1
|
Liang Z, Gao X, Jing C, Yuan T, Zhang L, Yin Y, Ou J, Li X, Qi W, Zhao D, Su H, Zhang H. Protective effect of ginseng extract and total ginsenosides on hematopoietic stem cell damage by inhibiting cell apoptosis and regulating the intestinal microflora. Int J Mol Med 2025; 55:14. [PMID: 39513620 PMCID: PMC11573321 DOI: 10.3892/ijmm.2024.5455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
Ginseng may improve the myelosuppression and intestinal microbiota disorder induced by cyclophosphamide (CY); however, the effect of ginseng components on hematopoietic stem cell (HSC) damage remains largely unexplored. The present study aimed to assess the protective effect of ginseng extract (GE), total ginsenosides (TG) and total polysaccharides (TP) from ginseng on the intestinal microflora and HSCs of model mice. In the present study, a mouse model of HSC damage induced by CY was constructed, intestinal microflora of fecal samples were sequenced using the 16S ribosomal RNA (rRNA) sequencing techniques, the differentially expressed genes (DEGs) of HSCs were analyzed using high‑throughput RNA‑sequencing, cell apoptosis and erythroid differentiation were detected using flow cytometry and the blood cell parameters were analyzed using a hematology analyzer. Analysis of the 16S rRNA in fecal samples showed that GE, TG and TP improved an imbalanced intestinal microflora, where the relative abundance of Lactobacillus intestinalis had a positive correlation with ginsenosides content. Specifically, TP significantly increased the expression of low‑abundance microflora. Transcriptomic analysis results revealed 2,250, 3,432 and 261 DEGs in the GE, TG and TP groups compared with those in the Model group, respectively. In the expression analysis of DEGs, both TG and GE were found to markedly increase the expression levels of Klf4, Hhex, Pbx1, Kmt2a, Mecom, Zc3h12a, Zbtb16, Lilr4b, Flt3 and Klf13. Furthermore, TG inhibited the apoptosis of HSCs by increasing the expression levels of Bcl2 and Mcl1, whilst decreasing the expression of Bax. By contrast, GE inhibited the apoptosis of HSCs by reducing the expression of Bax and Bad. Regarding erythroid differentiation and blood cell parameters, GE was found to significantly increase the expression of TER‑119. In addition, GE and TG improved all blood cell parameters, including the count of white blood cells, neutrophils (NEUT), lymphocytes (LYMPH), red blood cells (RBC), hemoglobin (HGB) and reticulocyte and platelets (PLT), whereas TP could only improve the counts of LYMPH, RBC, HGB and PLT. The improvement effect of GE and TG on WBC, NEUT and Ret was superior to TP. In conclusion, TG may protect the hematopoiesis function of HSCs in a CY‑induced mouse model of HSC damage, followed by GE. However, TP did not appear to improve HSC damage. Ginsenosides may therefore be considered essential ingredients in GE when protecting HSCs against damage. GE and TG exerted their protective effects on HSCs by inhibiting the apoptosis of HSCs whilst improving the imbalance of intestinal microflora.
Collapse
Affiliation(s)
- Zuguo Liang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Xiang Gao
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Chenxu Jing
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Tongyi Yuan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Lancao Zhang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Yifei Yin
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Jianze Ou
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Hang Su
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - He Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| |
Collapse
|
2
|
Yadav AK, Maharjan Shrestha R, Yadav PN. Anticancer mechanism of coumarin-based derivatives. Eur J Med Chem 2024; 267:116179. [PMID: 38340509 DOI: 10.1016/j.ejmech.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The structural motif of coumarins is related with various biological activities and pharmacological properties. Both natural coumarin extracted from various plants or a new coumarin derivative synthesized by modification of the basic structure of coumarin, in vitro experiments showed that coumarins are a promising class of anti-tumor agents with high selectivity. Cancer is a complex and multifaceted group of diseases characterized by the uncontrolled and abnormal growth of cells in the body. This review focuses on the anticancer mechanism of various coumarins synthesized and isolated in more than a decade. Isopentenyloxycoumarins inhibit angiogenesis by reducing CCl2 chemokine levels. Ferulin C is a potent colchicine-binding agent that destabilizes microtubules, exhibiting antiproliferative and anti-metastatic effects in breast cancer cells through PAK1 and PAK2-mediated signaling. Trimers of triphenylethylene-coumarin hybrids demonstrated significant proliferation inhibition in HeLa, A549, K562, and MCF-7 cell lines. Platinum(IV) complexes with 4-hydroxycoumarin have the potential for high genotoxicity against tumor cells, inducing apoptosis in SKOV-3 cells by up-regulating caspase 3 and caspase 9 expression. Derivatives of 3-benzyl coumarin seco-B-ring induce apoptosis, mediated through the PI3K/Akt/mTOR signaling pathway. Sesquiterpene coumarins inhibit the efflux pump of multidrug resistance-associated protein. Coumarin imidazolyl derivatives inhibit the aromatase enzyme, a major contributor to estrogen overproduction in estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- Anand Kumar Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | | | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal.
| |
Collapse
|
3
|
Silvestre F, Santos C, Silva V, Ombredane A, Pinheiro W, Andrade L, Garcia M, Pacheco T, Joanitti G, Luz G, Carneiro M. Pharmacokinetics of Curcumin Delivered by Nanoparticles and the Relationship with Antitumor Efficacy: A Systematic Review. Pharmaceuticals (Basel) 2023; 16:943. [PMID: 37513855 PMCID: PMC10384157 DOI: 10.3390/ph16070943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 07/30/2023] Open
Abstract
Curcumin is a polyphenolic compound, derived from Curcuma longa, and it has several pharmacological effects such as antioxidant, anti-inflammatory, and antitumor. Although it is a pleiotropic molecule, curcumin's free form, which is lipophilic, has low bioavailability and is rapidly metabolized, limiting its clinical use. With the advances in techniques for loading curcumin into nanostructures, it is possible to improve its bioavailability and extend its applications. In this review, we gather evidence about the comparison of the pharmacokinetics (biodistribution and bioavailability) between free curcumin (Cur) and nanostructured curcumin (Cur-NPs) and their respective relationships with antitumor efficacy. The search was performed in the following databases: Cochrane, LILACS, Embase, MEDLINE/Pubmed, Clinical Trials, BSV regional portal, ScienceDirect, Scopus, and Web of Science. The selected studies were based on studies that used High-Performance Liquid Chromatography (HPLC) as the pharmacokinetics evaluation method. Of the 345 studies initially pooled, 11 met the inclusion criteria and all included studies classified as high quality. In this search, a variety of nanoparticles used to deliver curcumin (polymeric, copolymeric, nanocrystals, nanovesicles, and nanosuspension) were found. Most Cur-NPs presented negative Zeta potential ranging from -25 mV to 12.7 mV, polydispersion index (PDI) ranging from 0.06 to 0.283, and hydrodynamic diameter ranging from 30.47 to 550.1 nm. Selected studies adopted mainly oral and intravenous administrations. In the pharmacokinetics analysis, samples of plasma, liver, tumor, lung, brain, kidney, and spleen were evaluated. The administration of curcumin, in nanoparticle systems, resulted in a higher level of curcumin in tumors compared to free curcumin, leading to an improved antitumor effect. Thus, the use of nanoparticles can be a promising alternative for curcumin delivery since this improves its bioavailability.
Collapse
Affiliation(s)
- Fernanda Silvestre
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Carolina Santos
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Biomedical Engineering (PPGEB), Faculty of Gama, University of Brasilia, Special Area of Industry Projection A, Brasilia 72444-240, Brazil
| | - Vitória Silva
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Alicia Ombredane
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Department of Nutrition, Faculty of Health Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Willie Pinheiro
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Sciences and Technologies in Health, Faculty of Ceilândia, Campus Darcy Ribeiro, University of Brasilia, Brasilia 72220-275, Brazil
| | - Laise Andrade
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Mônica Garcia
- Post-Graduate Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Thyago Pacheco
- Post-Graduate Program in Animal Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Graziella Joanitti
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Sciences and Technologies in Health, Faculty of Ceilândia, Campus Darcy Ribeiro, University of Brasilia, Brasilia 72220-275, Brazil
| | - Glécia Luz
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Biomedical Engineering (PPGEB), Faculty of Gama, University of Brasilia, Special Area of Industry Projection A, Brasilia 72444-240, Brazil
| | - Marcella Carneiro
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Biomedical Engineering (PPGEB), Faculty of Gama, University of Brasilia, Special Area of Industry Projection A, Brasilia 72444-240, Brazil
| |
Collapse
|
4
|
Gull N, Arshad F, Naikoo GA, Hassan IU, Pedram MZ, Ahmad A, Aljabali AAA, Mishra V, Satija S, Charbe N, Negi P, Goyal R, Serrano-Aroca Á, Al Zoubi MS, El-Tanani M, Tambuwala MM. Recent Advances in Anticancer Activity of Novel Plant Extracts and Compounds from Curcuma longa in Hepatocellular Carcinoma. J Gastrointest Cancer 2023; 54:368-390. [PMID: 35285010 PMCID: PMC8918363 DOI: 10.1007/s12029-022-00809-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Among all forms of cancers, hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. There are several treatment options for HCC ranging from loco-regional therapy to surgical treatment. Yet, there is high morbidity and mortality. Recent research focus has shifted towards more effective and less toxic cancer treatment options. Curcumin, the active ingredient in the Curcuma longa plant, has gained widespread attention in recent years because of its multifunctional properties as an antioxidant, anti-inflammatory, antimicrobial, and anticancer agent. METHODS A systematic search of PubMed, Embase and Google Scholar was performed for studies reporting incidence of HCC, risk factors associated with cirrhosis and experimental use of curcumin as an anti-cancer agent. RESULTS This review exclusively encompasses the anti-cancer properties of curcumin in HCC globally and it's postulated molecular targets of curcumin when used against liver cancers. CONCLUSIONS This review is concluded by presenting the current challenges and future perspectives of novel plant extracts derived from C. longa and the treatment options against cancers.
Collapse
Affiliation(s)
- Nighat Gull
- School of Sciences, Maulana Azad National Urdu University, 32, Hyderabad, TS, India
| | - Fareeha Arshad
- Department of Biochemistry, Aligarh Muslim University, U.P., India
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Sultanate of Oman.
| | - Israr Ul Hassan
- College of Engineering, Dhofar University, Salalah, Sultanate of Oman
| | - Mona Zamani Pedram
- Faculty of Mechanical Engineering-Energy Division, K. N. Toosi University of Technology, P.O. Box: 19395-1999, No. 15-19, Pardis St., Mollasadra Ave., Vanak Sq., Tehran, 1999 143344, Iran
| | - Arif Ahmad
- School of Sciences, Maulana Azad National Urdu University, 32, Hyderabad, TS, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nitin Charbe
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173229, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173229, India
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001, Valencia, Spain
| | - Mazhar S Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Northern Ireland, Coleraine, BT52 1SA, County Londonderry, UK.
| |
Collapse
|
5
|
Alici H, Tahtaci H, Demir K. Design and various in silico studies of the novel curcumin derivatives as potential candidates against COVID-19 -associated main enzymes. Comput Biol Chem 2022; 98:107657. [PMID: 35259661 PMCID: PMC8881819 DOI: 10.1016/j.compbiolchem.2022.107657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/04/2022] [Accepted: 02/25/2022] [Indexed: 01/18/2023]
Abstract
The novel coronavirus disease (COVID-19) is a highly contagious disease caused by the SARS-CoV-2 virus, leading severe acute respiratory syndrome in patients. Although various antiviral drugs and their combinations have been tried so far against SARS-CoV-2 and they have shown some effectiveness, there is still a need for safe and cost-effective binding inhibitors in the fight against COVID-19. Therefore, phytochemicals in nature can be a quick solution due to their wide therapeutic spectrum and strong antiviral, anti-inflammatory, and antioxidant properties. In this context, the low toxicity, and high pharmacokinetic properties of curcumin, which is a natural phytochemical, as well as the easy synthesizing of its derivatives reveal the need for investigation of its various derivatives as inhibitors against coronaviruses. The present study focused on curcumin derivatives with reliable ADME profile and high molecular binding potency to different SARS-CoV-2 target enzymes (3CLPro, PLpro, NSP7/8/12, NSP7/8/12 +RNA, NSP15, NSP16, Spike, Spike+ACE). In the molecular docking studies, the best binding scores for the 22 proposed curcumin derivatives were obtained for the PLpro protein. Furthermore, MD simulations were performed for high-affinity ligand-PLpro protein complexes and subsequently, Lys157, Glu161, Asp164, Arg166, Glu167, Met208, Pro247, Pro248, Tyr264, Tyr273 and Asp302 residues of PLpro was determined to play key role for ligand binding by Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) analysis. The results of the study promise that the proposed curcumin derivatives can be potent inhibitors against SARS-CoV-2 and be converted into pharmaceutical drugs. It is also expected that the findings may provide guiding insights to future design studies for synthesizing different antiviral derivatives of phytochemicals.
Collapse
Affiliation(s)
- Hakan Alici
- Department of Physics, Faculty of Arts and Sciences, Zonguldak Bulent Ecevit University, 67100 Zonguldak, Turkey.
| | - Hakan Tahtaci
- Department of Chemistry, Faculty of Science, Karabuk University, 78050 Karabuk, Turkey
| | - Kadir Demir
- Department of Physics, Faculty of Arts and Sciences, Zonguldak Bulent Ecevit University, 67100 Zonguldak, Turkey
| |
Collapse
|
6
|
Chen W, Yao P, Vong CT, Li X, Chen Z, Xiao J, Wang S, Wang Y. Ginseng: A bibliometric analysis of 40-year journey of global clinical trials. J Adv Res 2021; 34:187-197. [PMID: 35024190 PMCID: PMC8655123 DOI: 10.1016/j.jare.2020.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Ginseng has a long history of widespread use and remarkable effects as traditional medicine, adjuvant and dietary supplement. The therapeutic value, diverse functionalities and rapid development of ginseng have driven a significant increase in the number of ginseng clinical trials, ranging from its use in various ailments, formulation to safety concerns. Despite the persistent interest in ginseng clinical research, the medical effectiveness of ginseng is inconclusive and there is a lack of bibliometric analysis of the hundreds of ginseng clinical trials. AIM OF REVIEW This review aims to provide an extensive overview of ginseng clinical trials over the past 40 years (1979-2018) in combination with a qualitative and quantitative analysis. The annual clinical trial analysis of time distribution, country and institution network analysis for space cooperation, statistical analysis for various functions, as well as efficiency and effect size were performed for global ginseng clinical trials. Besides, preparation categories, administration routes, and the safety of ginseng clinical trials were also investigated. KEY SCIENTIFIC CONCEPTS OF REVIEW The 40-year journey of ginseng clinical trials has experienced emerging, boom, and stable or transitional stages. The global network of ginseng clinical trials has relevant regional distribution in Asia, North America and Europe. South Korea makes a great contribution to building up large research clusters and strong cooperation links. Universities are the key contributors to ginseng clinical trials. The development of ginseng products could be focused on the clinical trial in diseases with higher effectiveness or effect size, such as sexual function and cognitive & behavior and require rigorous investigations and evidence to evaluate safety. More attention should be paid to different effects from different preparations. We believe this review will provide new insights into the understanding of global ginseng clinical trials and identifies potential future perspectives for research and development of ginseng.
Collapse
Affiliation(s)
- Weijie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Peifen Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Xiuzhu Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
7
|
Cao JH, Xue R, He B. Quercetin protects oral mucosal keratinocytes against lipopolysaccharide-induced inflammatory toxicity by suppressing the AKT/AMPK/mTOR pathway. Immunopharmacol Immunotoxicol 2021; 43:519-526. [PMID: 34308732 DOI: 10.1080/08923973.2021.1948565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Cytokines can induce a chronic inflammatory response in the periodontium, leading to periodontitis. Quercetin, a naturally occuring flavonoid, has been shown to inhibit periodontitis, but how it works is poorly understood. In this study, we assessed the impact of quercetin on lipopolysaccharide (LPS)-induced inflammatory damage in oral mucosal keratinocytes (hOMK107) and explored its underlying mechanism. METHODS The viability and apoptosis of hOMK107 cells were measured after exposure to LPS, followed or not by quercetin. The production of IL-1β, IL-6, IL-8, TNF-ɑ, iNOS, and COX-2 was quantified by enzyme-linked immunosorbent assay (ELISA), while levels of Akt, AMPK, and mTOR and their phosphorylation were detected semi-quantitatively by western blotting. RESULTS Quercetin significantly improved cell viability and apoptosis by reversing LPS-induced upregulation of Bax and downregulation of Bcl-2 in hOMK107 cells. Quercetin decreased the production of IL-1β, IL-6, IL-8, TNF-ɑ, iNOS, and COX-2, as well as signal transduction via the Akt/AMPK/mTOR pathway. Inhibitors of Akt, AMPK, and mTOR strengthened the anti-apoptotic effects of quercetin, while agonists of Akt, AMPK, or mTOR or Akt overexpression weakened the anti-apoptotic effects. CONCLUSION These results indicate that quercetin may have a potential protective effect against the chronic inflammation-related periodontitis via suppressing Akt/AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Jun-Hua Cao
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Rui Xue
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Biao He
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
8
|
Kozak J, Forma A, Czeczelewski M, Kozyra P, Sitarz E, Radzikowska-Büchner E, Sitarz M, Baj J. Inhibition or Reversal of the Epithelial-Mesenchymal Transition in Gastric Cancer: Pharmacological Approaches. Int J Mol Sci 2020; 22:ijms22010277. [PMID: 33383973 PMCID: PMC7795012 DOI: 10.3390/ijms22010277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) constitutes one of the hallmarks of carcinogenesis consisting in the re-differentiation of the epithelial cells into mesenchymal ones changing the cellular phenotype into a malignant one. EMT has been shown to play a role in the malignant transformation and while occurring in the tumor microenvironment, it significantly affects the aggressiveness of gastric cancer, among others. Importantly, after EMT occurs, gastric cancer patients are more susceptible to the induction of resistance to various therapeutic agents, worsening the clinical outcome of patients. Therefore, there is an urgent need to search for the newest pharmacological agents targeting EMT to prevent further progression of gastric carcinogenesis and potential metastases. Therapies targeted at EMT might be combined with other currently available treatment modalities, which seems to be an effective strategy to treat gastric cancer patients. In this review, we have summarized recent advances in gastric cancer treatment in terms of targeting EMT specifically, such as the administration of polyphenols, resveratrol, tangeretin, luteolin, genistein, proton pump inhibitors, terpenes, other plant extracts, or inorganic compounds.
Collapse
Affiliation(s)
- Joanna Kozak
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (M.C.)
| | - Marcin Czeczelewski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (M.C.)
| | - Paweł Kozyra
- Student Research Group, Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, PL-20093 Lublin, Poland;
| | - Elżbieta Sitarz
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland;
| | - Elżbieta Radzikowska-Büchner
- Department of Plastic Surgery, Central Clinical Hospital of the Ministry of the Interior in Warsaw, 01-211 Warsaw, Poland;
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
- Correspondence:
| |
Collapse
|
9
|
Sharifi-Rad J, Rayess YE, Rizk AA, Sadaka C, Zgheib R, Zam W, Sestito S, Rapposelli S, Neffe-Skocińska K, Zielińska D, Salehi B, Setzer WN, Dosoky NS, Taheri Y, El Beyrouthy M, Martorell M, Ostrander EA, Suleria HAR, Cho WC, Maroyi A, Martins N. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front Pharmacol 2020; 11:01021. [PMID: 33041781 PMCID: PMC7522354 DOI: 10.3389/fphar.2020.01021] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Curcumin, a yellow polyphenolic pigment from the Curcuma longa L. (turmeric) rhizome, has been used for centuries for culinary and food coloring purposes, and as an ingredient for various medicinal preparations, widely used in Ayurveda and Chinese medicine. In recent decades, their biological activities have been extensively studied. Thus, this review aims to offer an in-depth discussion of curcumin applications for food and biotechnological industries, and on health promotion and disease prevention, with particular emphasis on its antioxidant, anti-inflammatory, neuroprotective, anticancer, hepatoprotective, and cardioprotective effects. Bioavailability, bioefficacy and safety features, side effects, and quality parameters of curcumin are also addressed. Finally, curcumin's multidimensional applications, food attractiveness optimization, agro-industrial procedures to offset its instability and low bioavailability, health concerns, and upcoming strategies for clinical application are also covered.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kasli, Jounieh, Lebanon
| | - Alain Abi Rizk
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kasli, Jounieh, Lebanon
| | - Carmen Sadaka
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Raviella Zgheib
- Institut Jean-Pierre Bourgin, AgroParisTech, INRA, Université Paris-Saclay, Versailles, France
| | - Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Tartous, Syria
| | | | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Centre for Biology and Pathology of Aging, University of Pisa, Pisa, Italy
| | | | - Dorota Zielińska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Warszawa, Poland
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, United States
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, United States
| | | | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kasli, Jounieh, Lebanon
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Concepción, Chile
| | - Elise Adrian Ostrander
- Medical Illustration, Kendall College of Art and Design, Ferris State University, Grand Rapids, MI, United States
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice, South Africa
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Muniyandi K, George B, Parimelazhagan T, Abrahamse H. Role of Photoactive Phytocompounds in Photodynamic Therapy of Cancer. Molecules 2020; 25:E4102. [PMID: 32911753 PMCID: PMC7570746 DOI: 10.3390/molecules25184102] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 01/10/2023] Open
Abstract
Cancer is one of the greatest life-threatening diseases conventionally treated using chemo- and radio-therapy. Photodynamic therapy (PDT) is a promising approach to eradicate different types of cancers. PDT requires the administration of photosensitisers (PSs) and photoactivation using a specific wavelength of light in the presence of molecular oxygen. This photoactivation exerts an anticancer effect via apoptosis, necrosis, and autophagy of cancer cells. Recently, various natural compounds that exhibit photosensitising potentials have been identified. Photoactive substances derived from medicinal plants have been found to be safe in comparison with synthetic compounds. Many articles have focused on PDT mechanisms and types of PSs, but limited attention has been paid to the phototoxic activities of phytocompounds. The reduced toxicity and side effects of natural compounds inspire the researchers to identify and use plant extracts or phytocompounds as a potent natural PS candidate for PDT. This review focusses on the importance of common photoactive groups (furanocoumarins, polyacetylenes, thiophenes, curcumins, alkaloids, and anthraquinones), their phototoxic effects, anticancer activity and use as a potent PS for an effective PDT outcome in the treatment of various cancers.
Collapse
Affiliation(s)
- Kasipandi Muniyandi
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 17011, Doornfontein 2028, South Africa; (K.M.); (B.G.)
- Bioprospecting Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu 641046, India;
| | - Blassan George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 17011, Doornfontein 2028, South Africa; (K.M.); (B.G.)
| | - Thangaraj Parimelazhagan
- Bioprospecting Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu 641046, India;
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 17011, Doornfontein 2028, South Africa; (K.M.); (B.G.)
| |
Collapse
|
11
|
Jana P, Acharya K. Mushroom: A New Resource for Anti-Angiogenic Therapeutics. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1721529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pradipta Jana
- Molecular and Applied Mycology and Pathology Laboratory, Department of Botany, University of Calcutta, Calcutta, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Pathology Laboratory, Department of Botany, University of Calcutta, Calcutta, India
| |
Collapse
|
12
|
Ashrafizadeh M, Mohammadinejad R, Samarghandian S, Yaribeygi H, Johnston TP, Sahebkar A. Anti-Tumor Effects of Osthole on Different Malignant Tissues: A Review of Molecular Mechanisms. Anticancer Agents Med Chem 2020; 20:918-931. [PMID: 32108003 DOI: 10.2174/1871520620666200228110704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/09/2019] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
Cancer management and/or treatment require a comprehensive understanding of the molecular and signaling pathways involved. Recently, much attention has been directed to these molecular and signaling pathways, and it has been suggested that a number of biomolecules/players involved in such pathways, such as PI3K/Akt, NF-kB, STAT, and Nrf2 contribute to the progression, invasion, proliferation, and metastasis of malignant cells. Synthetic anti-tumor agents and chemotherapeutic drugs have been a mainstay in cancer therapy and are widely used to suppress the progression and, hopefully, halt the proliferation of malignant cells. However, these agents have some undesirable side-effects and, therefore, naturally-occurring compounds with high potency and fewer side-effects are now of great interest. Osthole is a plant-derived chemical compound that can inhibit the proliferation of malignant cells and provide potent anti-cancer effects in various tissues. Therefore, in this review, we presented the main findings concerning the potential anti-tumor effects of osthole and its derivatives and described possible molecular mechanisms by which osthole may suppress malignant cell proliferation in different tissues.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, United States
| | | |
Collapse
|
13
|
Thronicke A, Oei SL, Merkle A, Matthes H, Schad F. Clinical Safety of Combined Targeted and Viscum album L. Therapy in Oncological Patients. MEDICINES 2018; 5:medicines5030100. [PMID: 30200590 PMCID: PMC6164814 DOI: 10.3390/medicines5030100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022]
Abstract
Background: Despite improvement of tumor response rates, targeted therapy may induce toxicities in cancer patients. Recent studies indicate amelioration of adverse events (AEs) by add-on mistletoe (Viscum album L., VA) in standard oncological treatment. The primary objective of this multicenter observational study was to determine the safety profile of targeted and add-on VA therapy compared to targeted therapy alone. Methods: Demographic and medical data were retrieved from the Network Oncology registry. Allocation to either control (targeted therapy) or combinational group (targeted/add-on VA) was performed. Safety-associated variables were evaluated by adjusted multivariable analyses. Results: The median age of the study population (n = 310) at first diagnosis was 59 years; 67.4% were female. In total, 126 patients (40.6%) were in the control and 184 patients (59.4%) in the combination group. Significant differences were observed between both groups with respect to overall AE frequency (χ2 = 4.1, p = 0.04) and to discontinuation of standard oncological treatment (χ2 = 4.8, p = 0.03) with lower rates in the combinational group (20.1%, 35% respectively) compared to control (30.2%, 60.5%, respectively). Addition of VA to targeted therapy significantly reduced the probability of oncological treatment discontinuation by 70% (Odds ratio (OR) 0.30, p = 0.02). Conclusions: Our results indicate a highly significant reduction of AE-induced treatment discontinuation in all-stage cancer patients when treated with VA in addition to targeted therapy.
Collapse
Affiliation(s)
- Anja Thronicke
- Network Oncology, Research Institute Havelhöhe, Kladower Damm 221, 14089 Berlin, Germany.
| | - Shiao Li Oei
- Network Oncology, Research Institute Havelhöhe, Kladower Damm 221, 14089 Berlin, Germany.
| | - Antje Merkle
- Network Oncology, Research Institute Havelhöhe, Kladower Damm 221, 14089 Berlin, Germany.
- Oncological Centre, Hospital Havelhoehe, Kladower Damm 221, 14089 Berlin, Germany.
| | - Harald Matthes
- Network Oncology, Research Institute Havelhöhe, Kladower Damm 221, 14089 Berlin, Germany.
- Medical Clinic for Gastroenterology, Infectiology and Rheumatology CBF and Institute of Social Medicine, Epidemiology and Health Economics CCM, Charité University Hospital Berlin, 10117 Berlin, Germany.
| | - Friedemann Schad
- Network Oncology, Research Institute Havelhöhe, Kladower Damm 221, 14089 Berlin, Germany.
- Oncological Centre, Hospital Havelhoehe, Kladower Damm 221, 14089 Berlin, Germany.
| |
Collapse
|
14
|
Yao F, Zhang L, Jiang G, Liu M, Liang G, Yuan Q. Osthole attenuates angiogenesis in an orthotopic mouse model of hepatocellular carcinoma via the downregulation of nuclear factor-κB and vascular endothelial growth factor. Oncol Lett 2018; 16:4471-4479. [PMID: 30214582 PMCID: PMC6126190 DOI: 10.3892/ol.2018.9213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/27/2018] [Indexed: 12/21/2022] Open
Abstract
Osthole has been demonstrated to have antitumor activity. Previous studies by our group indicated that osthole effectively inhibited tumor growth in hepatocellular carcinoma (HCC) through the induction of apoptosis and enhancement of antitumor immune responses in mice. The importance of angiogenesis in the proliferation, invasion and metastasis of tumor cells in HCC is well established. The present study aimed to investigate the effects of osthole on angiogenesis in an orthotopic mouse model of HCC. Orthotopic HCC in mice was established, and osthole at 61, 122 and 244 mg/kg was administered intraperitoneally once daily to the tumor-bearing mice for 14 consecutive days. Immunohistochemistry was performed to analyze the microvessel density (MVD) of tissues, and the level of vascular endothelial growth factor (VEGF) was measured by ELISA. The protein levels of nuclear factor-κB (NF-κB) p65 and IκB-α were also detected by western blotting. MVD was positively correlated with tumor weight in the orthotopic mouse model of HCC. Osthole administration significantly decreased MVD in tumor and adjacent tissues, and inhibited tumor growth. Furthermore, osthole downregulated the expression of VEGF and NF-κB p65, and upregulated IκB-α expression in tumor and adjacent tissues. To the best of our knowledge, the results of the present study demonstrated for the first time that osthole inhibits angiogenesis in an orthotopic mouse model of HCC, which may be one of the mechanisms underlying the anti-HCC activity of osthole, which in turn may be mediated by the NF-κB/VEGF signaling pathway. Therefore, osthole, a potential angiogenesis inhibitor and immune system enhancer, may be a promising lead compound for the treatment of HCC.
Collapse
Affiliation(s)
- Fei Yao
- Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China
| | - Lurong Zhang
- Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China.,Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Guorong Jiang
- Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China.,Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Min Liu
- Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China
| | - Guoqiang Liang
- Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China
| | - Qin Yuan
- Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
15
|
Aster koraiensis Extract and Chlorogenic Acid Inhibit Retinal Angiogenesis in a Mouse Model of Oxygen-Induced Retinopathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6402650. [PMID: 29849715 PMCID: PMC5937502 DOI: 10.1155/2018/6402650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/04/2018] [Indexed: 11/17/2022]
Abstract
Aster koraiensis extract (AKE) is a standard dietary herbal supplement. Chlorogenic acid (CA) is the major compound present in AKE. Retinal neovascularization is a common pathophysiology of retinopathy of prematurity, diabetic retinopathy, and wet form age-related macular degeneration. In this study, we aimed to evaluate the effects of AKE and CA on retinal neovascularization in a mouse model of oxygen-induced retinopathy (OIR). Vascular endothelial growth factor- (VEGF-) induced tube formation was assayed in human vascular endothelial cells. Experimental retinal neovascularization was induced by exposing C57BL/6 mice to 75% oxygen on postnatal day 7 (P7) and then returning them to normal oxygen pressure on P12. AKE (25 and 50 mg/kg/day) and CA (25 and 50 mg/kg/day) were administered intraperitoneally for 5 days (P12–P16). Retinal flat mounts were prepared to measure the extent of retinal neovascularization at P17. The incubation of human vascular endothelial cells with AKE and CA (1–10 μg/mL) resulted in the inhibition of VEGF-mediated tube formation in a dose-dependent manner. The neovascular area was significantly smaller in AKE or CA-treated mice than in the vehicle-treated mice. These results suggest that AKE is a potent antiangiogenic agent and that its antiangiogenic activity may, in part, be attributable to the bioactive component CA.
Collapse
|
16
|
Flavan-3-ols consumption and cancer risk: A meta-analysis of epidemiologic studies. Oncotarget 2018; 7:73573-73592. [PMID: 27634884 PMCID: PMC5342000 DOI: 10.18632/oncotarget.12017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/27/2016] [Indexed: 02/05/2023] Open
Abstract
Although numerous in vitro studies and animal model data have suggested that flavan-3-ols, the most common subclass of flavonoids in the diet, may exert protective effects against cancer, epidemiologic studies have reported inconclusive results for the association between flavan-3-ols intake and cancer risk. Therefore, we conducted this meta-analysis of epidemiologic studies to investigate the preventive effects of flavan-3-ols on various types of cancers. A total of 43 epidemiologic studies, consisting of 25 case-control and 18 prospective cohort studies, were included. A significant inverse association was shown between flavan-3-ols intake and the risk of overall cancer (relative risk (RR) 0.935, 95%CI: 0.891-0.981). When cancer types were separately analyzed, a statistically significant protective effect of flavan-3-ols consumption was observed in rectal cancer (RR 0.838, 95%CI: 0.733-0.958), oropharyngeal and laryngeal cancer (RR 0.759, 95%CI: 0.581-0.993), breast (RR 0.885, 95%CI: 0.790-0.991) in case-control studies and stomach cancer in women (RR 0.633, 95%CI: 0.468-0.858). Our analysis indicates the potential benefits of flavan-3-ols in cancer prevention.
Collapse
|
17
|
EGHB010, a Standardized Extract of Paeoniae Radix and Glycyrrhizae Radix, Inhibits VEGF-Induced Tube Formation In Vitro and Retinal Vascular Leakage and Choroidal Neovascularization In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1568702. [PMID: 29234364 PMCID: PMC5646325 DOI: 10.1155/2017/1568702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/29/2017] [Indexed: 11/18/2022]
Abstract
EGHB010 is a hot water extract of the rhizome mixture of Paeonia lactiflora Pallas and Glycyrrhiza uralensis Fisch. Choroidal neovascularization (CNV) and vascular leakage are the common pathophysiologies of age-related macular degeneration. In this study, we aimed to evaluate the effect of EGHB010 on retinal vascular leakage and laser-induced CNV in a rat model. Vascular endothelial growth factor- (VEGF-) induced tube formation was assayed in human retinal microvascular endothelial cells. Intravitreal VEGF-induced blood-retinal barrier breakdown was assayed in Sprague-Dawley rats. Experimental CNV was induced by laser photocoagulation in Brown Norway rats. EGHB010 (50 and 100 mg/kg/day) was administered orally for 10 days after laser photocoagulation. Choroidal flat mounts were prepared to measure the lesion size of CNV. Incubation of retinal vascular endothelial cells with EGHB010 (12.5 and 25 μg/mL) resulted in the inhibition of VEGF-induced tube formation in a dose-dependent manner. VEGF-mediated retinal vascular leakage was blocked by the oral administration of EGHB010. The CNV area was significantly lower in EGHB010-treated rats than in vehicle-treated rats. These results suggest that EGHB010 is a potent antiangiogenic agent. Thus, the oral administration of EGHB010 may have a beneficial effect in the treatment of vascular leakage and CNV in patients with age-related macular degeneration.
Collapse
|
18
|
Yehya AH, Asif M, Tan YJ, Sasidharan S, Abdul Majid AM, Oon CE. Broad spectrum targeting of tumor vasculature by medicinal plants: An updated review. J Herb Med 2017. [DOI: 10.1016/j.hermed.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
19
|
王 玉, 刘 贵, 刘 辉, 张 传. BMP-2在肝细胞癌中表达及与肿瘤血管生成的关系. Shijie Huaren Xiaohua Zazhi 2017; 25:1150-1158. [DOI: 10.11569/wcjd.v25.i13.1150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
目的 研究骨形成蛋白2(bone morphogenetic protein 2, BMP-2)在肝细胞癌(hepatocellular carcinoma, HCC)组织的表达情况及与肿瘤血管生成的关系.
方法 应用免疫组织化学方法检测BMP-2在40例HCC组织及40例癌旁组织的表达, 分析其与临床病理特征之间的关系, CD34染色标记肿瘤微血管密度(microvascular density, MVD).
结果 免疫组织化学显示, HCC组织中的BMP-2和血管内皮生长因子(vascular endothelial growth factor, VEGF)表达与癌旁组织中比较, 阳性率显著增加(75% vs 40%; 80.0% vs 42.5%, P<0.05), 并且BMP-2与VEGF蛋白表达与HCC包膜完整、结节、门静脉癌栓、TNM分期、细胞分化有关, 而与患者的年龄、性别、血清AFP、肝硬化无关. 根据Spearman相关性分析, BMP-2与VEGF蛋白表达呈正相关(r = 7.316, P = 0.0068), 提示BMP-2参与到肿瘤血管生成过程. HCC组织血管生成活跃(55% vs 15%, P <0.05), 血管生成与BMP-2表达有关.
结论 HCC中BMP-2高表达在肿瘤血管生成中有重要的作用.
Collapse
|
20
|
Zhu D, Wang S, Lawless J, He J, Zheng Z. Dose Dependent Dual Effect of Baicalin and Herb Huang Qin Extract on Angiogenesis. PLoS One 2016; 11:e0167125. [PMID: 27902752 PMCID: PMC5130244 DOI: 10.1371/journal.pone.0167125] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/09/2016] [Indexed: 01/30/2023] Open
Abstract
Huang Qin (root of Scutellaria baicalensis) is a widely used herb in different countries for adjuvant therapy of inflammation, diabetes, hypertension, different kinds of cancer and virus related diseases. Baicalin is the main flavonoid in this herb and has been extensively studied for 30 years. The angiogenic effect of herb Huang Qin extract and baicalin was found 13 years ago, however, the results were controversial with pro-angiogenic effect in some studies and anti-angiogenic effect in others. In this paper, the angiogenic effect of baicalin, its aglycone form baicalein and aqueous extract of Huang Qin was studied in chick embryo chorioallantoic membrane (CAM) model. Dose dependent dual effect was found in both aqueous extract and baicalin, but not in baicalein, in which only inhibitory effect was observed. In order to reveal the cellular and molecular mechanism of how baicalin and baicalein affect angiogenesis, cell proliferation and programmed cell death assays were performed in treated CAM. In addition, quantitative PCR array including 84 angiogenesis related genes was used to detect high and low dosage of baicalin and baicalein responsive genes. Low dose baicalin increased cell proliferation in developing blood vessels through upregulation of multiple angiogenic genes expression, but high dose baicalin induced cell death, performing inhibitory effect on angiogenesis. Both high and low dose of baicalein down regulated the expression of multiple angiogenic genes, decreased cell proliferation, and leads to inhibitory effects on angiogenesis.
Collapse
Affiliation(s)
- Dongqing Zhu
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, Illinois, United States of America
- Department of Pharmacy, Jiangsu Food & Pharmaceutical Science College, Huai’an, Jiangsu Province, People’s Republic of China
| | - Shanshan Wang
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, Illinois, United States of America
| | - John Lawless
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, Illinois, United States of America
| | - Jianchen He
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- * E-mail: (ZZ); (JH)
| | - Zhengui Zheng
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, Illinois, United States of America
- * E-mail: (ZZ); (JH)
| |
Collapse
|
21
|
An ethanol extract of Poria cocos inhibits the proliferation of non-small cell lung cancer A549 cells via the mitochondria-mediated caspase activation pathway. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
22
|
Bayó-Puxan N, Rodríguez-Mias R, Goldflam M, Kotev M, Ciudad S, Hipolito CJ, Varese M, Suga H, Campos-Olivas R, Barril X, Guallar V, Teixidó M, García J, Giralt E. Combined Use of Oligopeptides, Fragment Libraries, and Natural Compounds: A Comprehensive Approach To Sample the Druggability of Vascular Endothelial Growth Factor. ChemMedChem 2016; 11:928-39. [PMID: 26553526 PMCID: PMC5063151 DOI: 10.1002/cmdc.201500467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 12/28/2022]
Abstract
The modulation of protein-protein interactions (PPIs) is emerging as a highly promising tool to fight diseases. However, whereas an increasing number of compounds are able to disrupt peptide-mediated PPIs efficiently, the inhibition of domain-domain PPIs appears to be much more challenging. Herein, we report our results related to the interaction between vascular endothelial growth factor (VEGF) and its receptor (VEGFR). The VEGF-VEGFR interaction is a typical domain-domain PPI that is highly relevant for the treatment of cancer and some retinopathies. Our final goal was to identify ligands able to bind VEGF at the region used by the growth factor to interact with its receptor. We undertook an extensive study, combining a variety of experimental approaches, including NMR-spectroscopy-based screening of small organic fragments, peptide libraries, and medicinal plant extracts. The key feature of the successful ligands that emerged from this study was their capacity to expose hydrophobic functional groups able to interact with the hydrophobic hot spots at the interacting VEGF surface patch.
Collapse
Affiliation(s)
- Núria Bayó-Puxan
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Ricard Rodríguez-Mias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Michael Goldflam
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Martin Kotev
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Sonia Ciudad
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Christopher J Hipolito
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Monica Varese
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-8654, Japan
| | | | - Xavier Barril
- Department of Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- The Institute of Biomedicine of the University of Barcelona, Barcelona, 08007, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, 08010, Spain
| | - Víctor Guallar
- Catalan Institution for Research and Advanced Studies, Barcelona, 08010, Spain
- Department of Life Sciences, Barcelona Supercomputing Center, Barcelona, 08034, Spain
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain.
- Department of Organic Chemistry, University of Barcelona, Barcelona, 08028, Spain.
| |
Collapse
|
23
|
Bhutia SK, Behera B, Nandini Das D, Mukhopadhyay S, Sinha N, Panda PK, Naik PP, Patra SK, Mandal M, Sarkar S, Menezes ME, Talukdar S, Maiti TK, Das SK, Sarkar D, Fisher PB. Abrus agglutinin is a potent anti-proliferative and anti-angiogenic agent in human breast cancer. Int J Cancer 2016; 139:457-66. [PMID: 26914517 DOI: 10.1002/ijc.30055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 11/11/2022]
Abstract
Abrus agglutinin (AGG), a plant lectin isolated from the seeds of Abrus precatorius, has documented antitumor and immunostimulatory effects in murine models. To examine possible antitumor activity against breast cancer, we established human breast tumor xenografts in athymic nude mice and intraperitoneally administered AGG. AGG inhibited tumor growth and angiogenesis as confirmed by monitoring the expression of Ki-67 and CD-31, respectively. In addition, TUNEL positive cells increased in breast tumors treated with AGG suggesting that AGG mediates anti-tumorigenic activity through induction of apoptosis and inhibition of angiogenesis. On a molecular level, AGG caused extrinsic apoptosis through ROS generation that was AKT-dependent in breast cancer cells, without affecting primary mammary epithelial cells, suggesting potential cancer specificity of this natural compound. In addition, using HUVECs, AGG inhibited expression of the pro-angiogenic factor IGFBP-2 in an AKT-dependent manner, reducing angiogenic phenotypes both in vitro and in vivo. Overall, the present results establish that AGG promotes both apoptosis and anti-angiogenic activities in human breast tumor cells, which might be exploited for treatment of breast and other cancers.
Collapse
Affiliation(s)
- Sujit K Bhutia
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - Birendra Behera
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Durgesh Nandini Das
- Department of Life Science, National Institute of Technology, Rourkela, India
| | | | - Niharika Sinha
- Department of Life Science, National Institute of Technology, Rourkela, India
| | | | | | - Samir K Patra
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Siddik Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Mitchell E Menezes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| |
Collapse
|
24
|
Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Lo Russo L, DE Lillo A, Laino L, Lo Muzio L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp Ther Med 2015; 10:1615-1623. [PMID: 26640527 DOI: 10.3892/etm.2015.2749] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/14/2015] [Indexed: 12/18/2022] Open
Abstract
Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis.
Collapse
Affiliation(s)
- Donatella Perrone
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Fatima Ardito
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Giovanni Giannatempo
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Mario Dioguardi
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Lucio Lo Russo
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Alfredo DE Lillo
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Luigi Laino
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| |
Collapse
|
25
|
Choi YH. Induction of apoptosis by an ethanol extract of Poria cocos Wolf. in human leukemia U937 cells. Oncol Rep 2015; 34:2533-40. [PMID: 26353048 DOI: 10.3892/or.2015.4256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/31/2015] [Indexed: 11/06/2022] Open
Abstract
Poria cocos Wolf., which belongs to the Polyporaceae family, has been widely used as an Oriental traditional herbal medicine for centuries. Its sclerotium has been reported to possess a wide spectrum of pharmacological activities, including free-radical scavenging, anti-viral, anti-microbial, anti-inflammatory and anticancer activities. However, the cellular and molecular mechanisms of apoptosis induction by P. cocos in human cancer cells are poorly understood. In the present study, we investigated the pro-apoptotic potential of an ethanol extract of P. cocos sclerotium (EEPC) in human leukemia U937 cells in vitro. We found that EEPC induced anti-proliferative effects in U937 cells in a concentration- and time-dependent manner, which was due to apoptotic induction, as evident from morphological changes and flow cytometric assays. EEPC-induced apoptosis of U937 cells was associated with an increase in the Bax:Bcl-2 ratio, the release of cytochrome c to the cytosol, and a decrease in the expression of an inhibitor of the apoptosis family of proteins. The events were accompanied by activation of caspase-8, -9 and -3, and cleaved poly(ADP-ribose) polymerase, suggesting the involvement of both the intrinsic and extrinsic apoptotic cascades. In addition, the overexpression of Bcl-2 caused a significant attenuation of EEPC-induced caspase activation, degradation of PARP, and the collapse of mitochondrial membrane potential, and thereby reversed EEPC-induced cell apoptosis and growth inhibition. Collectively, these data provide insights into the molecular mechanisms underlying EEPC-induced apoptosis in U937 cells, suggesting that EEPC may be a new therapeutic option for the treatment of leukemia.
Collapse
Affiliation(s)
- Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| |
Collapse
|
26
|
Xu B, Shen W, Liu X, Zhang T, Ren J, Fan Y, Xu J. Oridonin inhibits BxPC-3 cell growth through cell apoptosis. Acta Biochim Biophys Sin (Shanghai) 2015; 47:164-73. [PMID: 25651847 DOI: 10.1093/abbs/gmu134] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Oridonin, an ent-kaurene diterpenoid extracted from the traditional Chinese herb Rabdosia rubescens, has multiple biological and pharmaceutical functions and has been used clinically for many years. While the antitumor function of oridonin has been corroborated by numerous lines of evidence, its anticancer mechanism has not been well documented. In this study, the pancreatic cancer cell line BxPC-3 was used as a model to investigate a possible anticancer mechanism of oridonin through examining its effects on cell viability. The results showed that oridonin affected cell viability in a time- and dose-dependent manner. After exposure to different oridonin concentrations, growth rates and cell cycle arrest of BxPC-3 cells were significantly reduced compared with untreated cells, suggesting its effects on proliferation inhibition. Detailed signaling pathway analysis by western blot analysis revealed that low-dose oridonin treatment inhibited BxPC-3 cell proliferation by up-regulating p53 and down-regulating cyclin-dependent kinase 1 (CDK1), which led to cell cycle arrest in the G2/M phase. A high-dose oridonin not only arrested BxPC-3 cells in the G2/M phase but also induced cell accumulation in the S phase, presumably through γH2AX up-regulation and DNA damage. In addition, our results showed that a cell subpopulation was stained with propidium iodide after oridonin treatment. Protein quantification showed that cleaved poly(ADP-ribose) polymerase (PARP) expression was increased after a high-dose oridonin treatment, especially after long-term exposure. Accompanied by the increased level of deactivated PARP in BxPC-3 cells, the apoptosis initiators caspase-3 and caspase-7 expressions were also significantly increased, suggesting that caspase-mediated apoptosis contributed to cell death.
Collapse
Affiliation(s)
- Bin Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wen Shen
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xing Liu
- School of Medicine, Jinggangshan University, Ji'an 343000, China
| | - Ting Zhang
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jun Ren
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yongjun Fan
- National Centre for Stem Cell Research, Eskitis Institute for Drug Discovery, Griffith University, QLD 4111, Australia
| | - Jian Xu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
27
|
Raditic DM, Bartges JW. Evidence-based Integrative Medicine in Clinical Veterinary Oncology. Vet Clin North Am Small Anim Pract 2014; 44:831-53. [DOI: 10.1016/j.cvsm.2014.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Jeong JW, Lee HH, Han MH, Kim GY, Hong SH, Park C, Choi YH. Ethanol extract of Poria cocos reduces the production of inflammatory mediators by suppressing the NF-kappaB signaling pathway in lipopolysaccharide-stimulated RAW 264.7 macrophages. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:101. [PMID: 24628870 PMCID: PMC3985596 DOI: 10.1186/1472-6882-14-101] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 03/10/2014] [Indexed: 12/21/2022]
Abstract
Background Poria cocos Wolf, a medicinal fungus, is widely used in traditional medicines in East Asian countries owing to its various therapeutic potentials. Although several studies have demonstrated the anti-inflammatory activity of this fungus, its underlying mechanisms have not yet been clearly defined. Methods In the present study, we have demonstrated the anti-inflammatory effects of ethanol extract of P. cocos (EEPC) in lipopolysaccaride (LPS)-stimulated RAW 264.7 macrophages. As inflammatory parameters, the productions of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-1β and tumor necrosis factor (TNF)-α were evaluated. We also examined the EEPC’s effect on the nuclear factor-kappaB (NF-κB) signaling pathway. Results Our results indicated that EEPC exhibits a potent inhibitory effect on NO production and inhibits PGE2 release in LPS-induced macrophages without affecting cell viability. EEPC also significantly attenuated LPS-induced secretion of inflammatory cytokines IL-1β and TNF-α. Additionally, LPS-induced expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2, IL-1β, and TNF-α was decreased by pre-treatment with EEPC at the transcriptional level. Moreover, EEPC clearly inhibited LPS-induced nuclear translocation of NF-κB p65 subunits, which correlated with EEPC’s inhibitory effects on inhibitor kappaB (IκB) degradation. Moreover, EEPC clearly suppressed the LPS-induced DNA-binding activity of NF-κB, as well as the nuclear translocation of the NF-κB p65, which correlated with EEPC’s inhibitory effects on inhibitor kappaB (IκB) degradation. Conclusions Taken together, our data indicates that EEPC targets the inflammatory response of macrophages via inhibition of iNOS, COX-2, IL-1β, and TNF-α through inactivation of the NF-κB signaling pathway, supporting the pharmacological basis of P. cocos as a traditional herbal medicine for treatment of inflammation and its associated disorders.
Collapse
|
29
|
Zhu XX, Yang L, Li YJ, Zhang D, Chen Y, Kostecká P, Kmoníčková E, Zídek Z. Effects of sesquiterpene, flavonoid and coumarin types of compounds from Artemisia annua L. on production of mediators of angiogenesis. Pharmacol Rep 2014; 65:410-20. [PMID: 23744425 DOI: 10.1016/s1734-1140(13)71016-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 11/22/2012] [Indexed: 12/23/2022]
Abstract
BACKGROUND In addition to recognized antimalarial effects, Artemisia annua L. (Qinghao) possesses anticancer properties. The underlying mechanisms of this activity are unknown. The aim of our experiments was to investigate the effects of distinct types of compounds isolated from A. annua on the immune-activated production of major mediators of angiogenesis playing a crucial role in growth of tumors and formation of metastasis. METHODS Included in the study were the sesquiterpene lactones artemisinin and its biogenetic precursors arteannuin B and artemisinic acid. The semi-synthetic analogue dihydroartemisinin was used for comparative purposes. The flavonoids were represented by casticin and chrysosplenol D, the coumarin type of compounds by 4-methylesculetin. Their effects on the lipopolysaccharide (LPS)-induced in vitro production of nitric oxide (NO) were analyzed in rat peritoneal cells using Griess reagent. The LPS-activated production of prostaglandin E2 (PGE2) and cytokines (VEGF, IL-1β, IL-6 and TNF-α) was determined in both rat peritoneal cells and human peripheral blood mononuclear cells using ELISA. RESULTS All sesquiterpenes (artemisinin, dihydroartemisinin, artemisinic acid, arteannuin B) significantly reduced production of PGE2. Arteannuin B also inhibited production of NO and secretion of cytokines. All NO, PGE2 and cytokines were suppressed by flavonoids casticin and chrysosplenol D. The coumarin derivative, 4-methylesculetin, was ineffective to change the production of any of these factors. CONCLUSIONS The inhibition of immune mediators of angiogenesis by sesquiterpene lactones and flavonoids may be one of the mechanisms of anticancer activity of Artemisia annua L.
Collapse
Affiliation(s)
- Xiaoxin X Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimen Nei Avenue, Beijing 100700, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Choi KS, Song H, Kim EH, Choi JH, Hong H, Han YM, Hahm KB. Inhibition of Hydrogen Sulfide-induced Angiogenesis and Inflammation in Vascular Endothelial Cells: Potential Mechanisms of Gastric Cancer Prevention by Korean Red Ginseng. J Ginseng Res 2013; 36:135-45. [PMID: 23717113 PMCID: PMC3659584 DOI: 10.5142/jgr.2012.36.2.135] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 03/04/2012] [Accepted: 03/04/2012] [Indexed: 12/17/2022] Open
Abstract
Previously, we reported that Helicobacter pylori-associated gastritis and gastric cancer are closely associated with increased levels of hydrogen sulfide (H2S) and that Korean red ginseng significantly reduced the severity of H. pylori-associated gastric diseases by attenuating H2S generation. Because the incubation of endothelial cells with H2S has been known to enhance their angiogenic activities, we hypothesized that the amelioration of H2S-induced gastric inflammation or angiogenesis in human umbilical vascular endothelial cells (HUVECs) might explain the preventive effect of Korean red ginseng on H. pylori-associated carcinogenesis. The expression of inflammatory mediators, angiogenic growth factors, and angiogenic activities in the absence or presence of Korean red ginseng extracts (KRGE) were evaluated in HUVECs stimulated with the H2S generator sodium hydrogen sulfide (NaHS). KRGE efficiently decreased the expression of cystathionine β-synthase and cystathionine γ-lyase, enzymes that are essential for H2S synthesis. Concomitantly, a significant decrease in the expression of inflammatory mediators, including cyclooxygenase-2 and inducible nitric oxide synthase, and several angiogenic factors, including interleukin (IL)-8, hypoxia inducible factor-1a, vascular endothelial growth factor, IL-6, and matrix metalloproteinases, was observed; all of these factors are normally induced after NaHS. An in vitro angiogenesis assay demonstrated that NaHS significantly increased tube formation in endothelial cells, whereas KRGE pretreatment significantly attenuated tube formation. NaHS activated p38 and Akt, increasing the expression of angiogenic factors and the proliferation of HUVECs, whereas KRGE effectively abrogated this H2S-activated angiogenesis and the increase in inflammatory mediators in vascular endothelial cells. In conclusion, KRGE was able to mitigate H2S-induced angiogenesis, implying that antagonistic action against H2S-induced angiogenesis may be the mechanism underlying the gastric cancer preventive effects of KRGE in H. pylori infection.
Collapse
Affiliation(s)
- Ki-Seok Choi
- Lab of Translational Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon Univeristy of Medicine and Science, Incheon 406-840, Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Jeong KJ, Cho KH, Panupinthu N, Kim H, Kang J, Park CG, Mills GB, Lee HY. EGFR mediates LPA-induced proteolytic enzyme expression and ovarian cancer invasion: inhibition by resveratrol. Mol Oncol 2012; 7:121-9. [PMID: 23127547 DOI: 10.1016/j.molonc.2012.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 01/09/2023] Open
Abstract
Lysophosphatidic acid (LPA) augments proliferation and metastasis of various cancer cells. We recently identified a critical role of the Rho/ROCK pathway for LPA-induced proteolytic enzyme expression and cancer cell progression. In the present study, we elucidate the underlying mechanisms by which LPA induces Rho activation and subsequent cellular invasion, and the reversal of these effects by resveratrol. We observed that both Gi and G13 contribute to LPA-induced EGFR activation. The activated EGFR in turn initiates a Ras/Rho/ROCK signaling cascade, leading to proteolytic enzyme secretion. Further we provide evidence that resveratrol inhibits EGFR phosphorylation and subsequent activation of a Ras/Rho/ROCK signaling. Therefore, we demonstrate a mechanistic cascade of LPA activating EGFR through Gi and G13 thus inducing a Ras/Rho/ROCK signaling for proteolytic enzyme expression and ovarian cancer cell invasion, as well as interference of the cascade by resveratrol through blocking EGFR phosphorylation.
Collapse
Affiliation(s)
- Kang Jin Jeong
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Dehelean CA, Feflea S, Molnár J, Zupko I, Soica C. Betulin as an Antitumor Agent Tested in vitro on A431, HeLa and MCF7, and as an Angiogenic Inhibitor in vivo in the CAM Assay. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700805] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Betulin, an important compound found in birch tree bark, can be converted to betulinic acid, an important pharmacological substance. Betulin has recently been reported as a cytotoxic agent for several tumor cell lines and as an apoptotic inductor. Angiogenesis is a key process involved in tumor metastasis and in developing tumor resistance to cytotoxic therapy. There are little data on betulin as an anti angiogenic agent. This preliminary study aimed to evaluate the cytotoxic effect of betulin on three cancer cell lines: HeLa (cervix adenocarcinoma), MCF7 (breast adenocarcinoma) and A431 (skin epidermoid carcinoma), and the apoptotic mechanism, as well as the implication in the capillary formation of the chicken embryo chorioallantoic membrane. The analysis consisted in the interpretation of the MTT assay and fluorescence double staining with Hoechst dye 33258 and propidium iodide, while the angiogenic effect was evaluated using morphological and immunohistochemical techniques. The antitumor activity is revealed by the double fluorescence staining, indicating that at higher concentrations, the cell membrane permeability is enhanced, while at lower concentrations there is evidence for nuclear fragmentation. In what concerns its effect on the process of blood vessel formation, betulin induced the reduction of newly formed capillaries, especially in the mesenchyme, possible through targeting the normal function of endothelial cells. In vitro results proved the superior specificity of betulin on cervical cancer cells, followed by skin cancer cells.
Collapse
Affiliation(s)
| | - Stefana Feflea
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timişoara, Romania 300041
| | - Judit Molnár
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary H-6720
| | - Istvan Zupko
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary H-6720
| | - Codruta Soica
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timişoara, Romania 300041
| |
Collapse
|
33
|
Grossman M, Agulnik J, Batist G. The Peter Brojde lung cancer centre: a model of integrative practice. ACTA ACUST UNITED AC 2012; 19:e145-59. [PMID: 22670104 DOI: 10.3747/co.19.929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The generally poor prognosis and poor quality of life for lung cancer patients have highlighted the need for a conceptual model of integrative practice. Although the philosophy of integrative oncology is well described, conceptual models that could guide the implementation and scientific evaluation of integrative practice are lacking. PURPOSE The present paper describes a conceptual model of integrative practice in which the philosophical underpinnings derive mainly from integrative oncology, with important contributions from Traditional Chinese Medicine (TCM) and the discipline of nursing. The conceptual model is described in terms of its purpose, values, concepts, dynamic components, scientific evidence, clinical approach, and theoretical underpinnings. The model argues that these components delineate the initial scope and orientation of integrative practice. They serve as the needed context for evaluating and interpreting the effectiveness of clinical interventions in enhancing patient outcomes in lung cancer at various phases of the illness. Furthermore, the development of relevant and effective integrative clinical interventions requires new research methods based on whole-systems research. An initial focus would be the identification of interrelationship patterns among variables that influence clinical interventions and their targeted patient outcomes.
Collapse
Affiliation(s)
- M Grossman
- McGill School of Nursing, McGill University, Montreal, QC.
| | | | | |
Collapse
|
34
|
Pimple S, Manjappa AS, Ukawala M, Murthy RSR. PLGA nanoparticles loaded with etoposide and quercetin dihydrate individually: in vitro cell line study to ensure advantage of combination therapy. Cancer Nanotechnol 2012; 3:25-36. [PMID: 26069494 PMCID: PMC4451862 DOI: 10.1007/s12645-012-0027-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 03/08/2012] [Indexed: 01/29/2023] Open
Abstract
PLGA nanoparticles, separately loaded with etoposide (ETN) and quercetin dihydrate (QDN), were prepared by adapting the solvent diffusion (nanoprecipitation) technique. The effect of formulation variables such as amount of polymer, theoretical drug loading, surfactant concentration, and aqueous and organic phase volumes on particle size and entrapment efficiency, were systematically studied. The optimal formulations obtained were of submicron size (153.4 ± 4.2 nm for ETN and 148.6 ± 1.6 nm for QDN) and with low polydispersity indices (0.058 ± 0.02 for ETN and 0.088 ± 0.03 for QDN). The entrapment efficiencies were found as 63.88 ± 1.5 % and 41.36 ± 3.4 % for ETN and QDN, respectively. The characterization of ETN and QDN was done by measuring the zeta potential, TEM, and DSC analysis. The comparison was made in respect of in vitro cytotoxicity assay using cancer cell line A549 (human lung adenocarcinoma epithelial cell line). The results revealed significant increase in cytotoxicity in nanoparticle formulations than their respective free drug. The comparison was also made with respect to cytotoxic activity of individual drug and combination of drugs in the form of free drugs as well as nanoparticles. The combination treatment in the form of nanoparticles is found to produce best results among the treatments used in cytotoxicity studies.
Collapse
Affiliation(s)
- Smita Pimple
- />Centre for Post Graduate Studies and Research, Pharmacy Department, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara, India
| | - Arehalli S. Manjappa
- />Centre for Post Graduate Studies and Research, Pharmacy Department, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara, India
| | - Mukesh Ukawala
- />Centre for Post Graduate Studies and Research, Pharmacy Department, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara, India
| | - R. S. R. Murthy
- />Centre for Post Graduate Studies and Research, Pharmacy Department, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara, India
- />Center for Nanomedicine, ISF College of Pharmacy, Moga, Punjab India
| |
Collapse
|
35
|
Raghavendran HRB, Sathyanath R, Shin J, Kim HK, Han JM, Cho J, Son CG. Panax ginseng modulates cytokines in bone marrow toxicity and myelopoiesis: ginsenoside Rg1 partially supports myelopoiesis. PLoS One 2012; 7:e33733. [PMID: 22523542 PMCID: PMC3327696 DOI: 10.1371/journal.pone.0033733] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 02/16/2012] [Indexed: 01/15/2023] Open
Abstract
In this study, we have demonstrated that Korean Panax ginseng (KG) significantly enhances myelopoiesis in vitro and reconstitutes bone marrow after 5-flurouracil-induced (5FU) myelosuppression in mice. KG promoted total white blood cell, lymphocyte, neutrophil and platelet counts and improved body weight, spleen weight, and thymus weight. The number of CFU-GM in bone marrow cells of mice and serum levels of IL-3 and GM-CSF were significantly improved after KG treatment. KG induced significant c-Kit, SCF and IL-1 mRNA expression in spleen. Moreover, treatment with KG led to marked improvements in 5FU-induced histopathological changes in bone marrow and spleen, and partial suppression of thymus damage. The levels of IL-3 and GM-CSF in cultured bone marrow cells after 24 h stimulation with KG were considerably increased. The mechanism underlying promotion of myelopoiesis by KG was assessed by monitoring gene expression at two time-points of 4 and 8 h. Treatment with Rg1 (0.5, 1 and 1.5 µmol) specifically enhanced c-Kit, IL-6 and TNF-α mRNA expression in cultured bone marrow cells. Our results collectively suggest that the anti-myelotoxicity activity and promotion of myelopoiesis by KG are mediated through cytokines. Moreover, the ginsenoside, Rg1, supports the role of KG in myelopoiesis to some extent.
Collapse
Affiliation(s)
| | - Rekha Sathyanath
- Liver and Immunology Research Center, Daejeon Oriental Hospital Daejeon, University, Daejeon, Republic of Korea
| | - JangWoo Shin
- Liver and Immunology Research Center, Daejeon Oriental Hospital Daejeon, University, Daejeon, Republic of Korea
| | - Hyeong Keug Kim
- Liver and Immunology Research Center, Daejeon Oriental Hospital Daejeon, University, Daejeon, Republic of Korea
| | - Jong Min Han
- Liver and Immunology Research Center, Daejeon Oriental Hospital Daejeon, University, Daejeon, Republic of Korea
| | - JungHyo Cho
- Liver and Immunology Research Center, Daejeon Oriental Hospital Daejeon, University, Daejeon, Republic of Korea
| | - Chang Gue Son
- Liver and Immunology Research Center, Daejeon Oriental Hospital Daejeon, University, Daejeon, Republic of Korea
- * E-mail: (CGS); (HRBR)
| |
Collapse
|
36
|
Hu B, An HM, Shen KP, DU Q. [Effects of Tenglong Buzhong Decoction on proliferation and apoptosis of human colon carcinoma cell line LS174T]. ACTA ACUST UNITED AC 2012; 8:575-80. [PMID: 20550881 DOI: 10.3736/jcim20100611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To observe the effects of Tenglong Buzhong Decoction (TLBZD), a compound traditional Chinese herbal medicine, on proliferation and apoptosis of colon carcinoma cell line LS174T in vitro. METHODS Human colon carcinoma cell line LS174T and human colon epithelial cell line CRL-1790 were treated with different doses of TLBZD. Cell proliferation was detected with cell counting kit-8 (CCK-8) assay and clone formation assay. Cell cycle and apoptosis were detected by flow cytometry, and caspase-3, -8 and -9 activities in LS174T cells were detected by colorimetric assay. RESULTS TLBZD had no obvious cytotoxicity in normal CRL-1790 cells. After 72-hour treatment of 1 mg/mL TLBZD, or 48- and 72-hour of 2 mg/mL TLBZD, or 24-, 48- and 72-hour of 5-20 mg/mL TLBZD, proliferation of LS174T cells was significantly inhibited. Clone formation of LS174T cells was significantly inhibited by 1 to 20 mg/mL TLBZD treatment. TLBZD at doses of 5 to 20 mg/mL also induced apoptosis and cell cycle arrest at G(0)/G(1) phase in LS174T cells. In addition, caspase-3, -8 and -9 activities were significantly elevated after 5 to 20 mg/mL TLBZD treatment. CONCLUSION TLBZD can inhibit cell proliferation, arrest cell cycle at G(0)/G(1) phase, and induce apoptosis in LS174T cells, which may be related to activating of caspase-3, -8 and -9.
Collapse
Affiliation(s)
- Bing Hu
- No.5 Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | | | | | | |
Collapse
|
37
|
Efficacy and Safety of a Chinese Herbal Medicine Formula (RCM-104) in the Management of Simple Obesity: A Randomized, Placebo-Controlled Clinical Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:435702. [PMID: 22550541 PMCID: PMC3328918 DOI: 10.1155/2012/435702] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 12/03/2022]
Abstract
Objective. This study was to evaluate the efficacy and safety of a Chinese herbal medicine formula (RCM-104) for the management of simple obesity. Method. Obese subjects aged between 18 and 60 years were selected for 12-week, double-blind, randomized, placebo-controlled trial. Subjects were randomly assigned to take 4 capsules of either the RCM-104 formula (n = 59) or placebo (n = 58), 3 times daily for 12 weeks. Measures of BW, BMI and WC, HC, WHR and BF composition were assessed at baseline and once every four weeks during the 12 week treatment period. Results. Of the 117 subjects randomised, 92 were included in the ITT analysis. The weight, BMI and BF in RCM-104 group were reduced by 1.5 kg, 0.6 kg/m2 and 0.9% and those in the placebo group were increased by 0.5 kg, 0.2 kg/m2 and 0.1% respectively. There were significant differences in BW and BMI (P < 0.05) between the two groups. Eleven items of the WLQOQ were significantly improved in the RCM-104 group while only 2 items were significantly improved in the placebo group. Adverse events were minor in both groups. Conclusion. RCM-104 treatment appears to be well tolerated and beneficial in reducing BW and BMI in obese subjects.
Collapse
|
38
|
Reuben SC, Gopalan A, Petit DM, Bishayee A. Modulation of angiogenesis by dietary phytoconstituents in the prevention and intervention of breast cancer. Mol Nutr Food Res 2011; 56:14-29. [PMID: 22125182 DOI: 10.1002/mnfr.201100619] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/14/2011] [Accepted: 10/25/2011] [Indexed: 01/11/2023]
Abstract
Breast cancer is the leading cause of cancer-related deaths for women in the United States and the rest of the world. About 8% of women develop breast cancer during the course of their lives. Dietary habits are closely associated with both the risk and progression of breast cancer. Dietary agents have accumulated increasing importance with regards to the prevention and treatment of breast cancer. One such manner by which these compounds can target breast cancer development and progression is through interference with the angiogenic pathways. Angiogenesis is an intricate process that involves the development of new capillaries from previously existing blood vessels. Disruption of this pathway, therefore, provides a novel and effective avenue for therapeutic intervention of breast cancer. Various phytochemicals found in the diet kill breast cancer cells in vitro and prevent as well as suppress breast cancer progression in various preclinical animal models. This review examines the value of dietary phytoconstituents in the prevention and treatment of breast cancer through modulation of the intricate and complex process of angiogenesis. In addition, the potential benefits, challenges, and future directions of research on anti-angiogenic dietary phytochemicals in the prevention and intervention of breast cancer are also addressed.
Collapse
Affiliation(s)
- Sharon C Reuben
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Since angiogenesis is critical for tumor growth and metastasis, anti-angiogenic treatment is a highly promising therapeutic approach. Thus, for over last couple of decades, there has been a robust activity aimed towards the discovery of angiogenesis inhibitors. More than forty anti-angiogenic drugs are being tested in clinical trials all over the world. This review discusses agents that have approved by the FDA and are currently in use for treating patients either as single-agents or in combination with other chemotherapeutic agents.
Collapse
Affiliation(s)
- Rajeev S Samant
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.
| | | |
Collapse
|
40
|
Saller R, Melzer J, Rostock M. [Antiinflammatory herbal drugs and their therapeutic potential in tumor patients]. FORSCHENDE KOMPLEMENTARMEDIZIN (2006) 2011; 18:203-212. [PMID: 21934320 DOI: 10.1159/000333140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Reinhard Saller
- Institut für Naturheilkunde, Universitätsspital, Zürich, Schweiz.
| | | | | |
Collapse
|
41
|
Abstract
Access to a wealth of information on the internet has led many cancer patients to use complementary methods as an adjunct to traditional therapy for cancer, with, and more often, without informing their primary caregiver. Of the common complementary modalities, the use of dietary supplements appears to be highly prevalent in patients in active treatment for cancer, and later in cancer survivors. Emerging research suggests that some plant-based agents may, indeed, impact late-stage cancer, influencing molecular processes corrupted by tumor cells to evade detection, expand clonally, and invade surrounding tissues. The intent of this article is to review some of the current science underpinning the use of nutraceuticals in the latter stages of cancer.
Collapse
|
42
|
Li DY, Chen XP. Correlation between ANGPTL3 expression and tumor angiogenesis in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2010; 18:3471-3475. [DOI: 10.11569/wcjd.v18.i32.3471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the correlation between the expression of angiopoietin-like protein 3 (ANGPTL3) and tumor angiogenesis in hepatocellular carcinoma (HCC).
METHODS: The expression of ANGPTL3 and VEGF proteins in 96 HCC specimens and matched tumor-adjacent specimens was detected by immunohistochemistry and Western blot. Immunohistochemical staining for CD34 was performed in the above specimens to evaluate microvessel density (MVD).
RESULTS: The positive rates of ANGPTL3 and VEGF expression in HCC were significantly higher than that in tumor-adjacent tissue (62.50% vs 32.29%; 81.25% vs 29.17%, both P < 0.05). Active angiogenesis was detected in HCC compared to tumor-adjacent tissue (67.71% vs 31.25%, P < 0.05). Tumor angiogenesis was related with ANGPTL3 expression in HCC. The expression of ANGPTL3 and VEGF protein was significantly up-regulated in HCC compared with matched tumor-adjacent noncancerous tissue.
CONCLUSION: High expression of ANGPTL3 is associated with tumor angiogenesis in HCC.
Collapse
|
43
|
Park ID, Yoo HS, Lee YW, Son CG, Kwon M, Sung HJ, Cho CK. Toxicological study on MUNOPHIL, water extract of Panax ginseng and Hericium erinaceum in rats. J Acupunct Meridian Stud 2010; 1:121-7. [PMID: 20633464 DOI: 10.1016/s2005-2901(09)60032-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 10/30/2008] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE As data on the safety profile of Panax ginseng and Hericium erinaceum is lacking, the safety of these two compounds was examined in a series of toxicological studies. MATERIALS AND METHODS MUNOPHIL, the water extract mixture of Panax ginseng and Hericium erinaceum was tested in an oral subchronic 28-day toxicity study in rats at doses of 1250, 2500 and 5000 mg/kg/day. RESULTS In repeated dose toxicity studies, no mortality was observed when varying doses of the extracts were administered once daily for a period of 28 days. There were no significant differences in body weight, absolute and relative organ weights between controls and treated rats of both sexes. Hematological analysis showed no differences in most parameters examined. In the biochemistry parameter analysis, no significant change occurred. Pathologically, neither gross abnormalities nor histopathological changes were observed. Therefore, MUNOPHIL appears to be safe and non-toxic in these studies and a no-observed adverse effect level in rats was established at 5000 mg/kg/day. CONCLUSION The data could provide satisfactory preclinical evidence of safety to launch clinical trials on standardized formulation of plant extracts.
Collapse
Affiliation(s)
- Il-Dong Park
- East-West Cancer Center, Dunsan Oriental Hospital of Daejeon University, 1136 Dunsan-dong, Seo-gu, Daejeon, South Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Jia L, Zhao Y, Liang XJ. Current evaluation of the millennium phytomedicine- ginseng (II): Collected chemical entities, modern pharmacology, and clinical applications emanated from traditional Chinese medicine. Curr Med Chem 2010; 16:2924-42. [PMID: 19689273 DOI: 10.2174/092986709788803204] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review, a sequel to part 1 in the series, collects about 107 chemical entities separated from the roots, leaves and flower buds of Panax ginseng, quinquefolius and notoginseng, and categorizes these entities into about 18 groups based on their structural similarity. The bioactivities of these chemical entities are described. The 'Yin and Yang' theory and the fundamentals of the 'five elements' applied to the traditional Chinese medicine (TCM) are concisely introduced to help readers understand how ginseng balances the dynamic equilibrium of human physiological processes from the TCM perspectives. This paper concerns the observation and experimental investigation of biological activities of ginseng used in the TCM of past and present cultures. The current biological findings of ginseng and its medical applications are narrated and critically discussed, including 1) its antihyperglycemic effect that may benefit type II diabetics; in vitro and in vivo studies demonstrated protection of ginseng on beta-cells and obese diabetic mouse models. The related clinical trial results are stated. 2) its aphrodisiac effect and cardiovascular effect that partially attribute to ginseng's bioactivity on nitric oxide (NO); 3) its cognitive effect and neuropharmacological effect that are intensively tested in various rat models using purified ginsenosides and show a hope to treat Parkinson's disease (PD); 4) its uses as an adjuvant or immunotherapeutic agent to enhance immune activity, appetite and life quality of cancer patients during their chemotherapy and radiation. Although the apoptotic effect of ginsenosides, especially Rh2, Rg3 and Compound K, on various tumor cells has been shown via different pathways, their clinical effectiveness remains to be tested. This paper also updates the antioxidant, anti-inflammatory, anti-apoptotic and immune-stimulatory activities of ginseng, its ingredients and commercial products, as well as common side effects of ginseng mainly due to its overdose, and its pharmacokinetics.
Collapse
Affiliation(s)
- Lee Jia
- Developmental Therapeutics Program, National Cancer Institute/ NIH, Rockville, MD 20852, USA.
| | | | | |
Collapse
|
45
|
Abstract
Traditional Chinese Medicine (tcm) may be integrated with conventional Western medicine to enhance the care of patients with cancer. Although tcm is normally implemented as a whole system, recent reductionist research suggests mechanisms for the effects of acupuncture, herbs, and nutrition within the scientific model of biomedicine. The health model of Chinese medicine accommodates physical and pharmacologic interventions within the framework of a body–mind network. A Cartesian split does not occur within this model, but to allow for scientific exploration within the restrictions of positivism, reductionism, and controls for confounding factors, the components must necessarily be separated. Still, whole-systems research is important to evaluate effectiveness when applying the full model in clinical practice. Scientific analysis provides a mechanistic understanding of the processes that will improve the design of clinical studies and enhance safety. Enough preliminary evidence is available to encourage quality clinical trials to evaluate the efficacy of integrating tcm into Western cancer care.
Collapse
Affiliation(s)
- S M Sagar
- Departments of Oncology and Medicine, McMaster University; Juravinski Cancer Program, Hamilton Health Sciences Corporation; and The Brain-Body Institute, St. Joseph's Healthcare System, Hamilton, ON.
| | | |
Collapse
|
46
|
d’Angelo I, Parajó Y, Horváth A, Kéri G, La Rotonda MI, Alonso MJ. Improved delivery of angiogenesis inhibitors from PLGA:poloxamer blend micro- and nanoparticles. J Microencapsul 2010; 27:57-66. [DOI: 10.3109/02652040902954729] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Kim SM, Lee SY, Cho JS, Son SM, Choi SS, Yun YP, Yoo HS, Yoon DY, Oh KW, Han SB, Hong JT. Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-kappaB. Eur J Pharmacol 2010; 631:1-9. [PMID: 20056115 DOI: 10.1016/j.ejphar.2009.12.018] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 11/30/2009] [Accepted: 12/15/2009] [Indexed: 02/06/2023]
Abstract
Ginsenoside Rg3 has been a subject of interest for use as a cancer preventive or therapeutic agent. Nuclear factor-kappa (NF-kappaB) is constitutively activated in prostate cancer, and gives cancer cells resistance to chemotherapeutic agents. To investigate whether Rg3 can suppress the activation of NF-kappaB, and thus increase susceptibility of prostate (LNCaP and PC-3, DU145) cells against chemotherapeutics, prostate cancer cell growth as well as activation of NF-kappaB was examined. We found that a combination treatment of Rg3 (50 microM) with a conventional agent docetaxel (5 nM) was more effective in the inhibition of prostate cancer cell growth and induction of apoptosis as well as G(0)/G(1) arrest accompanied with the significant inhibition of NF-kappaB activity than those by treatment of Rg3 or docetaxel alone. It was also found that NF-kappaB target gene expression of Bax, caspase-3, and caspase-9 was much more significantly enhanced, but the expression of Bcl-2, inhibitor of apoptosis protein (IAP-1) and X chromosome IAP (XIAP), and the expression of cell cycle regulatory proteins cyclin B, D1 and E, and cyclin dependent kinases 2 and 4 was also much more significantly inhibited by the combination treatment. The combination of Rg3 (50 microM) with cisplatin (10 microM) and doxorubicin (2 microM) was also more effective in the inhibition of prostate cancer cell growth and NF-kappaB activity than those by the treatment of Rg3 or chemotherapeutics alone. These results indicate that ginsenoside Rg3 inhibits NF-kappaB, and enhances the susceptibility of prostate cancer cells to docetaxel and other chemotherapeutics. Thus, ginsenoside Rg3 could be useful as an anti-cancer agent.
Collapse
Affiliation(s)
- Sun Mi Kim
- College of Pharmacy, Chungbuk National University, 48, Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sagar SM. Can the therapeutic gain of radiotherapy be increased by concurrent administration of Asian botanicals? Integr Cancer Ther 2009; 9:5-13. [PMID: 20042406 DOI: 10.1177/1534735409356981] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Therapeutic gain by radiotherapy can be achieved through improved targeting, selectively sensitizing malignant cells, or protecting normal tissue. The majority of synthetic chemical radiation sensitizers and normal tissue protectors have proved to be too toxic at effective clinical doses. However, Asian botanicals (from both Chinese and Ayurvedic medicine) are being evaluated for their ability to improve therapeutic gain through the modulation of reactive oxygen species. An increase in the efficacy of radiotherapy on tumor tissue allows a reduction in the dose applied to normal tissues. In addition, some botanicals may selectively protect normal tissue or increase its repair following radiation therapy. The results are promising enough to consider clinical trials.
Collapse
Affiliation(s)
- Stephen M Sagar
- McMaster University and Juravinski Cancer Centre, Hamilton, ON, Canada.
| |
Collapse
|
49
|
Ban JO, Cho JS, Hwang IG, Noh JW, Kim WJ, Lee US, Moon DC, Jeong HS, Lee HS, Hwang BY, Jung JK, Han SB, Hong JT. Anti-Cancer Effect of the Combination of Thiacremonone and Docetaxel by Inactivation of NF-κB in Human Cancer Cells. Biomol Ther (Seoul) 2009. [DOI: 10.4062/biomolther.2009.17.4.403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
50
|
Kraft TE, Parisotto D, Schempp C, Efferth T. Fighting Cancer with Red Wine? Molecular Mechanisms of Resveratrol. Crit Rev Food Sci Nutr 2009; 49:782-99. [DOI: 10.1080/10408390802248627] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|