1
|
Vergnes L, Wiese CB, Zore T, Riestenberg C, Avetisyan R, Reue K. Gene Regulation and Mitochondrial Activity During White and Brown Adipogenesis Are Modulated by KDM5 Histone Demethylase. J Endocr Soc 2024; 8:bvae029. [PMID: 38425435 PMCID: PMC10904225 DOI: 10.1210/jendso/bvae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Indexed: 03/02/2024] Open
Abstract
Body fat accumulation differs between males and females and is influenced by both gonadal sex (ovaries vs testes) and chromosomal sex (XX vs XY). We previously showed that an X chromosome gene, Kdm5c, is expressed at higher levels in females compared to males and correlates with adiposity in mice and humans. Kdm5c encodes a KDM5 histone demethylase that regulates gene expression by modulating histone methylation at gene promoters and enhancers. Here, we use chemical inhibition and genetic knockdown to identify a role for KDM5 activity during early stages of white and brown preadipocyte differentiation, with specific effects on white adipocyte clonal expansion, and white and brown adipocyte gene expression and mitochondrial activity. In white adipogenesis, KDM5 activity modulates H3K4 histone methylation at the Dlk1 gene promoter to repress gene expression and promote progression from preadipocytes to mature adipocytes. In brown adipogenesis, KDM5 activity modulates H3K4 methylation and gene expression of Ucp1, which is required for thermogenesis. Unbiased transcriptome analysis revealed that KDM5 activity regulates genes associated with cell cycle regulation and mitochondrial function, and this was confirmed by functional analyses of cell proliferation and cellular bioenergetics. Using genetic knockdown, we demonstrate that KDM5C is the likely KDM5 family member that is responsible for regulation of white and brown preadipocyte programming. Given that KDM5C levels are higher in females compared to males, our findings suggest that sex differences in white and brown preadipocyte gene regulation may contribute to sex differences in adipose tissue function.
Collapse
Affiliation(s)
- Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Carrie B Wiese
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Temeka Zore
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Carrie Riestenberg
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Rozeta Avetisyan
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Yu F, Li L, Gu Y, Wang S, Zhou L, Cheng X, Jiang H, Huang Y, Zhang Y, Qian W, Li X, Liu Z. Lysine demethylase 5C inhibits transcription of prefoldin subunit 5 to activate c-Myc signal transduction and colorectal cancer progression. Mol Med 2024; 30:9. [PMID: 38216914 PMCID: PMC10785505 DOI: 10.1186/s10020-023-00775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/22/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Lysine demethylase 5C (KDM5C) has been implicated in the development of several human cancers. This study aims to investigate the role of KDM5C in the progression of colorectal cancer (CRC) and explore the associated molecular mechanism. METHODS Bioinformatics tools were employed to predict the target genes of KDM5C in CRC. The expression levels of KDM5C and prefoldin subunit 5 (PFDN5) in CRC cells were determined by RT-qPCR and western blot assays. The interaction between KDM5C, H3K4me3, and PFDN5 was validated by chromatin immunoprecipitation. Expression and prognostic values of KDM5C and PFDN5 in CRC were analyzed in a cohort of 72 patients. The function of KDM5C/PFDN5 in c-Myc signal transduction was analyzed by luciferase assay. Silencing of KDM5C and PFDN5 was induced in CRC cell lines to analyze the cell malignant phenotype in vitro and tumorigenic activity in nude mice. RESULTS KDM5C exhibited high expression, while PFDN5 displayed low expression in CRC cells and clinical CRC samples. High KDM5C levels correlated with poor survival and unfavorable clinical presentation, whereas elevated PFDN5 correlated with improved patient outcomes. KDM5C mediated demethylation of H3K4me3 on the PFDN5 promoter, suppressing its transcription and thereby enhancing the transcriptional activity of c-Myc. KDM5C knockdown in CRC cells suppressed cell proliferation, migration and invasion, epithelial-mesenchymal transition, and tumorigenic activity while increasing autophagy and apoptosis rates. However, the malignant behavior of cells was restored by the further silencing of PFDN5. CONCLUSION This study demonstrates that KDM5C inhibits PFDN5 transcription, thereby activating c-Myc signal transduction and promoting CRC progression.
Collapse
Affiliation(s)
- Fulong Yu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Liang Li
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Yimei Gu
- Emergency ICU, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, People's Republic of China
| | - Song Wang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Lianbang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Xiaohu Cheng
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Heng Jiang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Yang Huang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Yingfeng Zhang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Wenbao Qian
- Department of Molecular Pathology, Hefei Da'an Medical Laboratory Co., Ltd., Hefei, 230012, Anhui, People's Republic of China
| | - Xianghua Li
- Department of Molecular Pathology, Hefei Da'an Medical Laboratory Co., Ltd., Hefei, 230012, Anhui, People's Republic of China.
| | - Zhining Liu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China.
| |
Collapse
|
3
|
González-Arriagada WA, Coletta RD, Lozano-Burgos C, García C, Maripillán J, Alcayaga-Miranda F, Godínez-Pacheco B, Oyarce-Pezoa S, Martínez-Flores R, García IE. CR5/CCL5 axis is linked to a poor outcome, and inhibition reduces metastasis in oral squamous cell carcinoma. J Cancer Res Clin Oncol 2023; 149:17335-17346. [PMID: 37831273 DOI: 10.1007/s00432-023-05443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE The CCR5/CCL5 axis is essential for interactions between malignant cells and microenvironment components, promoting tumor progression in oral squamous cell carcinoma (OSCC). This study aims to evaluate the association of CCL5 and CCR5 with the behavior of oral cancer and assess the therapeutic potential of a CCR5 antagonist. METHODS A retrospective study to analyze CCR5 and CCL5 expression on paraffin-embedded tissues was performed. In cell lines, rhCCL5 was added to induce CCR5-related pathways, and Maraviroc and shRNA against CCR5 were used to neutralize the receptor. Finally, an in vivo murine orthotopic xenograft model of tongue cancer was used to evaluate Maraviroc as an oncologic therapy. After 15 days, the mice were killed, and the primary tumors and cervical lymph nodes were analyzed. RESULTS The expression of CCR5 was associated with clinical stage and metastasis, and CCL5 was related to overall survival. Adding rhCCL5 induced cell proliferation, while shRNA and Maraviroc reduced it in a dose-dependent manner. Maraviroc treatment also increased apoptosis and modified cytoskeletal organization. In vivo, Maraviroc reduced neck metastasis. CONCLUSIONS The effects of CCR5 antagonists in OSCC have been poorly studied, and this study reports in vitro and in vivo evidence for the effects of Maraviroc in OSCC. Our results suggest that the CCR5/CCL5 axis plays a role in oral cancer behavior, and that its inhibition is a promising new therapy alternative.
Collapse
Affiliation(s)
- Wilfredo Alejandro González-Arriagada
- Facultad de Odontología, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Ricardo D Coletta
- Oral Pathology and Graduate Program in Oral Biology, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | | | - Cynthia García
- PhD Program in Biomedicine, Universidad de los Andes, Santiago, Chile
| | - Jaime Maripillán
- Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Francisca Alcayaga-Miranda
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | | | | | - René Martínez-Flores
- Facultad de Odontología, Unidad de Patología y Medicina Oral, Universidad Andres Bello, Santiago, Chile
| | - Isaac E García
- Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación Interoperativa en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
4
|
De Marco K, Sanese P, Simone C, Grossi V. Histone and DNA Methylation as Epigenetic Regulators of DNA Damage Repair in Gastric Cancer and Emerging Therapeutic Opportunities. Cancers (Basel) 2023; 15:4976. [PMID: 37894343 PMCID: PMC10605360 DOI: 10.3390/cancers15204976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Gastric cancer (GC), one of the most common malignancies worldwide, is a heterogeneous disease developing from the accumulation of genetic and epigenetic changes. One of the most critical epigenetic alterations in GC is DNA and histone methylation, which affects multiple processes in the cell nucleus, including gene expression and DNA damage repair (DDR). Indeed, the aberrant expression of histone methyltransferases and demethylases influences chromatin accessibility to the DNA repair machinery; moreover, overexpression of DNA methyltransferases results in promoter hypermethylation, which can suppress the transcription of genes involved in DNA repair. Several DDR mechanisms have been recognized so far, with homologous recombination (HR) being the main pathway involved in the repair of double-strand breaks. An increasing number of defective HR genes are emerging in GC, resulting in the identification of important determinants of therapeutic response to DDR inhibitors. This review describes how both histone and DNA methylation affect DDR in the context of GC and discusses how alterations in DDR can help identify new molecular targets to devise more effective therapeutic strategies for GC, with a particular focus on HR-deficient tumors.
Collapse
Affiliation(s)
- Katia De Marco
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| |
Collapse
|
5
|
Wang N, Ma T, Yu B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther 2023; 8:69. [PMID: 36797239 PMCID: PMC9935618 DOI: 10.1038/s41392-023-01341-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
Drug resistance is mainly responsible for cancer recurrence and poor prognosis. Epigenetic regulation is a heritable change in gene expressions independent of nucleotide sequence changes. As the common epigenetic regulation mechanisms, DNA methylation, histone modification, and non-coding RNA regulation have been well studied. Increasing evidence has shown that aberrant epigenetic regulations contribute to tumor resistance. Therefore, targeting epigenetic regulators represents an effective strategy to reverse drug resistance. In this review, we mainly summarize the roles of epigenetic regulation in tumor resistance. In addition, as the essential factors for epigenetic modifications, histone demethylases mediate the histone or genomic DNA modifications. Herein, we comprehensively describe the functions of the histone demethylase family including the lysine-specific demethylase family, the Jumonji C-domain-containing demethylase family, and the histone arginine demethylase family, and fully discuss their regulatory mechanisms related to cancer drug resistance. In addition, therapeutic strategies, including small-molecule inhibitors and small interfering RNA targeting histone demethylases to overcome drug resistance, are also described.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ting Ma
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Yu
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Xiao M, Zheng Y, Wang MX, Sun YH, Chen J, Zhu KY, Zhang F, Tang YH, Yang F, Zhou T, Zhang YP, Lei CX, Sun XX, Yu SH, Tian FJ. Elevated histone demethylase KDM5C increases recurrent miscarriage risk by preventing trophoblast proliferation and invasion. Cell Death Dis 2022; 8:495. [PMID: 36550096 PMCID: PMC9780362 DOI: 10.1038/s41420-022-01284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
KDM5C is a histone H3K4-specific demethylase, which has been shown to play a key role in biological disease and development. However, the role of KDM5C in trophoblasts at early pregnancy is currently unknown. Here, we showed that KDM5C was upregulated in placental trophoblasts from recurrent miscarriage (RM) patients compared with healthy controls (HCs). Trophoblast proliferation and invasion was inhibited by KDM5C overexpression and was promoted by KDM5C knockdown. Transcriptome sequencing revealed that elevated KDM5C exerted anti-proliferation and anti-invasion effects by repressing the expression of essential regulatory genes. The combination analysis of RNA-seq, ChIP-seq and CUT&Tag assay showed that KDM5C overexpression leads to the reduction of H3K4me3 on the promoters and the corresponding downregulation of expression of several regulatory genes in trophoblasts. Among these genes, TGFβ2 and RAGE are essential for the proliferation and invasion of trophoblasts. Importantly, overexpression of KDM5C by a systemically delivered KDM5C adenovirus vector (Ad-KDM5C) promoted embryo resorption rate in mouse. Our results support that KDM5C is an important regulator of the trophoblast function during early pregnancy, and suggesting that KDM5C activity could be responsible for epigenetic alterations seen RM disease.
Collapse
Affiliation(s)
- Min Xiao
- grid.412312.70000 0004 1755 1415Shanghai Ji Ai Genetics and IVF Institute, the Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011 China
| | - Yan Zheng
- grid.16821.3c0000 0004 0368 8293Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 China
| | - Meng-Xi Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Yi-Hua Sun
- grid.412312.70000 0004 1755 1415Department of Pathology, the Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011 China
| | - Juan Chen
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Kang-Yong Zhu
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Fan Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Yun-Hui Tang
- grid.412312.70000 0004 1755 1415Department of Family Planning, the Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011 China
| | - Fan Yang
- grid.412312.70000 0004 1755 1415Department of Pathology, the Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011 China
| | - Ting Zhou
- grid.16821.3c0000 0004 0368 8293Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Yue-Ping Zhang
- grid.412312.70000 0004 1755 1415Shanghai Ji Ai Genetics and IVF Institute, the Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011 China
| | - Cai-Xia Lei
- grid.412312.70000 0004 1755 1415Shanghai Ji Ai Genetics and IVF Institute, the Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011 China
| | - Xiao-Xi Sun
- grid.412312.70000 0004 1755 1415Shanghai Ji Ai Genetics and IVF Institute, the Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011 China
| | - Shan-He Yu
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Fu-Ju Tian
- grid.16821.3c0000 0004 0368 8293The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030 China
| |
Collapse
|
7
|
Drongitis D, Verrillo L, De Marinis P, Orabona P, Caiola A, Turitto G, Alfieri A, Bruscella S, Gentile M, Moriello V, Sannino E, Di Muccio I, Costa V, Miano MG, de Bellis A. The Chromatin-Oxygen Sensor Gene KDM5C Associates with Novel Hypoxia-Related Signatures in Glioblastoma Multiforme. Int J Mol Sci 2022; 23:ijms231810250. [PMID: 36142158 PMCID: PMC9498997 DOI: 10.3390/ijms231810250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a fatal brain tumor without effective drug treatment. In this study, we highlight, for the first time, the contribution of chromatin remodeling gene Lysine (K)-specific demethylase 5C (KDM5C) in GBM via an extensive analysis of clinical, expression, and functional data, integrated with publicly available omic datasets. The expression analysis on GBM samples (N = 37) revealed two informative subtypes, namely KDM5CHigh and KDM5CLow, displaying higher/lower KDM5C levels compared to the controls. The former subtype displays a strong downregulation of brain-derived neurotrophic factor (BDNF)—a negative KDM5C target—and a robust overexpression of hypoxia-inducible transcription factor-1A (HIF1A) gene, a KDM5C modulator. Additionally, a significant co-expression among the prognostic markers HIF1A, Survivin, and p75 was observed. These results, corroborated by KDM5C overexpression and hypoxia-related functional assays in T98G cells, suggest a role for the HIF1A-KDM5C axis in the hypoxic response in this tumor. Interestingly, fluorescence-guided surgery on GBM sections further revealed higher KDM5C and HIF1A levels in the tumor rim niche compared to the adjacent tumor margin, indicating a regionally restricted hyperactivity of this regulatory axis. Analyzing the TCGA expression and methylation data, we found methylation changes between the subtypes in the genes, accounting for the hypoxia response, stem cell differentiation, and inflammation. High NANOG and IL6 levels highlight a distinctive stem cell-like and proinflammatory signature in the KDM5CHigh subgroup and GBM niches. Taken together, our results indicate HIF1A-KDM5C as a new, relevant cancer axis in GBM, opening a new, interesting field of investigation based on KDM5C as a potential therapeutic target of the hypoxic microenvironment in GBM.
Collapse
Affiliation(s)
- Denise Drongitis
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, 80131 Naples, Italy
- Maria Rosaria Maglione Foundation Onlus, 80122 Naples, Italy
| | - Lucia Verrillo
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, 80131 Naples, Italy
| | - Pasqualino De Marinis
- A.O.R.N. S. Anna and S. Sebastiano Hospital, Division of Neurosurgery, 81100 Caserta, Italy
| | - Pasquale Orabona
- A.O.R.N. S. Anna and S. Sebastiano Hospital, Division of Pathology, 81100 Caserta, Italy
| | - Agnese Caiola
- A.O.R.N. S. Anna and S. Sebastiano Hospital, Division of Pathology, 81100 Caserta, Italy
| | - Giacinto Turitto
- A.O.R.N. S. Anna and S. Sebastiano Hospital, Division of Oncology, 81100 Caserta, Italy
| | - Alessandra Alfieri
- A.O.R.N. S. Anna and S. Sebastiano Hospital, Division of Neurosurgery, 81100 Caserta, Italy
| | - Sara Bruscella
- A.O.R.N. S. Anna and S. Sebastiano Hospital, Division of Neurosurgery, 81100 Caserta, Italy
| | - Marisa Gentile
- A.O.R.N. S. Anna and S. Sebastiano Hospital, Division of Neurosurgery, 81100 Caserta, Italy
| | - Vania Moriello
- A.O.R.N. S. Anna and S. Sebastiano Hospital, Division of Neurosurgery, 81100 Caserta, Italy
| | - Ettore Sannino
- A.O.R.N. S. Anna and S. Sebastiano Hospital, Division of Neurosurgery, 81100 Caserta, Italy
| | - Ines Di Muccio
- A.O.R.N. S. Anna and S. Sebastiano Hospital, Division of Neurosurgery, 81100 Caserta, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, 80131 Naples, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, 80131 Naples, Italy
- Correspondence: (M.G.M.); (A.d.B.)
| | - Alberto de Bellis
- Maria Rosaria Maglione Foundation Onlus, 80122 Naples, Italy
- A.O.R.N. S. Anna and S. Sebastiano Hospital, Division of Neurosurgery, 81100 Caserta, Italy
- Correspondence: (M.G.M.); (A.d.B.)
| |
Collapse
|
8
|
Diverse Functions of KDM5 in Cancer: Transcriptional Repressor or Activator? Cancers (Basel) 2022; 14:cancers14133270. [PMID: 35805040 PMCID: PMC9265395 DOI: 10.3390/cancers14133270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022] Open
Abstract
Epigenetic modifications are crucial for chromatin remodeling and transcriptional regulation. Post-translational modifications of histones are epigenetic processes that are fine-tuned by writer and eraser enzymes, and the disorganization of these enzymes alters the cellular state, resulting in human diseases. The KDM5 family is an enzymatic family that removes di- and tri-methyl groups (me2 and me3) from lysine 4 of histone H3 (H3K4), and its dysregulation has been implicated in cancer. Although H3K4me3 is an active chromatin marker, KDM5 proteins serve as not only transcriptional repressors but also transcriptional activators in a demethylase-dependent or -independent manner in different contexts. Notably, KDM5 proteins regulate the H3K4 methylation cycle required for active transcription. Here, we review the recent findings regarding the mechanisms of transcriptional regulation mediated by KDM5 in various contexts, with a focus on cancer, and further shed light on the potential of targeting KDM5 for cancer therapy.
Collapse
|
9
|
Duan Y, Du Y, Gu Z, Zheng X, Wang C. Expression, Prognostic Value, and Functional Mechanism of the KDM5 Family in Pancreatic Cancer. Front Cell Dev Biol 2022; 10:887385. [PMID: 35493099 PMCID: PMC9043291 DOI: 10.3389/fcell.2022.887385] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background: The histone lysine demethylase KDM5 family is an important epigenetic state-modifying enzyme family. Increasing evidence supports that epigenetic abnormalities in the KDM5 family are related to multiple cancers in humans. However, the role of the KDM5 family in pancreatic cancer is not clear, and related research is very scarce. Methods: R software, Kaplan–Meier Plotter, cBioPortal, TIMER, LinkedOmics, STRING, Metascape, TISIDB, and the GSCA Lite online tool were utilized for bioinformatics analysis. Results: KDM5A/B/C was significantly overexpressed in many kinds of tumor tissues, including pancreatic adenocarcinoma (PAAD), while the expression of KDM5D was significantly downregulated. The high expression of KDM5A/B/C was related to poor clinical features, such as worse treatment efficacy, higher tumor grade, and more advanced clinical stage. Patients with a family history of breast cancer and melanoma, history of drinking or history chronic pancreatitis were more likely to have KDM5A/B/C gene abnormalities, which were related to a variety of adverse clinical features. The results of gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway analyses of the KDM5 family and its 800 co-expressed genes showed that many gene terms related to cell proliferation, migration and many carcinogenic pathways. Notably, we found that the expression level of KDM5A/B/C was positively correlated with the expression of multiple key driver genes such as KRAS, BRCA1, and BRCA2 etc. In addition, PPI network analysis showed KDM5 family proteins have strong interactions with histone deacetylase family 1 (HDAC1), which could modify the lysines of histone H3, and co-act on many pathways, including the “longevity-regulating pathway” and “Notch signaling pathway”. Moreover, the upregulation of KDM5A/B/C expression was associated with an increase in the infiltration of B cells, CD8+ T cells and other infiltrating immune lymphocytes and the expression levels of immune molecules such as NT5E and CD274. Interestingly, the overexpression of KDM5A/C was also corelated with reduced sensitivity of pancreatic cancer cells to many kinds of pancreatic cancer-targeting or chemotherapeutic drugs, including axitinib and gemcitabine. Conclusion: KDM5 family members may be prognostic markers and new therapeutic targets for patients with pancreatic cancer.
Collapse
|
10
|
Lemster AL, Sievers E, Pasternack H, Lazar-Karsten P, Klümper N, Sailer V, Offermann A, Brägelmann J, Perner S, Kirfel J. Histone Demethylase KDM5C Drives Prostate Cancer Progression by Promoting EMT. Cancers (Basel) 2022; 14:cancers14081894. [PMID: 35454801 PMCID: PMC9032772 DOI: 10.3390/cancers14081894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Prostate cancer is the most common cancer in men and is one of the leading causes of cancer-related deaths. During prostate cancer progression and metastasis, the epithelial cells can undergo epithelial–mesenchymal transition (EMT). Here, we show that the histone demethylase KDM5C is highly expressed in metastatic prostate cancer. We establish that stable clones silence KDM5C in prostate cancer cells. Knockdown of KDM5C leads to a reduced migratory and invasion capacity. This is associated with changes by multiple molecular mechanisms. This signaling subsequently modifies the expression of various transcription factors like Snail, Twist, and Zeb1/2, which are also known as master regulators of EMT. Taken together, our results indicate the potential to therapeutically target KDM5C either alone or in combination with Akt/mTOR-inhibitor in prostate cancer patients by targeting the EMT signaling pathways. Abstract Prostate cancer (PCa) poses a major public health problem in men. Metastatic PCa is incurable, and ultimately threatens the life of many patients. Mutations in tumor suppressor genes and oncogenes are important for PCa progression, whereas the role of epigenetic factors in prostate carcinogenesis is insufficiently examined. The histone demethylase KDM5C exerts important roles in tumorigenesis. KDM5C has been reported to be highly expressed in various cancer cell types, particularly in primary PCa. Here, we could show that KDM5C is highly upregulated in metastatic PCa. Functionally, in KDM5C knockdown cells migratory and invasion capacity was reduced. Interestingly, modulation of KDM5C expression influences several EMT signaling pathways (e.g., Akt/mTOR), expression of EMT transcription factors, epigenetic modifiers, and miR-205, resulting in increased expression of E-cadherin and reduced expression of N-cadherin. Mouse xenografts of KDM5C knockdown cells showed reduced tumor growth. In addition, the Akt/mTOR pathway is one of the classic signaling pathways to mediate tumor metabolic homeostasis, which is beneficial for tumor growth and metastasis. Taken together, our findings indicate that a combination of a selective KDM5C- and Akt/mTOR-inhibitor might be a new promising therapeutic strategy to reduce metastatic burden in PCa.
Collapse
Affiliation(s)
- Anna-Lena Lemster
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Elisabeth Sievers
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Helen Pasternack
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Pamela Lazar-Karsten
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Niklas Klümper
- Department of Urology and Pediatric Urology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Verena Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Johannes Brägelmann
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
- Mildred Scheel School of Oncology Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
- Institute of Pathology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
- Correspondence:
| |
Collapse
|
11
|
Shi XF, Zhang Z, Wu HY, Wang Y, Chang AM, Gao JJ, Liu K, Song WY, Wang L, Wang HP. Lysine (K)-specific demethylase 5C regulates the incidence of severe preeclampsia by adjusting the expression of bone morphogenetic protein-7. Bioengineered 2022; 13:8538-8547. [PMID: 35331081 PMCID: PMC9161961 DOI: 10.1080/21655979.2022.2051840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/02/2022] Open
Abstract
This study aimed to investigate the roles of the lysine (K)-specific demethylase 5C (KDM5C)-bone morphogenetic protein-7 (BMP-7) signaling pathway in the pathogenesis of severe preeclampsia (sPE). A total of 180 pregnant patients were enrolled in the study and classified into three groups: an early-onset sPE group (EOsPE) (n = 60), a late-onset sPE group (LOsPE) (n = 60), and a control group (normal pregnancy; n = 60). The messenger RNA (mRNA) and protein expression levels of bone morphogenetic protein receptor II (BMPRII), BMP-7, and KDM5C were detected in placenta samples from the two sPE groups, and their sites were evaluated using immunohistochemistry (IHC). The sPE groups showed an increased KDM5C mRNA expression, and the EOsPE group showed a decreased BMP-7 and BMPRII mRNA expression compared with the LOsPE group. However, contradictory results were discovered in terms of protein expression. Immunostaining of KDM5C, BMP-7, and BMPRII was observed in villous trophoblast and extravillous trophoblast cells. Compared with the control group, the staining intensity of KDM5C in the placental tissue trophoblast cell nucleus and vascular endothelial cells of the sPE groups was weaker, while that of BMP-7 and BMPRII was stronger, and the staining intensity was more subjective in the LOsPE group. Consistent findings were obtained by IHC and Western blot analysis. KDM5C nuclear-cytoplasmic translocation may regulate sPE through BMP-7 and its receptors. The KDM5C-BMP-7 signaling pathway may also lead to less invasion and increased apoptosis of the trophoblast cells, which is involved in the pathogenesis of sPE.
Collapse
Affiliation(s)
- Xu-Feng Shi
- Department of Obstetrics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhan Zhang
- Department of Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hai-Ying Wu
- Department of Obstetrics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- Department of Obstetrics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Ai-Min Chang
- Department of Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-Jun Gao
- Department of Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kan Liu
- Department of Obstetrics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Wan-Yu Song
- Department of Obstetrics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Wang
- Department of Obstetrics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan-Ping Wang
- Department of Obstetrics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Qian X, Bao ZM, Yao D, Shi Y. Lysine demethylase 5C epigenetically reduces transcription of ITIH1 that results in augmented progression of liver hepatocellular carcinoma. Kaohsiung J Med Sci 2022; 38:437-446. [PMID: 35080113 DOI: 10.1002/kjm2.12501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Lysine demethylase 5C (KDM5C) is a member of the KDM family of demethylases and has been reported as a cancer driver. This study aimed to probe the function of KDM5C in the development of liver hepatocellular carcinoma (LIHC) and the molecules of action. According to data from publicly accessible bioinformatic databases, KDM5C is highly expressed in LIHC and associated with poor patient prognosis. High expression of KDM5C was detected in acquired LIHC cell lines. Downregulation of KDM5C weakened proliferation, migration, invasiveness, and resistance to death of the LIHC cells in vitro, and it reduced growth of the xenograft tumors in nude mice. Inter-alpha-trypsin inhibitor heavy chain 1 (ITIH1) was predicted as a downstream gene negatively regulated by KDM5C. KDM5C-regulated H3K4me1 modification at the promoter region of ITIH1, inducing its transcriptional inactivation. Further downregulation of ITIH1 in cancer cells blocked the functions of KDM5C silencing and restored the malignant behaviors of LIHC cells. The activity of the PI3K/AKT signaling was decreased following KDM5C downregulation but recovered upon ITIH1 silencing. In conclusion, this study suggested that KDM5C epigenetically reduces ITIH1 and activates the PI3K/AKT signaling pathway to promote LIHC progression.
Collapse
Affiliation(s)
- Xu Qian
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China.,Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, P.R. China
| | - Zhong-Ming Bao
- Department of Hepatobiliary Surgery, Huaiyin People's Hospital, Huaiyin, Jiangsu, P.R. China
| | - Dan Yao
- Department of Gastrointestinal Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, P.R. China
| | - Yang Shi
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
13
|
Gaillard S, Charasson V, Ribeyre C, Salifou K, Pillaire MJ, Hoffmann JS, Constantinou A, Trouche D, Vandromme M. KDM5A and KDM5B histone-demethylases contribute to HU-induced replication stress response and tolerance. Biol Open 2021; 10:268370. [PMID: 34184733 PMCID: PMC8181900 DOI: 10.1242/bio.057729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/20/2021] [Indexed: 12/25/2022] Open
Abstract
KDM5A and KDM5B histone-demethylases are overexpressed in many cancers and have been involved in drug tolerance. Here, we describe that KDM5A, together with KDM5B, contribute to replication stress (RS) response and tolerance. First, they positively regulate RRM2, the regulatory subunit of ribonucleotide reductase. Second, they are required for optimal levels of activated Chk1, a major player of the intra-S phase checkpoint that protects cells from RS. We also found that KDM5A is enriched at ongoing replication forks and associates with both PCNA and Chk1. Because RRM2 is a major determinant of replication stress tolerance, we developed cells resistant to HU, and show that KDM5A/B proteins are required for both RRM2 overexpression and tolerance to HU. Altogether, our results indicate that KDM5A/B are major players of RS management. They also show that drugs targeting the enzymatic activity of KDM5 proteins may not affect all cancer-related consequences of KDM5A/B overexpression.
Collapse
Affiliation(s)
- Solenne Gaillard
- MCD, Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Virginie Charasson
- MCD, Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Cyril Ribeyre
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Kader Salifou
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Marie-Jeanne Pillaire
- Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, University of Toulouse 3, 31037 Toulouse, France
| | - Jean-Sebastien Hoffmann
- Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 avenue Irène-Joliot-Curie, 31059 Toulouse cedex, France
| | - Angelos Constantinou
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Didier Trouche
- MCD, Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Marie Vandromme
- MCD, Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
14
|
Shen H, Zhang W, Huang Y, He Y, Hu G, Wang L, Peng B, Yi J, Li T, Rong R, Chen X, Liu J, Li W, Ohgi K, Li S, Rosenfeld MG, Liu W. The Dual Function of KDM5C in Both Gene Transcriptional Activation and Repression Promotes Breast Cancer Cell Growth and Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004635. [PMID: 33977073 PMCID: PMC8097366 DOI: 10.1002/advs.202004635] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/25/2020] [Indexed: 06/01/2023]
Abstract
Emerging evidence suggested that epigenetic regulators can exhibit both activator and repressor activities in gene transcriptional regulation and disease development, such as cancer. However, how these dual activities are regulated and coordinated in specific cellular contexts remains elusive. Here, it is reported that KDM5C, a repressive histone demethylase, unexpectedly activates estrogen receptor alpha (ERα)-target genes, and meanwhile suppresses type I interferons (IFNs) and IFN-stimulated genes (ISGs) to promote ERα-positive breast cancer cell growth and tumorigenesis. KDM5C-interacting protein, ZMYND8, is found to be involved in both processes. Mechanistically, KDM5C binds to active enhancers and recruits the P-TEFb complex to activate ERα-target genes, while inhibits TBK1 phosphorylation in the cytosol to repress type I IFNs and ISGs. Pharmacological inhibition of both ERα and KDM5C is effective in inhibiting cell growth and tumorigenesis. Taken together, it is revealed that the dual activator and repressor nature of an epigenetic regulator together contributes to cancer development.
Collapse
Affiliation(s)
- Hai‐feng Shen
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Wen‐juan Zhang
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Ying Huang
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Yao‐hui He
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Guo‐sheng Hu
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Lei Wang
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Bing‐ling Peng
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Jia Yi
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Ting‐ting Li
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Rui Rong
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Xiao‐yan Chen
- School of Life SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Jun‐yi Liu
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Wen‐juan Li
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Kenny Ohgi
- Howard Hughes Medical InstituteDepartment of MedicineUniversity of California9500 Gilman Drive La JollaSan DiegoCA92093USA
| | - Shao‐Wei Li
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Michael G. Rosenfeld
- Howard Hughes Medical InstituteDepartment of MedicineUniversity of California9500 Gilman Drive La JollaSan DiegoCA92093USA
| | - Wen Liu
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| |
Collapse
|
15
|
Xue XJ, Li FR, Yu J. Mitochondrial pathway of the lysine demethylase 5C inhibitor CPI-455 in the Eca-109 esophageal squamous cell carcinoma cell line. World J Gastroenterol 2021; 27:1805-1815. [PMID: 33967558 PMCID: PMC8072195 DOI: 10.3748/wjg.v27.i16.1805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/14/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Esophageal cancer is a malignant tumor of the digestive tract that is difficult to diagnose early. CPI-455 has been reported to inhibit various cancers, but its role in esophageal squamous cell carcinoma (ESCC) is unknown.
AIM To investigate the effects and mechanism of the lysine demethylase 5C inhibitor, CPI-455, on ESCC cells.
METHODS A methyl tetrazolium assay was used to detect the inhibitory effect of CPI-455 on the proliferation of Eca-109 cells. Apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential were assessed by flow cytometry. Laser confocal scanning and transmission electron microscopy were used to observe changes in Eca-109 cell morphology. The protein expression of P53, Bax, lysine-specific demethylase 5C (KDM5C), cleaved Caspase-9, and cleaved Caspase-3 were assayed by western blotting.
RESULTS Compared with the control group, CPI-455 significantly inhibited Eca-109 cell proliferation. Gemcitabine inhibited Eca-109 cell proliferation in a concentration- and time-dependent manner. CPI-455 caused extensive alteration of the mitochondria, which appeared to have become atrophied. The cell membrane was weakly stained and the cytoplasmic structures were indistinct and disorganized, with serious cavitation when viewed by transmission electron microscopy. The flow cytometry and western blot results showed that, compared with the control group, the mitochondrial membrane potential was decreased and depolarized in Eca-109 cells treated with CPI-455. CPI-455 significantly upregulated the ROS content, P53, Bax, Caspase-9, and Caspase-3 protein expression in Eca-109 cells, whereas KDM5C expression was downregulated.
CONCLUSION CPI-455 inhibited Eca-109 cell proliferation via mitochondrial apoptosis by regulating the expression of related genes.
Collapse
Affiliation(s)
- Xiao-Jie Xue
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi 435000, Hubei Province, China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi 435000, Hubei Province, China
- Medical College, Wuhan University of Science and Technology, Wuhan 430081, Hubei Province, China
| | - Fei-Rong Li
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi 435000, Hubei Province, China
| | - Jing Yu
- Department of Laboratory Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, Hubei Province, China
| |
Collapse
|
16
|
Pham VVH, Liu L, Bracken C, Goodall G, Li J, Le TD. Computational methods for cancer driver discovery: A survey. Am J Cancer Res 2021; 11:5553-5568. [PMID: 33859763 PMCID: PMC8039954 DOI: 10.7150/thno.52670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
Identifying the genes responsible for driving cancer is of critical importance for directing treatment. Accordingly, multiple computational tools have been developed to facilitate this task. Due to the different methods employed by these tools, different data considered by the tools, and the rapidly evolving nature of the field, the selection of an appropriate tool for cancer driver discovery is not straightforward. This survey seeks to provide a comprehensive review of the different computational methods for discovering cancer drivers. We categorise the methods into three groups; methods for single driver identification, methods for driver module identification, and methods for identifying personalised cancer drivers. In addition to providing a “one-stop” reference of these methods, by evaluating and comparing their performance, we also provide readers the information about the different capabilities of the methods in identifying biologically significant cancer drivers. The biologically relevant information identified by these tools can be seen through the enrichment of discovered cancer drivers in GO biological processes and KEGG pathways and through our identification of a small cancer-driver cohort that is capable of stratifying patient survival.
Collapse
|
17
|
Zhang Q, Xu L, Wang J, Zhu X, Ma Z, Yang J, Li J, Jia X, Wei L. KDM5C Expedites Lung Cancer Growth and Metastasis Through Epigenetic Regulation of MicroRNA-133a. Onco Targets Ther 2021; 14:1187-1204. [PMID: 33654410 PMCID: PMC7910089 DOI: 10.2147/ott.s288799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background KDM5C, a histone H3K4-specific demethylase, possess various biological functions in development of cancers. However, its relation to the microRNA (miRNA) regulation in lung cancer remains unknown. This study aims to study the regulatory role of KDM5C on modification of miR-133a in the progression of lung cancer. Methods Differentially expressed miRNAs were filtered from 34 paired lung cancer and paracancerous tissues. The correlation between miR-133a expression and the prognosis of lung cancer patients was determined by a bioinformatics website. Furthermore, malignant aggressiveness of lung cancer cells was detected after miR-133a upregulation by CCK-8, flow cytometry, and Transwell assays and in vivo tumorigenesis and metastasis experiments. Subsequently, we analyzed mRNA downregulated in cells overexpressing miR-133a using m microarray analysis and expounded the upstream regulatory mechanism of miR-133a using bioinformatics website prediction and functional validation. Results miR-133a was reduced in lung cancer tissues, and patients with low expression of miR-133a have worse survival rates. miR-133a restoration curtailed growth and metastasis of lung cancer cells in vitro and in vivo. Moreover, miR-133a downregulated PTBP1 expression, whereas overexpression of PTBP1 attenuated the suppressive effect of miR-133a on lung cancer cell aggressiveness. The level of methylation modification of miR-133a was reduced in lung cancer cells. KDM5C inhibited the expression of miR-133a by promoting the demethylation modification of its promoter histone. Conclusion Histone demethylase KDM5C inhibits the expression of miR-133a by elevating the demethylation modification of the promoter histone of miR-133a, thereby promoting the expression of PTBP1, which finally accelerates lung cancer cell growth and metastasis.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Lei Xu
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Jianjun Wang
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Xiaoming Zhu
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Zeheng Ma
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Junfeng Yang
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Jiwei Li
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Xiangbo Jia
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Li Wei
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| |
Collapse
|
18
|
Isoforms of the p53 Family and Gastric Cancer: A Ménage à Trois for an Unfinished Affair. Cancers (Basel) 2021; 13:cancers13040916. [PMID: 33671606 PMCID: PMC7926742 DOI: 10.3390/cancers13040916] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The p53 family is a complex family of transcription factors with different cellular functions that are involved in several physiological processes. A massive amount of data has been accumulated on their critical role in the tumorigenesis and the aggressiveness of cancers of different origins. If common features are observed, there are numerous specificities that may reflect particularities of the tissues from which the cancers originated. In this regard, gastric cancer tumorigenesis is rather remarkable, as it is induced by bacterial and viral infections, various chemical carcinogens, and familial genetic alterations, which provide an example of the variety of molecular mechanisms responsible for cell transformation and how they impact the p53 family. This review summarizes the knowledge gathered from over 40 years of research on the role of the p53 family in gastric cancer, which still displays one of the most elevated mortality rates amongst all types of cancers. Abstract Gastric cancer is one of the most aggressive cancers, with a median survival of 12 months. This illustrates its complexity and the lack of therapeutic options, such as personalized therapy, because predictive markers do not exist. Thus, gastric cancer remains mostly treated with cytotoxic chemotherapies. In addition, less than 20% of patients respond to immunotherapy. TP53 mutations are particularly frequent in gastric cancer (±50% and up to 70% in metastatic) and are considered an early event in the tumorigenic process. Alterations in the expression of other members of the p53 family, i.e., p63 and p73, have also been described. In this context, the role of the members of the p53 family and their isoforms have been investigated over the years, resulting in conflicting data. For instance, whether mutations of TP53 or the dysregulation of its homologs may represent biomarkers for aggressivity or response to therapy still remains a matter of debate. This uncertainty illustrates the lack of information on the molecular pathways involving the p53 family in gastric cancer. In this review, we summarize and discuss the most relevant molecular and clinical data on the role of the p53 family in gastric cancer and enumerate potential therapeutic innovative strategies.
Collapse
|
19
|
Gu H, Lin R, Zheng F, Zhang Q. ELK1 activated-long noncoding RNA LBX2-AS1 aggravates the progression of ovarian cancer through targeting miR-4784/KDM5C axis. J Mol Histol 2021; 52:31-44. [PMID: 33099720 DOI: 10.1007/s10735-020-09921-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022]
Abstract
As one of the most common cancers in female, ovarian cancer (OC) has become a serious public burden now. Mounting researches have indicated long noncoding RNAs (lncRNAs) can affect many biological processes including cancer development. LncRNA LBX2-AS1 was identified to be an oncogene in some cancers, but the role of LBX2-AS1 in OC remains to be elucidated. Bioinformatics analysis and experiments including ChIP, RT-qPCR, RIP, luciferase reporter, western blot and CCK-8 were performed to explore the role of LBX2-AS1 in OC. LBX2-AS1 expression was markedly increased in OC tissues and cell lines. Functionally, LBX2-AS1 silencing inhibited cell proliferation, migration and stemness but facilitated cell apoptosis in OC. Moreover, depletion of LBX2-AS1 suppressed tumor growth of OC in vivo. Mechanically, LBX2-AS1 was activated by transcriptional factor ELK1. ELK1 enhanced the expression of LBX2-AS1 in OC cells. In addition, miR-4784 was confirmed to be sponged by LBX2-AS1. There was a negative expression correlation between LBX2-AS1 and miR-4784 in OC tissues. Subsequently, KDM5C was identified to be a direct target of miR-4784 in OC cells. KDM5C was negatively regulated by miR-4784 and positively regulated by LBX2-AS1 in terms of expression level. Upregulation of KDM5C reversed the inhibitory effect of LBX2-AS1 depletion on the progression of OC. This study proved that ELK1 activated-LBX2-AS1 aggravated the progression of OC by targeting the miR-4784/KDM5C axis, suggesting that LBX2-AS2 may be a promising diagnostic biomarker of OC.
Collapse
Affiliation(s)
- Hangzhi Gu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, No. 1 Fuxue Lane, Lucheng District, Wenzhou, Zhejiang, China
| | - Rongrong Lin
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, No. 1 Fuxue Lane, Lucheng District, Wenzhou, Zhejiang, China
| | - Feiyun Zheng
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, No. 1 Fuxue Lane, Lucheng District, Wenzhou, Zhejiang, China
| | - Qian Zhang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, No. 1 Fuxue Lane, Lucheng District, Wenzhou, Zhejiang, China.
| |
Collapse
|
20
|
Lin H, Ma N, Zhao L, Yang G, Cao B. KDM5c Promotes Colon Cancer Cell Proliferation Through the FBXW7-c-Jun Regulatory Axis. Front Oncol 2020; 10:535449. [PMID: 33042830 PMCID: PMC7526003 DOI: 10.3389/fonc.2020.535449] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/18/2020] [Indexed: 01/16/2023] Open
Abstract
KDM5c is a histone demethylase that specifically demethylates trimethylated and dimethylated H3 Lys-4 to play a central role in transcriptional repression. C-Jun is a proto-oncogene and promotes cell proliferation when ectopically accumulated, but can be ubiquitinated by SCF (FBXW7), leading to its degradation. FBXW7 is an E3 ubiquitin ligase of c-Jun, and exhibits carcinostasis in colon cancer. Here, we report that overexpression of KDM5c in human colon cancer cells results in attenuated FBXW7 transcription and accumulated c-Jun protein, leading to increased proliferation of colon cancer cells. We show that overexpression of KDM5c can result in increased c-Jun protein levels and decreased ubiquitin levels, with no significant change in mRNA levels of c-Jun. KDM5c overexpression blocks the ubiquitin-proteasome proteolytic pathway of c-Jun by down-regulating the expression of FBXW7. KDM5c down-regulation of FBXW7 occurs by demethylation of H3K4me3 at TSS and downstream of the FBXW7 gene. And interaction of KDM5c with H3K4me3 downstream of FBXW7 gene may be followed by recruitment of DNMT3b to methylate the spatially close CpG island located near the FBXW7 TSS. This methylation represses FBXW7 gene expression, which can reduce c-Jun degradation via the ubiquitin-proteasome pathway. TCGA database analysis revealed high expression of KDM5c in colon cancer tissues. KDM5c expression in colon cancer was correlated with poor overall survival of patients in the first 7 years. Data from TCGA showed that high expression of KDM5c was correlated with high DNA methylation of the FBXW7 gene, but was not positively correlated with methylation of the Jun gene. These results suggest that KDM5c regulation of colon cell proliferation is mainly mediated by the KDM5c-FBXW7-c-Jun axis.
Collapse
Affiliation(s)
- Haishan Lin
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Nina Ma
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guowei Yang
- Department of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bangwei Cao
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Gürpınar T, Kosova F, Kurt FO, Cambaz SU, Yücel AT, Umur N, Tuğlu MI. Effect of geldanamycin on the expression of the matrix molecules and angiogenetic factors in a gastric cancer cell line. Biotech Histochem 2020; 96:111-116. [DOI: 10.1080/10520295.2020.1772507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- T. Gürpınar
- Department of Pharmacology, Medical Faculty, Manisa Celal Bayar University, Manisa, Turkey
| | - F. Kosova
- Department of Biology, School of Vocational Health Service, Manisa Celal Bayar University, Manisa, Turkey
| | - F. O. Kurt
- Department of Biology, Faculty of Science, Manisa Celal Bayar University, Manisa, Turkey
| | - S. U. Cambaz
- Department of Midwifery, Health Science Faculty, Manisa Celal Bayar University, Manisa, Turkey
| | - A. T. Yücel
- Department of Histology and Embryology, School of Vocational Health Service, ManisaCelal Bayar University, Manisa, Turkey
| | - N. Umur
- Department of Biochemistry, School of Vocational Health Service, Manisa Celal Bayar University, Manisa, Turkey
| | - M. I. Tuğlu
- Department of Histology and Embryology, Medical Faculty, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
22
|
Jiang L, Zheng J, Kwan JSH, Dai S, Li C, Li MJ, Yu B, To KF, Sham PC, Zhu Y, Li M. WITER: a powerful method for estimation of cancer-driver genes using a weighted iterative regression modelling background mutation counts. Nucleic Acids Res 2019; 47:e96. [PMID: 31287869 PMCID: PMC6895256 DOI: 10.1093/nar/gkz566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/30/2019] [Accepted: 06/26/2019] [Indexed: 12/31/2022] Open
Abstract
Genomic identification of driver mutations and genes in cancer cells are critical for precision medicine. Due to difficulty in modelling distribution of background mutation counts, existing statistical methods are often underpowered to discriminate cancer-driver genes from passenger genes. Here we propose a novel statistical approach, weighted iterative zero-truncated negative-binomial regression (WITER, http://grass.cgs.hku.hk/limx/witer or KGGSeq,http://grass.cgs.hku.hk/limx/kggseq/), to detect cancer-driver genes showing an excess of somatic mutations. By fitting the distribution of background mutation counts properly, this approach works well even in small or moderate samples. Compared to alternative methods, it detected more significant and cancer-consensus genes in most tested cancers. Applying this approach, we estimated 229 driver genes in 26 different types of cancers. In silico validation confirmed 78% of predicted genes as likely known drivers and many other genes as very likely new drivers for corresponding cancers. The technical advances of WITER enable the detection of driver genes in TCGA datasets as small as 30 subjects and rescue of more genes missed by alternative tools in moderate or small samples.
Collapse
Affiliation(s)
- Lin Jiang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Genome Research, Sun Yat-sen University, Guangzhou 510080, China.,First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingjing Zheng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Genome Research, Sun Yat-sen University, Guangzhou 510080, China
| | - Johnny S H Kwan
- Departmelnt of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, New Territories, Hong Kong.,State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, New Territories, Hong Kong.,Li Ka-Shing Institute of Health Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Sheng Dai
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Genome Research, Sun Yat-sen University, Guangzhou 510080, China
| | - Cong Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Mulin Jun Li
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin 300070, China
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Ka F To
- Departmelnt of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, New Territories, Hong Kong.,State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, New Territories, Hong Kong.,Li Ka-Shing Institute of Health Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Pak C Sham
- The Centre for Genomic Sciences, the University of Hong Kong, Pokfulam, Hong Kong.,Department of Psychiatry, the University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Cognitive and Brain Sciences, the University of Hong Kong, Pokfulam, Hong Kong
| | - Yonghong Zhu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Miaoxin Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Genome Research, Sun Yat-sen University, Guangzhou 510080, China.,The Centre for Genomic Sciences, the University of Hong Kong, Pokfulam, Hong Kong.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
23
|
Liu W, Dong Z, Hu R, Wang C. Association of Vascular Endothelial Growth Factor ( VEGF) Gene Polymorphisms With Gastric Cancer and Its Development, Prognosis, and Survival. Technol Cancer Res Treat 2019; 17:1533034617753810. [PMID: 29390928 PMCID: PMC5802604 DOI: 10.1177/1533034617753810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The relationship between vascular endothelial growth factor gene polymorphism and gastric cancer risk and its development, prognosis, and survival are still being debated. This meta-analysis was performed to assess these relationships. The association reports were identified from PubMed, Embase, Cochrane Library, and CBM-disc (China Biological Medicine Database), and eligible studies were included and calculated using the meta-analysis method. VEGF+936C/T, VEGF+405 G>C, VEGF-460 T>C, VEGF-1498 T>C, and VEGF-2578 C>A gene polymorphisms were found to be unassociated with gastric cancer risk for the overall population in this meta-analysis, whereas the VEGF-634 G>C GG genotype was associated with gastric cancer risk in the overall population. Furthermore, VEGF-634 G>C C allele and the GG genotype were associated with gastric cancer risk in Caucasians, and VEGF+1612G/A gene polymorphism was associated with gastric cancer risk for the Asian population. VEGF+936C/T gene polymorphism was not associated with the stage of cancer, lymph node metastasis, Lauren classification, or survival of gastric cancer. However, VEGF+936C/T T allele and TT genotype were associated with the tumor size of gastric cancer. In conclusion, the VEGF-634 G>C GG genotype was associated with gastric cancer risk in the overall population with the VEGF-634 G>C C allele and GG genotype being associated with risk in Caucasians and VEGF+1612G/A in the Asian population.
Collapse
Affiliation(s)
- Weimin Liu
- 1 Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhiyong Dong
- 1 Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruixiang Hu
- 1 Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Cunchuan Wang
- 1 Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Hong Z, Wu G, Xiang ZD, Xu CD, Huang SS, Li C, Shi L, Wu DL. KDM5C is transcriptionally regulated by BRD4 and promotes castration-resistance prostate cancer cell proliferation by repressing PTEN. Biomed Pharmacother 2019; 114:108793. [PMID: 30921702 DOI: 10.1016/j.biopha.2019.108793] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/10/2019] [Accepted: 03/14/2019] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) is one of the leading causes of cancer-related death worldwide, and it is almost incurable once it has developed into castration-resistance prostate cancer (CRPC). However, the mechanisms underlying the oncogenesis of PCa and CRPC remain elusive. Lysine-specific histone demethylase 5C (KDM5C) is an important member of lysine demethylase family and has recently been found highly expressed in multiple cancer types. In this study, we reported that KDM5C was highly expressed in PCa and CRPC specimens, and the high expression promoted CRPC cell proliferation through repressing phosphatase and tensin homolog (PTEN) gene epigenetically. Moreover, KDM5C was transcriptionally upregulated by bromodomain-containing protein 4 (BRD4), and knockdown KDM5C sensitized the therapeutic effects of CRPC cells to the bromodomain and extraterminal (BET) inhibitor. Taken together, our study uncovers that the BRD4-KDM5C-PTEN may be a new oncogenic pathway in CRPC development, and KDM5C is a critical protein and could be an ideal target for CRPC treatment in this oncogenic pathway.
Collapse
Affiliation(s)
- Zhe Hong
- Department of Urology, Tongji Hospital, Tongji University, Shanghai 200065, China.
| | - Gang Wu
- Department of Urology, Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Zhen-Dong Xiang
- Department of Urology, Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Cheng-Dang Xu
- Department of Urology, Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Sheng-Song Huang
- Department of Urology, Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Chao Li
- Department of Urology, Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Lei Shi
- Department of Urology, Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Deng-Long Wu
- Department of Urology, Tongji Hospital, Tongji University, Shanghai 200065, China.
| |
Collapse
|
25
|
Lamadema N, Burr S, Brewer AC. Dynamic regulation of epigenetic demethylation by oxygen availability and cellular redox. Free Radic Biol Med 2019; 131:282-298. [PMID: 30572012 DOI: 10.1016/j.freeradbiomed.2018.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
The chromatin structure of the mammalian genome must facilitate both precisely-controlled DNA replication together with tightly-regulated gene transcription. This necessarily involves complex mechanisms and processes which remain poorly understood. It has long been recognised that the epigenetic landscape becomes established during embryonic development and acts to specify and determine cell fate. In addition, the chromatin structure is highly dynamic and allows for both cellular reprogramming and homeostatic modulation of cell function. In this respect, the functions of epigenetic "erasers", which act to remove covalently-linked epigenetic modifications from DNA and histones are critical. The enzymatic activities of the TET and JmjC protein families have been identified as demethylases which act to remove methyl groups from DNA and histones, respectively. Further, they are characterised as members of the Fe(II)- and 2-oxoglutarate-dependent dioxygenase superfamily. This provides the intriguing possibility that their enzymatic activities may be modulated by cellular metabolism, oxygen availability and redox-based mechanisms, all of which are likely to display dynamic cell- and tissue-specific patterns of flux. Here we discuss the current evidence for such [O2]- and redox-dependent regulation of the TET and Jmjc demethylases and the potential physiological and pathophysiological functional consequences of such regulation.
Collapse
Affiliation(s)
- Nermina Lamadema
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Simon Burr
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Alison C Brewer
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom.
| |
Collapse
|
26
|
Tian J, Liu G, Zuo C, Liu C, He W, Chen H. Genetic polymorphisms and gastric cancer risk: a comprehensive review synopsis from meta-analysis and genome-wide association studies. Cancer Biol Med 2019; 16:361-389. [PMID: 31516756 PMCID: PMC6713634 DOI: 10.20892/j.issn.2095-3941.2018.0290] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective In the past few decades, more than 500 reports have been published on the relationship between single nucleotide polymorphisms (SNPs) on candidate genes and gastric cancer (GC) risk. Previous findings have been disputed and are controversial. Therefore, we performed this article to summarize and assess the credibility and strength of genetic polymorphisms on the risk of GC. Methods We used Web of Science, PubMed, and Medline to identify meta-analyses published before July 30th, 2018 that assessed associations between variants on candidate genes and the risk of GC. Cumulative epidemiological evidence of statistical associations was assessed combining Venice criteria and a false-positive report probability (FPRP) test. Results Sixty-one variants demonstrated a significant association with GC risk, whereas 29 demonstrated no association. Nine variants on nine genes were rated as presenting strong cumulative epidemiological evidence for a nominally significant association with GC risk, including APE1 (rs1760944), DNMT1 (rs16999593), ERCC5 (rs751402), GSTT1 (null/presence), MDM2 (rs2278744), PPARG (rs1801282), TLR4 (rs4986790), IL-17F (rs763780), and CASP8 (rs3834129). Eleven SNPs were rated as moderate, and 33 SNPs were rated as weak. We also used the FPRP test to identify 13 noteworthy SNPs in five genome-wide association studies.
Conclusions Sixty-one variants are significantly associated with GC risk, and 29 variants are not associated with GC risk; however, five variants on five genes presented strong evidence for an association upgraded from moderate. Further study of these variants may be needed in the future. Our study also provides referenced information for the genetic predisposition to GC.
Collapse
Affiliation(s)
- Jie Tian
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Guanchu Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chunjian Zuo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Caiyang Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Wanlun He
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Huanwen Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
27
|
Lin H, Yang G, Yu J, Wang J, Li Q, Guo S, Cao B. KDM5c inhibits multidrug resistance of colon cancer cell line by down-regulating ABCC1. Biomed Pharmacother 2018; 107:1205-1209. [DOI: 10.1016/j.biopha.2018.08.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/27/2022] Open
|
28
|
Characterization of brain tumor initiating cells isolated from an animal model of CNS primitive neuroectodermal tumors. Oncotarget 2018; 9:13733-13747. [PMID: 29568390 PMCID: PMC5862611 DOI: 10.18632/oncotarget.24460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 01/30/2018] [Indexed: 01/17/2023] Open
Abstract
CNS Primitive Neuroectodermal tumors (CNS-PNETs) are members of the embryonal family of malignant childhood brain tumors, which remain refractory to current therapeutic treatments. Current paradigm of brain tumorigenesis implicates brain tumor-initiating cells (BTIC) in the onset of tumorigenesis and tumor maintenance. However, despite their significance, there is currently no comprehensive characterization of CNS-PNETs BTICs. Recently, we described an animal model of CNS-PNET generated by orthotopic transplantation of human Radial Glial (RG) cells - the progenitor cells for adult neural stem cells (NSC) - into NOD-SCID mice brain and proposed that BTICs may play a role in the maintenance of these tumors. Here we report the characterization of BTIC lines derived from this CNS-PNET animal model. BTIC’s orthotopic transplantation generated highly aggressive tumors also characterized as CNS-PNETs. The BTICs have the hallmarks of NSCs as they demonstrate self-renewing capacity and have the ability to differentiate into astrocytes and early migrating neurons. Moreover, the cells demonstrate aberrant accumulation of wild type tumor-suppressor protein p53, indicating its functional inactivation, highly up-regulated levels of onco-protein cMYC and the BTIC marker OCT3/4, along with metabolic switch to glycolysis - suggesting that these changes occurred in the early stages of tumorigenesis. Furthermore, based on RNA- and DNA-seq data, the BTICs did not acquire any transcriptome-changing genomic alterations indicating that the onset of tumorigenesis may be epigenetically driven. The study of these BTIC self-renewing cells in our model may enable uncovering the molecular alterations that are responsible for the onset and maintenance of the malignant PNET phenotype.
Collapse
|
29
|
Yue M, Ogawa A, Yamada N, Charles Richard JL, Barski A, Ogawa Y. Xist RNA repeat E is essential for ASH2L recruitment to the inactive X and regulates histone modifications and escape gene expression. PLoS Genet 2017; 13:e1006890. [PMID: 28686623 PMCID: PMC5521851 DOI: 10.1371/journal.pgen.1006890] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 07/21/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNA Xist plays a crucial role in establishing and maintaining X-chromosome inactivation (XCI) which is a paradigm of long non-coding RNA-mediated gene regulation. Xist has Xist-specific repeat elements A-F which are conserved among eutherian mammals, underscoring their functional importance. Here we report that Xist RNA repeat E, a conserved Xist repeat element in the Xist exon 7, interacts with ASH2L and contributes to maintenance of escape gene expression level on the inactive X-chromosome (Xi) during XCI. The Xist repeat E-deletion mutant female ES cells show the depletion of ASH2L from the Xi upon differentiation. Furthermore, a subset of escape genes exhibits unexpectedly higher expression in the repeat E mutant cells than the cells expressing wildtype Xist during X-inactivation, whereas the silencing of X-linked non-escape genes is not affected. We discuss the implications of these results to understand the role of ASH2L and Xist repeat E for histone modifications and escape gene regulation during random X-chromosome inactivation.
Collapse
Affiliation(s)
- Minghui Yue
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Akiyo Ogawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Norishige Yamada
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - John Lalith Charles Richard
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Allergy & Immunology and Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yuya Ogawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
30
|
Hu MM, Zhan HL, Liu LX, Xiang MQ, Pu ZJ, Li GP, Wu LF. Construction of a recombinant lentiviral vector expressing shRNA targeting KDM5C gene and its effect on proliferation and invasion of hepatocellular carcinoma HepG2 cells. Shijie Huaren Xiaohua Zazhi 2017; 25:691-701. [DOI: 10.11569/wcjd.v25.i8.691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To screen specific short hairpin RNA (shRNA) targeting the KDM5C gene, generate a recombinant lentiviral vector carrying KDM5C specific shRNA (Lv-shKDM5C), and investigate its effect on the proliferation and invasion of hepatocellular carcinoma HepG2 cells and lncRNA GAS5 expression.
METHODS Three pairs of shRNA fragments against the KDM5C (shKDM5C) gene and one negative control shRNA (shNC) were designed and synthesized, and a recombinant lentiviral vector was constructed using subcloning techniques. Subsequently the recombinant lentiviruses were packaged into 293T cells by co-transfection with four plasmids. The titer of virus was detected according to the expression of enhanced green fluoreseen protein (GFP). The packaged lentiviruses were transfected into HepG2 cells, and the mRNA and protein expression of KDM5C was detected by qRT-PCR and Western blot, respectively. The optimal recombinant lentiviral vector for KDM5C silencing was screened. The proliferation and invasion of HepG2 cells were detected by MTT and wound healing assay, respectively.
RESULTS Three recombinant lentiviruses were constructed successfully. The titers of Lv-shKDM5C-1, Lv-shKDM5C-2 and Lv-shKDM5C-3 were 4.95 × 108 TU/mL, 3.46 × 108 TU/mL and 3.08 × 108 TU/mL, respectively. HepG2 cells had higher KDM5C expression than normal hepatic cells (L02 cells; P < 0.05). Compared to non-infected and negative control cells, the mRNA and protein expression levels of KDM5C were significantly inhibited in HepG2 cells transfected with Lv-shKDM5C, with Lv-shKDM5C-3 having the highest interference efficiency. The cell proliferation was significantly decreased at 48 h and 72 h (P < 0.05 for both) and the wound closure rate was significantly decreased at 48 h after Lv-shKDM5C-3 transfection, compared to the Lv-shNC group (P < 0.05). Moreover, Lv-shKDM5C-3 transfection significantly increased the mRNA level of lncRNA GAS5 (P < 0.05).
CONCLUSION A recombinant lentiviral vector expressing shRNA targeting the human KDM5C gene has been successfully constructed, and it can effectively inhibit the proliferation and invasion of HepG2 cells. Inhibition of KDM5C expression increases the expression of lncRNA GAS5 in HepG2 cells.
Collapse
|
31
|
Li S, Sun A, Liang X, Ma L, Shen L, Li T, Zheng L, Shang W, Zhao W, Jia J. Histone demethylase PHF8 promotes progression and metastasis of gastric cancer. Am J Cancer Res 2017; 7:448-461. [PMID: 28401003 PMCID: PMC5385635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 02/15/2017] [Indexed: 06/07/2023] Open
Abstract
Histone demethylase plant homeodomain (PHD) finger protein 8 (PHF8) has been implicated in tumor development and malignant progression in various types of cancers. However, its potential roles in gastric cancer (GC) have not been explored. In this report, we show that PHF8 expression is upregulated in GC tissues, and the enhanced PHF8 level indicates a poor prognosis of GC patients. PHF8 knockdown reduces proliferation and metastasis of GC cells, while PHF8 overexpression has the opposite effects. Mechanistically, PHF8 interacts with β-catenin, and binds to the promoter region of vimentin, leading to the promotion of vimentin transcription. In addition, we show that H. pylori, the single most important risk factor for GC, markedly induce PHF8 expression. Our results suggest that H. pylori-induced PHF8-β-catenin-vimentin axis activation is a novel mechanism for GC malignant progression. Thus, we identify PHF8 as an oncogenic factor of GC, and suggest PHF8 might be a potential molecular target for therapeutic approaches for GC.
Collapse
Affiliation(s)
- Shuyan Li
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| | - Ao Sun
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| | - Xiuming Liang
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| | - Lin Ma
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| | - Li Shen
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| | - Tongyu Li
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| | - Lixin Zheng
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| | - Wenjing Shang
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| | - Wei Zhao
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| | - Jihui Jia
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| |
Collapse
|