poor prognosis at diagnosis. At day 28 of induction, miR-125b was significantly increased, whereas Bcl-2 was downregulated. Loss of miR-125b during diagnosis and its elevation after therapy are strongly correlated with short leukemia-free survival and worse survival. Moreover, the combination of miR-125b with Bcl-2 markers can clearly enhance the prediction of the disease outcome. Finally, a univariate analysis highlighted the independent prognostic value of miR-125 in a pediatric patient with ALL. CONCLUSIONS miR-125b and Bcl-2 together are potent predictors for the prognosis and, therefore, can be used as therapeutic targets in childhood ALL.
Collapse
Affiliation(s)
- Nashwa El-Khazragy
- Department of Clinical Pathology and Hematology, Faculty of Medicine, Ain Shams Medical Research Institute (MASRI), Ain Shams University, Cairo, Egypt.,Former Department of Biomedical Research, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Amal Ali Elshimy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, New Giza University, Cairo, Egypt
| | - Safaa Shawky Hassan
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Safa Matbouly
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Gehan Safwat
- Department of Cancer Biology, Faculty of Biotechnology, October University for Modern Sciences and Art (MSA) University, Cairo, Egypt
| | - Mohamed Zannoun
- Department of Pediatrics, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Ramez A Riad
- Department of Biotechnology and Molecular Biology, Global Research Lab, Cairo, Egypt
| |
Collapse
|
13
|
Xiao T, Zhou Y, Li H, Xiong L, Wang J, Wang ZH, Liu LH. MiR-125b suppresses the carcinogenesis of osteosarcoma cells via the MAPK-STAT3 pathway. J Cell Biochem 2019; 120:2616-2626. [PMID: 30277613 DOI: 10.1002/jcb.27568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/06/2018] [Indexed: 01/24/2023]
Abstract
The microRNA (miRNA) miR-125b is abnormally expressed in many different types of tumors, including osteosarcoma (OS). How aberrantly expressed miR-125b participates in regulating the initiation and progression of OS is still poorly understood. In the current study, we found that in OS, miR-125b can suppress the expression of MAP kinase kinase 7 (MKK7), which can dephosphorylate and inactivate signal transducer and activator of transcription 3 (STAT3). We also identified an elevated expression level of MKK7 in OS and an association between MKK7 expression and poor prognosis. Further, miR-125b inhibited OS cell proliferation and invasion by targeting and downregulating MKK7 in vitro and suppressed tumor formation in vivo. Moreover, using Western blot analysis, we preliminarily proved that the activation (phosphorylation) of STAT3 was regulated by MKK7 at the epigenetic level. MKK7 was overexpressed in OS and associated with poor clinical results. The miR-125b-MAPK-STAT3 axis may be one of the mechanisms of OS oncogenesis and a potential target for the treatment of OS.
Collapse
Affiliation(s)
- Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - You Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liang Xiong
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhi-Hua Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Li-Hong Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
miR-125 regulates PI3K/Akt/mTOR signaling pathway in rheumatoid arthritis rats via PARP2. Biosci Rep 2019; 39:BSR20180890. [PMID: 30541899 PMCID: PMC6328865 DOI: 10.1042/bsr20180890] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/29/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to explore miR-125 effects on rheumatoid arthritis (RA) development to provide a potential target for RA. Briefly, rat RA model was established (Model group) by injection of Freund’s Complete Adjuvant into the left hind toe. Normal rats injected with saline in the same location were set as Normal group. All rats’ secondary foot swelling degree, polyarthritis index score, spleen and thymus index were measured. Synovial tissues were subjected to Hematoxylin–Eosin (HE) staining and immunohistochemistry. Synovial cells of each group were isolated and named as Normal-C group and Model-C group, respectively. Synovial cells of Model-C group further underwent cotransfection with miR-125 mimics and PARP2-siRNA (mimics+siPARP2 group) or with miR-125 negative control (NC) and PARP2-siRNA NC (NC group). Quantitative reverse transcriptase PCR (qRT-PCR), Western blot, luciferase reporter assay, ELISA, and MTT assay were performed. As a result, compared with Normal group, rats of Model group showed significantly higher secondary foot swelling degree, polyarthritis index score, spleen and thymus index (P<0.01). Down-regulated miR-125 and up-regulated PARP2 was found in synovial tissues of Model group when compared with Normal group (P<0.01). Synovial tissues of Model-C group exhibited severe hyperplasia and inflammatory cell infiltration. Luciferase reporter assay indicated that PARP2 was directly inhibited by miR-125. Compared with NC group, cells of mimics+siPARP2 group had significantly lower IL-1β, MMP-1 and TIMP-1 levels, absorbance value, and p-PI3K, p-Akt and p-mTOR relative expression (P<0.01 or P<0.05). Thus, miR-125 might attenuate RA development by regulating PI3K/Akt/mTOR signaling pathway via directly inhibiting PARP2 expression.
Collapse
|
15
|
Dong H, Hu J, Zou K, Ye M, Chen Y, Wu C, Chen X, Han M. Activation of LncRNA TINCR by H3K27 acetylation promotes Trastuzumab resistance and epithelial-mesenchymal transition by targeting MicroRNA-125b in breast Cancer. Mol Cancer 2019; 18:3. [PMID: 30621694 PMCID: PMC6323810 DOI: 10.1186/s12943-018-0931-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/26/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Trastuzumab resistance followed by metastasis is a major obstacle for improving the clinical outcome of patients with advanced human epidermal growth factor receptor 2-positive (HER-2+) breast cancer. While long non-coding RNAs (lncRNAs) can modulate cell behavior, the contribution of these RNAs in trastuzumab resistance and metastasis of HER-2+ breast cancer is not well known. In this study, we sought to identify the regulatory role of lncRNA in trastuzumab resistance and accompanied Epithelial-mesenchymal Transition (EMT) process in advanced HER-2+ breast cancer. METHODS Trastuzumab-resistant SKBR-3-TR and BT474-TR cell lines were established by grafting SKBR-3 and BT474 cells into mouse models and subjected to trastuzumab treatment. LncRNA microarray followed by quantitative reverse transcription PCR (qRT-PCR) was carried out to verify the differentially expressed lncRNAs. Western blotting, bioinformatics analysis, immunofluorescence assay and immunoprecipitation assays (ChIP and RIP) were performed to identify the involvement and functional interactions between H3K27 acetylation and terminal differentiation-induced non-coding RNA (TINCR) or between TINCR and its downstream genes including miR-125b, HER-2 and Snail-1. In addition, a series of in vitro and in vivo assays were performed to assess the functions of TINCR. RESULTS An increase in both, IC50 value of trastuzumab and EMT was observed in the established trastuzumab-resistant cell lines. The expression level of TINCR was significantly increased in trastuzumab-resistant cells when compared with sensitive cells. Knockdown of TINCR reversed the trastuzumab resistance and the acquired EMT in these cells. TINCR was detected in the cytoplasm of breast cancer cells and could sponge miR-125b, thereby releasing HER-2 and inducing trastuzumab resistance. In addition, Snail-1 was found to be the target gene of miR-125b and overexpression of Snail-1 could reverse the suppressed migration, invasion, and EMT caused by TINCR silencing. The upregulation of TINCR in breast cancer was attributed to the CREB-binding protein (CBP)-mediated H3K27 acetylation at the promoter region of TINCR. Clinically, HER-2+ breast cancer patients with high TINCR expression levels were associated with poor response to trastuzumab therapy and shorter survival time. CONCLUSION TINCR could promote trastuzumab resistance and the accompanied EMT process in breast cancer. Therefore, TINCR might be a potential indicator for prognosis and a therapeutic target to enhance the clinical efficacy of trastuzumab treatment.
Collapse
Affiliation(s)
- Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, No.19 Xiu Hua Road, Xiuying District, Haikou City, 570311, Hainan Province, China.
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Kejian Zou
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, No.19 Xiu Hua Road, Xiuying District, Haikou City, 570311, Hainan Province, China
| | - Mulin Ye
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, No.19 Xiu Hua Road, Xiuying District, Haikou City, 570311, Hainan Province, China
| | - Yuanwen Chen
- Department of General Surgery, Chongqing Renji Hospital, University of Chinese Academy of Science, Chongqing, 400062, China
| | - Chengyi Wu
- Department of General Surgery, The Frist Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xin Chen
- Department of General Surgery, The Frist Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
16
|
Chen X, Lv C, Zhu X, Lin W, Wang L, Huang Z, Yang S, Sun J. MicroRNA-504 modulates osteosarcoma cell chemoresistance to cisplatin by targeting p53. Oncol Lett 2018; 17:1664-1674. [PMID: 30675226 PMCID: PMC6341607 DOI: 10.3892/ol.2018.9749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
Chemoresistance implicates the therapeutic value of cisplatin and remains a primary obstacle to its clinical use. MicroRNAs (miRs) negatively modulate the expression of their target genes and are associated with the occurrence and progression of various types of tumor. The abnormal expression of miR-504 has been reported in certain types of human tumor and has been associated with tumor prognosis. However, the association between miR-504 and cisplatin in human osteosarcoma remains unclear. The present study therefore aimed to assess the in vitro effects and possible mechanism of miR-504 in cell proliferation, apoptosis and cisplatin resistance in MG63 osteosarcoma cells. The results demonstrated that miR-504 was overexpressed in osteosarcoma tissues and cells. This overexpression also induced cell proliferation, as determined by MTT and EdU staining assays. Furthermore, miR-504 suppressed cisplatin-induced apoptosis, which was demonstrated via MTT, cell morphology analysis and flow cytometry. Cisplatin-induced G1 arrest was also suppressed, which was determined by flow cytometry. The potential target genes of miR-504 were predicted using bioinformatics. p53 was confirmed to be a direct target of miR-504 using a luciferase reporter assay and western blot analysis revealed that miR-504 negatively regulated p53 expression at a molecular level. These results indicate that miR-504 contributes to cisplatin resistance in MG63 osteosarcoma cells by suppressing p53. miR-504 may therefore be a potential biomarker for cisplatin resistance in patients with osteosarcoma.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chen Lv
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiongbai Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenjun Lin
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lu Wang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhengxiang Huang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shengwu Yang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Junying Sun
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
17
|
TGF-β2 induces proliferation and inhibits apoptosis of human Tenon capsule fibroblast by miR-26 and its targeting of CTGF. Biomed Pharmacother 2018; 104:558-565. [DOI: 10.1016/j.biopha.2018.05.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023] Open
|
18
|
Zhu T, Gao W, Chen X, Zhang Y, Wu M, Zhang P, Wang S. A Pilot Study of Circulating MicroRNA-125b as a Diagnostic and Prognostic Biomarker for Epithelial Ovarian Cancer. Int J Gynecol Cancer 2018; 27:3-10. [PMID: 27636713 PMCID: PMC5181123 DOI: 10.1097/igc.0000000000000846] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Early diagnosis of epithelial ovarian cancer is critical for patient survival. The objective of this pilot study is to identify a circulating micro (mi)RNA as a potential biomarker for epithelial ovarian cancer. METHODS A total of 135 epithelial ovarian cancer patients and 54 benign ovarian tumor patients were recruited for this study. Using customized TaqMan low density miRNA arrays, we first screened expression levels of 48 miRNAs in sera from 18 epithelial ovarian cancer patients and 16 benign ovarian tumor patients. The most significantly and differentially expressed miRNA was then further examined in all serum samples using real-time polymerase chain reaction. Its expression was further analyzed in relationship with clinicopathological factors and patient survival. RESULTS Array screening data showed that expression levels of serum miRNA-20a, miRNA-125b, miRNA-126, miRNA-355, and let-7c were significantly different between malignant and benign ovarian tumor patients. Subsequent real-time polymerase chain reaction results showed that serum miRNA-125b levels were significantly higher in epithelial ovarian cancer patients compared to benign controls. Moreover, serum miRNA-125b levels were significantly higher in ovarian cancer patients in early stages I and II, and in patients having no residual tumor following surgery, but were not associated with differentiation and histological types of ovarian cancer. Notably, the higher level of miR-125b was significantly positively correlated with progression-free survival (P = 0.035) and marginally, with overall survival (P = 0.069). CONCLUSIONS miRNA-125b plays an important role in the pathogenesis and progression of epithelial ovarian cancer. Circulating miRNA-125b has the potential to become a novel biomarker for early diagnosis and prognosis prediction of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Tao Zhu
- *Department of Gynecologic Oncology, †Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, China; and ‡Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC
| | | | | | | | | | | | | |
Collapse
|
19
|
Raimondi L, De Luca A, Costa V, Amodio N, Carina V, Bellavia D, Tassone P, Pagani S, Fini M, Alessandro R, Giavaresi G. Circulating biomarkers in osteosarcoma: new translational tools for diagnosis and treatment. Oncotarget 2017; 8:100831-100851. [PMID: 29246026 PMCID: PMC5725068 DOI: 10.18632/oncotarget.19852] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022] Open
Abstract
Osteosarcoma (OS) is a rare primary malignant bone tumour arising from primitive bone-forming mesenchymal cells, with high incidence in children and young adults, accounting for approximately 60% of all malignant bone tumours. Currently, long-term disease-free survival can be achieved by surgical treatment plus chemotherapy in approximately 60% of patients with localized extremity disease, and in 20-30% of patients with metastatic lung or bone disease. Diagnosis of primary lesions and recurrences is achieved by using radiological investigations and standard tissue biopsy, the latter being costly, painful and hardly repeatable for patients. Therefore, despite some recent advances, novel biomarkers for OS diagnosis, prediction of response to therapy, disease progression and chemoresistance, are urgently needed. Biological fluids such as blood represent a rich source of non-invasive cancer biomarkers, which allow to understand what is really happening inside the tumour, either at diagnosis or during disease progression. In this regard, liquid biopsy potentially represents an alternative and non-invasive method to detect tumour onset, progression and response to therapy. In this review, we will summarize the state of the art in this novel area, illustrating recent studies on OS. Although the data reported in literature seem preliminary, liquid biopsy represents a promising tool with the potential to be rapidly translated in the clinical practice.
Collapse
Affiliation(s)
- Lavinia Raimondi
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Angela De Luca
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Viviana Costa
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Valeria Carina
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Daniele Bellavia
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Stefania Pagani
- Rizzoli Orthopedic Institute, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - Milena Fini
- Rizzoli Orthopedic Institute, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - Riccardo Alessandro
- Biology and Genetics Unit, Department of Biopathology and Medical Biotechnology, University of Palermo, Palermo, Italy
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | - Gianluca Giavaresi
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
- Rizzoli Orthopedic Institute, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| |
Collapse
|
20
|
Chang SM, Hu WW. Long non-coding RNA MALAT1 promotes oral squamous cell carcinoma development via microRNA-125b/STAT3 axis. J Cell Physiol 2017; 233:3384-3396. [PMID: 28926115 DOI: 10.1002/jcp.26185] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/15/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Shi-Min Chang
- Department of Stomatology; Beijing Friendship Hospital; Capital Medical University; Xicheng District Beijing China
| | - Wei-Wei Hu
- Department of Stomatology; Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University; Huai'an China
| |
Collapse
|
21
|
Abstract
The discovery of the microRNAs, lin-4 and let-7 as critical mediators of normal development in Caenorhabditis elegans and their conservation throughout evolution has spearheaded research toward identifying novel roles of microRNAs in other cellular processes. To accurately elucidate these fundamental functions, especially in the context of an intact organism, various microRNA transgenic models have been generated and evaluated. Transgenic C. elegans (worms), Drosophila melanogaster (flies), Danio rerio (zebrafish), and Mus musculus (mouse) have contributed immensely toward uncovering the roles of multiple microRNAs in cellular processes such as proliferation, differentiation, and apoptosis, pathways that are severely altered in human diseases such as cancer. The simple model organisms, C. elegans, D. melanogaster, and D. rerio, do not develop cancers but have proved to be convenient systesm in microRNA research, especially in characterizing the microRNA biogenesis machinery which is often dysregulated during human tumorigenesis. The microRNA-dependent events delineated via these simple in vivo systems have been further verified in vitro, and in more complex models of cancers, such as M. musculus. The focus of this review is to provide an overview of the important contributions made in the microRNA field using model organisms. The simple model systems provided the basis for the importance of microRNAs in normal cellular physiology, while the more complex animal systems provided evidence for the role of microRNAs dysregulation in cancers. Highlights include an overview of the various strategies used to generate transgenic organisms and a review of the use of transgenic mice for evaluating preclinical efficacy of microRNA-based cancer therapeutics.
Collapse
Affiliation(s)
- Arpita S Pal
- PULSe Graduate Program, Purdue University, West Lafayette, IN, United States
| | - Andrea L Kasinski
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
22
|
Li JF, Song YZ. Circular RNA GLI2 promotes osteosarcoma cell proliferation, migration, and invasion by targeting miR-125b-5p. Tumour Biol 2017; 39:1010428317709991. [PMID: 28695772 DOI: 10.1177/1010428317709991] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Circular RNAs are novel identified type of endogenous non-coding RNAs, which exert vital functions in human and animals. However, the in-depth role of circular RNAs in the progression of tumorigenesis, especially osteosarcoma, is still undefined. Our preliminary study had found that cir-GLI2 was significantly upregulated in osteosarcoma tissues compared to adjacent non-tumor tissue. Moreover, cir-GLI2 silencing could effectively suppress the proliferation, migration, and invasion capacity of osteosarcoma cells, indicating the tumor-promoting role. Besides, bioinformatics analysis and luciferase reporter assay predicted the direct binding to miR-125b-5p, which has been reported to function as a tumor suppressor in osteosarcoma. Furthermore, functional experiments validated that cir-GLI2 exerted the tumor-promoting effects on osteosarcoma cells via negatively targeting miR-125b-5p. In conclusion, our study demonstrated that cir-GLI2 acts as an oncogenic circular RNA in osteosarcoma genesis, providing a novel diagnostic and therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Ji-Feng Li
- Department of Orthopaedics, Huaihe Hospital of Henan University, Kaifeng, P.R. China
| | - Yu-Ze Song
- Department of Orthopaedics, Huaihe Hospital of Henan University, Kaifeng, P.R. China
| |
Collapse
|
23
|
Jin L, Zhang Z, Li Y, He T, Hu J, Liu J, Chen M, Gui Y, Chen Y, Lai Y. miR-125b is associated with renal cell carcinoma cell migration, invasion and apoptosis. Oncol Lett 2017; 13:4512-4520. [PMID: 28599452 PMCID: PMC5453059 DOI: 10.3892/ol.2017.5985] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023] Open
Abstract
MicroRNA (miR)-125b has been identified as deregulated in a number of types of cancer. Previous studies have detected the expression of miR-125b in clear cell renal cell carcinoma (ccRCC) tissues by in situ hybridization and revealed that miR-125b was upregulated in ccRCC tissues, and was associated with recurrence and survival of patients with ccRCC. However, the function of miR-125b in RCC remains unclear. Thus, the expression of miR-125b was detected with quantitative polymerase chain reaction (qPCR) in 24 paired RCC and adjacent normal tissues. The result of qPCR showed that miR-125b was upregulated in RCC tissues. Furthermore, the function of miR-125b in RCC (786-O and ACHN) cells was detected by transfecting miR-125 mimic or inhibitor to upregulate or downregulate miR-125b expression. Cell proliferation assays (MTT and Cell Counting Kit-8), cell mobility assays (cell scratch and Transwell assay) and a cell apoptotic assay (flow cytometry assay) were performed to assess the function of miR-125b on RCC cells. Results from the assays demonstrated that overexpression of miR-125b could promote cell migration and invasion, and reduce the cell apoptotic rate. It was also revealed that downregulation of miR-125b could reduce cell migration and invasion, and induce cell apoptosis. However, the results of the cell proliferation assay revealed that miR-125b had no significant effect on cell proliferation. Not only could miR-125b predict recurrence and survival of ccRCC; the present study revealed that miR-125b could regulate RCC cell migration, invasion and apoptosis. Additional studies are required to determine the mechanism of miR-125b in RCC cells and define the target genes of miR-125b in RCC.
Collapse
Affiliation(s)
- Lu Jin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Zeng Zhang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Yifan Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Tao He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jia Hu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jiaju Liu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Mingwei Chen
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Yaoting Gui
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Yun Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Professor Yun Chen, Department of Ultrasound, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Correspondence to: Professor Yongqing Lai, Department of Urology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| |
Collapse
|
24
|
Bu Q, You F, Pan G, Yuan Q, Cui T, Hao L, Zhang J. MiR-125b inhibits anaplastic thyroid cancer cell migration and invasion by targeting PIK3CD. Biomed Pharmacother 2017; 88:443-448. [DOI: 10.1016/j.biopha.2016.11.090] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 11/27/2022] Open
|
25
|
Kurozumi A, Goto Y, Okato A, Ichikawa T, Seki N. Aberrantly expressed microRNAs in bladder cancer and renal cell carcinoma. J Hum Genet 2016; 62:49-56. [PMID: 27357429 DOI: 10.1038/jhg.2016.84] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023]
Abstract
Bladder cancer (BC) and renal cell carcinoma (RCC) are frequently diagnosed urinary tract cancers. Recently developed molecular-targeted therapies for RCC have shown remarkable therapeutic efficacy; however, no targeted therapeutics are currently approved for the treatment of BC, and few effective treatment options exist. Current studies have shown that small noncoding RNA molecules have major roles in cancer cells. MicroRNAs (miRNAs) are endogenous small noncoding RNA molecules that regulate protein-/nonprotein-coding RNAs in human cells. A large body of evidence suggests that aberrantly expressed miRNAs are deeply involved in the pathogenesis of human cancers. In this paper, we review recently published miRNA expression signatures of BC and RCC. We focus on downregulated or upregulated miRNAs in multiple signatures and discuss putative target genes of miRNAs. Comparisons of RCC and BC expression signatures revealed that the two types of cancer showed opposite expression patterns for miR-200 family miRNAs (i.e., miR-141/200c and miR-200a/200b/429). We discuss in silico analysis of genes targeted by miR-200 family miRNAs and the molecular mechanisms underlying BC and RCC.
Collapse
Affiliation(s)
- Akira Kurozumi
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yusuke Goto
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
26
|
Luo Z, Liu M, Zhang H, Xia Y. Association of circulating miR-125b and survival in patients with osteosarcoma-A single center experience. J Bone Oncol 2016; 5:167-172. [PMID: 28008378 PMCID: PMC5154701 DOI: 10.1016/j.jbo.2016.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/12/2016] [Accepted: 06/15/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND It is known that miRNAs play various roles in malignant tumors. This study is designed to investigate whether miR-125b levels can be used to predict the clinical response of patients with osteosarcoma (OS) to cisplatin-based chemotherapy. METHODS From January 2010 to July 2015, 82 patients with resectable OS and 56 patients with unresectable OS were enrolled. Blood samples were collected and quantitative real-time PCR was applied to determine miR-125b expression. Clinical data was collected through medical records, and patients were treated according to National Comprehensive Cancer Network guidelines on OS. RESULTS Our study found that patients with low miR-125b expression had shorter disease-free survival (p<0.001) in the OS group, which was verified by Kaplan-Meier analysis and univariate and multivariate Cox analyses (p<0.001). For patients with unresectable OS, low miR-125b expression was found to be associated with advanced tumor stages (p=0.006). No complete remission was observed, and there were 13 patients with partial remission, 21 with stable disease, and 22 with disease progression. Negative correlation was found between miR-125b expression and response to chemotherapy (p<0.001, r=-0.606). Furthermore, ROC analysis indicated that miR-125b at the cut point of 0.61 yielded an area under the ROC curve of 0.793 (p<0.001, 95% CI: 0.664-0.890) in distinguishing chemotherapy-resistant OS from chemotherapy-sensitive OS, with sensitivity and specificity at 76.9% and 79.1%, respectively. Kaplan-Meier analysis and univariate and multivariate Cox analyses showed that patients with low miR-125b expression suffered shorter overall survival (p=0.014, p=0.024, and p=0.049, respectively). CONCLUSION Down-regulation of circulating miR-125b might have the potential to predict cisplatin-based chemotherapy resistance and poor prognosis in OS.
Collapse
Affiliation(s)
- Zhiqiang Luo
- Department of Orthopedics, The Second Clinical Hospital of Lanzhou University, Lanzhou, China
| | - Minglu Liu
- The Second Clinical Hospital of the National Defense University of the PLA, Beijing, China
| | - Haihong Zhang
- Department of Orthopedics, The Second Clinical Hospital of Lanzhou University, Lanzhou, China
| | - Yayi Xia
- Department of Orthopedics, The Second Clinical Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
27
|
Zuberi M, Khan I, Mir R, Gandhi G, Ray PC, Saxena A. Utility of Serum miR-125b as a Diagnostic and Prognostic Indicator and Its Alliance with a Panel of Tumor Suppressor Genes in Epithelial Ovarian Cancer. PLoS One 2016; 11:e0153902. [PMID: 27092777 PMCID: PMC4836713 DOI: 10.1371/journal.pone.0153902] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/05/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) have been found to be dysregulated in epithelial ovarian cancer (EOC) and may function as either tumor suppressor genes (TSGs) or as oncogenes. Hypermethylation of miRNA silences the tumour suppressive function of a miRNA or hypermethylation of a TSG regulating that miRNA (or vice versa) leads to its loss of function. The present study aims to evaluate the impact of aberrant microRNA-125b (miR-125b) expression on various clinicopathological features in epithelial ovarian cancer and its association with anomalous methylation of several TSGs. We enrolled 70 newly diagnosed cases of epithelial ovarian cancer, recorded their clinical history and 70 healthy female volunteers. Serum miR-125b levels were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and the methylation status of various TSGs was investigated by methylation specific PCR. ROC curves were constructed to estimate the diagnostic and prognostic usefulness of miR-125b. The Kaplan-Meier method was applied to compare survival curves. Expression of miR-125b was found to be significantly upregulated (p<0.0001) in comparison with healthy controls. The expression level of miR-125b was found to be significantly associated with FIGO stage, lymph node and distant metastasis. ROC curve for diagnostic potential yielded significant AUC with an equitable sensitivity and specificity. ROC curves for prognosis yielded significant AUCs for histological grade, distal metastasis, lymph node status and survival. The expression of miR-125b also correlated significantly with the hypermethylation of TSGs. Our results indicate that DNA hypermethylation may be involved in the inactivation of miR-125b and miR-125b may function as a potential independent biomarker for clinical outcome in EOC.
Collapse
Affiliation(s)
- Mariyam Zuberi
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Imran Khan
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Faculty of Applied Medical Sciences, University of Tabuk, Saudi Arabia, Tabuk-71491
| | - Gauri Gandhi
- Department of Gynaecology and Obstetrics, Lok Nayak Hospital, New Delhi, India
| | - Prakash Chandra Ray
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Alpana Saxena
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| |
Collapse
|