1
|
Nagy AM, Abdelhameed MF, Rihan S, Diab KA, El-Saied M, Mohamed SS, El-Nattat WS, Hammam AMM. Rosemary officinalis extract mitigates potassium dichromate-induced testicular degeneration in male rats: Insights from the Nrf2 and its target genes signaling pathway. Toxicol Rep 2024; 13:101700. [PMID: 39165924 PMCID: PMC11334654 DOI: 10.1016/j.toxrep.2024.101700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
This study aimed to investigate the protective effects of Rosemary ethanol extract (ROEE) on testicular damage induced by potassium Dichromate (PDC) in male rats regarding the signaling pathway of Nrf2 and its target genes and proteins. A total of 28 male rats were divided into four groups: control, PDC only (15 mg/kg b.w. orally), PDC + low dose ROEE (220 mg/kg b.w.), and PDC + high dose ROEE (440 mg/kg b.w.). After 28 days of consecutive treatment, the rats were sacrificed for histological, immunohistochemistry, and biochemical analyses. The results revealed that the ROEE treatment up-regulated the Nrf2 and its target genes (NQO1, HO-1) mRNA expressions compared to the PDC group. correspondingly, the protein levels of GCLM, GSH, SOD, and catalase were significantly increased in the ROEE-treated animals compared to the PDC-treated animals. Furthermore, ROEE administration led to increased serum levels of testosterone (T4) and decreased levels of estrogen (E2) compared to the PDC group. Semen analysis and histopathology demonstrated that ROEE administration significantly improved spermatological impairment caused by PDC. The immunoexpression of cytoplasmic HSP-90 was reduced in the ROEE-treated groups, while the expression of androgen receptor (AR) was markedly improved. ROEE exhibited protective effects against PDC-induced testicular damage, likely due to its antioxidant properties. However, further investigation is required to elucidate the underlying mechanisms of action.
Collapse
Affiliation(s)
- Ahmed M. Nagy
- Department of Animal Reproduction &AI, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed F. Abdelhameed
- Pharmacology Department, Medical research and clinical studies institute, National Research Centre, Cairo, Egypt
| | - Shaimaa Rihan
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Kawthar A. Diab
- Department of Genetics and Cytology, National Research Centre, Cairo, Egypt
| | - Mohamed El-Saied
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shereif S. Mohamed
- Nutrition and Food Science Department, National Research Centre, Cairo, Egypt
| | - Walid S. El-Nattat
- Department of Animal Reproduction &AI, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Abdel Mohsen M. Hammam
- Department of Animal Reproduction &AI, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
2
|
Abdelall AMA, Khames A, Bekhit AA, Fathy M. Potential Effect of Etoricoxib in Reducing Inflammation in Methotrexate-Induced Pulmonary Injury in Rats: Role of Oxidative Stress and the TLR4/p38-MAPK/NF-κB Signaling Pathway. Inflammation 2024:10.1007/s10753-024-02198-w. [PMID: 39602008 DOI: 10.1007/s10753-024-02198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Numerous chemotherapeutic medications can have hazardous effects on the lungs, which can result in severe lung diseases. Methotrexate (MTX) is prescribed for cancer and inflammation-related disorders; nevertheless, it is exceptionally highly toxic and has multiple kinds of adverse reactions, including pulmonary injury. Our work was designed to demonstrate the ability of etoricoxib (ETO) to mitigate MTX-induced lung injury in experimental animals. Adult male Wistar rats were separated into four groups. The first group consisted of healthy controls that received carboxymethyl cellulose (1 ml/day, p.o.), the second group received a single dose of MTX (20 mg/kg/day, i.p.), the third group received ETO (10 mg/kg/day, p.o.) for three weeks, and the fourth group first received a single MTX (20 mg/kg, i.p.) and then was treated with ETO for three weeks. Concomitant treatment with ETO and MTX improved the histological structure of the lung tissue. It significantly altered the levels of oxidant/antioxidant markers, such as malondialdehyde (MDA), heme oxygenase-1 (HO-1), reduced glutathione (GSH), and nuclear factor erythroid 2-related factor 2 (Nrf-2), in favor of antioxidants. Moreover, ETO can normalize the proinflammatory cascade, which includes tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β). At the molecular level, ETO downregulated the protein expression of toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB), and p38 mitogen-activated protein kinase (p38 MAPK) in inflamed rat lungs. In conclusion, our findings indicate that oral administration of ETO ameliorates MTX-induced lung injury by inhibiting oxidative stress and suppressing the TLR4/NF-κB and TLR4/p38-MAPK inflammatory signaling pathways.
Collapse
Affiliation(s)
- Ali M Ali Abdelall
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag, 82511, Egypt
| | - Ali Khames
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sohag University, Sohag, 82511, Egypt
| | | | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| |
Collapse
|
3
|
Mersal EA, Morsi AA, Alkahtani J, Alhalal R, Alessa S, Shehab A, Sakr EM, Sabir DK, Dawood AF, Abdelmoneim AM. Pirfenidone targeted mechanisms for alleviating methotrexate-induced testiculopathy in Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03407-x. [PMID: 39222241 DOI: 10.1007/s00210-024-03407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Testicular injury and affected spermatogenesis are major complications of methotrexate (MTX) use. Oxidative stress is one contributing process leading to inflammation and apoptosis induction. Pirfenidone (PFD) is a well-known anti-fibrotic drug prescribed for interstitial lung fibrosis, in addition to anti-inflammatory, antioxidative, and antiapoptotic capabilities. The study aimed to explore the potential protection afforded by PFD in a rat model of MTX-induced testiculopathy. The experimental design included four groups, each containing seven adult Wistar rats: control, PFD (500 mg/kg/day, orally)-, MTX (0.5 mg/kg, intraperitoneal, twice weekly)-, and PFD/MTX-treated groups. Treatment continued for 4 weeks. Blood and testicular samples were harvested for biochemical, histological, immunohistochemical, and polymerase chain reaction (PCR) analyses. Also, the testicular damage and spermatogenic activity were graded by the testicular injury and Johnsen scoring system, respectively. PFD positively affected the serum testosterone (TST) level, reduced the testicular inflammatory mediators [tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β)], reduced the testicular oxidative burden, increased superoxide dismutase (SOD), and protected the testicular histological structure. In addition, antifibrotic effects, anti-caspase-3, and PCNA enhancement activity were recorded. PFD exhibited a protective potential and mitigated the MTX-induced testiculopathy via suppression of testicular oxidative stress, inflammation, fibrosis, and apoptosis and retaining the testicular proliferative efficacy as confirmed by histological, immunohistochemical, and biochemical methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Deema Kamal Sabir
- Department of Medical Surgical Nursing, College of Nursing, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Amal F Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Ahmed M Abdelmoneim
- Department of Physiology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
4
|
Abdel-Reheim MA, Ali GF, Hassanein EHM, Mohamed WR. Role of Nrf2/HO-1, PPAR-γ, and cytoglobin signals in the pathogenesis of methotrexate-induced testicular intoxication in rats and the protective effect of diacerein. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4235-4246. [PMID: 38060042 DOI: 10.1007/s00210-023-02876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Methotrexate (MTX) is an inhibitor of folic acid reductase used in managing a variety of malignancies. Testicular injury by MTX is one of its serious adverse effects. The current investigation aims to assess the protective effects of diacerein (DIA) on testicular injury by MTX and clarify the possible underlying mechanisms. Testicular injury in rats was induced by a single injection of 20 mg/kg body weight of MTX. DIA was given in 25 mg/kg body weight/day and 50 mg/kg body weight/day doses for 10 days. Compared to the MTX group, DIA attenuated testicular intoxication as evidenced by improvement of testicular histopathological abnormalities and increased serum testosterone and luteinizing hormone. DIA attenuated testicular oxidative stress changes by lowering testicular MDA and boosting GSH content and SOD activity. Moreover, administration of DIA attenuated MTX-induced testicular inflammation, as proved by decreased TNF-α and IL-6. At the molecular level, DIA induced significant upregulation in Nrf2, HO-1, PPAR-γ, and cytoglobin protein expression. The present results proved that DIA, in a dose-dependent manner, exhibited notable amelioration of testicular toxicity induced by MTX through augmentation of anti-inflammatory and antioxidant effects combined by upregulating Nrf2/HO-1, PPAR-γ, and cytoglobin signaling.
Collapse
Affiliation(s)
- Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Gaber F Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
5
|
Arafa ESA, Hassanein EHM, Ibrahim NA, Buabeid MA, Mohamed WR. Involvement of Nrf2-PPAR-γ signaling in Coenzyme Q10 protecting effect against methotrexate-induced testicular oxidative damage. Int Immunopharmacol 2024; 129:111566. [PMID: 38364740 DOI: 10.1016/j.intimp.2024.111566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
Studies have identified Coenzyme Q10 (CoQ10) as a promising agent in improving idiopathic male infertility; however, its role in chemically or environmentally induced testicular dysfunction is not well-established. We investigated the potential of CoQ10 to attenuate methotrexate (MTX)-induced testicular damage and to identify molecular targets of CoQ10 effects. Wistar rats received a single intraperitoneal dose of 20 mg/kg MTX on the fifth day of the 10-day experimental protocol. 100 mg/kg CoQ10 was given orally daily for ten days, alone or combined with MTX. The testes of MTX-treated animals showed thickened tunica albuginea, distortion of seminiferous tubules with a marked reduction of germinal lining, a few primary spermatocytes with no spermatozoa, apoptotic cells, congested sub-capsular and interstitial blood vessels, and interstitial edema. Reduction of reproductive hormones and increased oxidative, inflammatory, and apoptotic biomarkers levels were also seen in the MTX-treated rats. CoQ10 + MTX-treated rats were protected against MTX-induced testicular histological changes and showed improvement in testosterone, luteinizing-, and follicle-stimulating hormone serum levels compared to the MTX group. The testes of the CoQ10 + MTX-treated rats showed reduced malondialdehyde, myloperoxidase, tumor necrosis factor -α, interleukin-6 and -1β and Bax: Bcl2 ratio and enhanced glutathione, and catalase compared to MTX alone. CoQ10 enhanced MTX-induced downregulation of Nrf2 and PPAR-γ signaling and modulated its downstream targets, the inducible nitric oxide synthase, NF-κB, Bax, and Bcl2. In conclusion, CoQ10 targeted the Nrf2-PPAR-γ signaling loop and its downstream pathways, mitigating MTX-induced oxidative stress-related damages and alleviating the testicular dysfunction MTX caused. Our data suggest Nrf2-PPAR-γ signaling as a potential therapeutic target in testicular toxicity, where oxidative stress, inflammation, and apoptosis trigger damage.
Collapse
Affiliation(s)
- El-Shaimaa A Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research (CMBAHSR), Ajman University, Ajman, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Nihal A Ibrahim
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research (CMBAHSR), Ajman University, Ajman, United Arab Emirates
| | - Manal A Buabeid
- Fatima College of Health Sciences, Department of Pharmacy, United Arab Emirates
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
6
|
Hu D, Wang HJ, Yu LH, Guan ZR, Jiang YP, Hu JH, Yan YX, Zhou ZH, Lou JS. The role of Ginkgo Folium on antitumor: Bioactive constituents and the potential mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117202. [PMID: 37742878 DOI: 10.1016/j.jep.2023.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba L. is a well-known and highly regarded resource in Chinese traditional medicine due to its effectiveness and safety. Ginkgo Folium, the leaf of Ginkgo biloba L., contains biologically active constituents with diverse pharmacological activities. Recent studies have shown promising antitumor effects of the bioactive constituents found in Ginkgo Folium against various types of cancer cells, highlighting its potential as a natural source of antitumor agents. Further research is needed to elucidate the underlying mechanisms and optimize its therapeutic potential. AIM OF THE REVIEW To provide a detailed understanding of the pharmacological activities of Ginkgo Folium and its potential therapeutic benefits for cancer patients. MATERIALS AND METHODS In this study, we conducted a thorough and systematic search of multiple online databases, including PubMed, Web of Science, Medline, using relevant keywords such as "Ginkgo Folium," "flavonoids," "terpenoids," "Ginkgo Folium extracts," and "antitumor" to cover a broad range of studies that could inform our review. Additionally, we followed a rigorous selection process to ensure that the studies included in our review met the predetermined inclusion criteria. RESULTS The active constituents of Ginkgo Folium primarily consist of flavonoids and terpenoids, with quercetin, kaempferol, isorhamnetin, ginkgolides, and bilobalide being the major compounds. These active constituents exert their antitumor effects through crucial biological events such as apoptosis, cell cycle arrest, autophagy, and inhibition of invasion and metastasis via modulating diverse signaling pathways. During the process of apoptosis, active constituents primarily exert their effects by modulating the caspase-8 mediated death receptor pathway and caspase-9 mediated mitochondrial pathway via regulating specific signaling pathways. Furthermore, by modulating multiple signaling pathways, active constituents effectively induce G1, G0/G1, G2, and G2/M phase arrest. Among these, the pathways associated with G2/M phase arrest are particularly extensive, with the cyclin-dependent kinases (CDKs) being most involved. Moreover, active constituents primarily mediate autophagy by modulating certain inflammatory factors and stressors, facilitating the fusion stage between autophagosomes and lysosomes. Additionally, through the modulation of specific chemokines and matrix metalloproteinases, active constituents effectively inhibit the processes of epithelial-mesenchymal transition (EMT) and angiogenesis, exerting a significant impact on cellular invasion and migration. Synergistic effects are observed among the active constituents, particularly quercetin and kaempferol. CONCLUSION Active components derived from Ginkgo Folium demonstrate a comprehensive antitumor effect across various levels and pathways, presenting compelling evidence for their potential in new drug development. However, in order to facilitate their broad and adaptable clinical application, further extensive experimental investigations are required to thoroughly explore their efficacy, safety, and underlying mechanisms of action.
Collapse
Affiliation(s)
- Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Li-Hua Yu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zheng-Rong Guan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Ping Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Xin Yan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
7
|
Gholami M, Nemati A, Zarasvand AA, Zendehdel A, Jalili C, Rashidi I, Mansouri K, Taheri F, Assadollahi V, Gholami E. Selenium mitigates methotrexate-induced testicular injury: Insights from male NMRI mice model. Birth Defects Res 2024; 116:e2315. [PMID: 38348645 DOI: 10.1002/bdr2.2315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND AND AIM Chemotherapy, particularly with methotrexate (MTX), often elicits testicular toxicity, leading to impaired spermatogenesis and hormone imbalances. This study aimed to investigate the potential protective effects of selenium (Se) against MTX-induced testicular injury. MATERIALS AND METHODS Male mice were divided into control, MTX, Se, and MTX + Se groups. Histopathological examination involved the preparation of testicular tissue sections using the Johnsen's tubular biopsy score (JTBS) for spermatogenesis evaluation. Biochemical tests included the assessment of testosterone, malondialdehyde (MDA), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels. Real-time quantitative polymerase chain reaction (RT-qPCR) was employed to analyze the expression of caspase 3 (casp3), tumor protein 53 (p53), B-cell lymphoma 2 (Bcl2), and Bcl2-associated X protein (Bax) genes. Statistical analysis was performed using ANOVA and Tukey's tests (p < .05). RESULTS Histopathological analysis revealed significant testicular damage in the MTX group, with decreased spermatogenesis and Leydig cell count, while Se administration mitigated these effects, preserving the structural integrity of the reproductive epithelium. Biochemical analysis demonstrated that MTX led to elevated malondialdehyde (MDA) levels and reduced testosterone, LH, and FSH levels, suggesting oxidative stress and Leydig cell dysfunction. Gene expression analysis indicated that MTX upregulated proapoptotic genes (casp3, p53, and bax) while downregulating the antiapoptotic Bcl2 gene. In contrast, Se treatment reversed these trends, highlighting its potential antiapoptotic properties. CONCLUSION Our findings underscore the potential of Se as a therapeutic agent to mitigate the reproductive toxicity associated with MTX-induced testicular injury. Se exerts protective effects by regulating oxidative stress, preserving hormone balance, and modulating apoptotic pathways. These results suggest that Se supplementation could be a promising strategy to alleviate chemotherapy-induced testicular damage and preserve male fertility.
Collapse
Affiliation(s)
- Mohammadreza Gholami
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Afsaneh Nemati
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Alasvand Zarasvand
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Abolfazl Zendehdel
- Department of Internal Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Cyrus Jalili
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Iraj Rashidi
- Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Forough Taheri
- Department of Physiology, School of medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vahideh Assadollahi
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Gholami
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Essawy A, Matar S, Mohamed N, Abdel-Wahab W, Abdou H. Ginkgo biloba extract protects against tartrazine-induced testicular toxicity in rats: involvement of antioxidant, anti-inflammatory, and anti-apoptotic mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15065-15077. [PMID: 38286926 DOI: 10.1007/s11356-024-32047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/14/2024] [Indexed: 01/31/2024]
Abstract
The use of additives, especially colorants, in food and pharmaceutical industry is increasing dramatically. Currently, additives are classified as contaminants of emerging concern (CECs). Concerns have been raised about the potential hazards of food additives to reproductive organs and fertility. The present study investigates the reproductive toxicity of tartrazine (TRZ), a synthetic colorant, in male rats and aims to explore the curative effect of Ginkgo biloba extract (EGb) against TRZ-induced testicular toxicity. Twenty-four rats were divided into four groups: the control (0.5 ml distilled water), the EGb group (100 mg/kg EGb alone), the TRZ group (7.5 mg/kg TRZ alone), and the TRZ-EGb group (7.5 mg/kg TRZ plus 100 mg/kg EGb). The doses were administered orally in distilled water once daily for 28 days. Toxicity studies of TRZ investigated testicular redox state, serum gonadotropins, and testosterone levels, testicular 17 ß-hydroxysteroid dehydrogenase activity, sperm count and quality, levels of inflammatory cytokines, and caspase-3 expression as an apoptotic marker. Also, histopathological alterations of the testes were examined. TRZ significantly affected the testicular redox status as indicated by the increase in malondialdehyde and the decrease in reduced glutathione, superoxide dismutase, and catalase. It also disrupted serum gonadotropins (follicle stimulating hormone and luteinizing hormone) and testosterone levels and the activity of testicular 17ß-hydroxysteroid dehydrogenase. Additionally, TRZ adversely affected sperm count, motility, viability, and abnormality. Levels of tumor necrosis factor-α, interleukin-1β, interleukin-6, and expression of caspase-3 were increased in the testes. Histopathological examination of the testes supported the alterations mentioned above. Administration of EGb significantly ameliorated TRZ-induced testicular toxicity in rats. In conclusion, EGb protected against TRZ-induced testicular toxicity through antioxidant, anti-inflammatory, and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Amina Essawy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Shreen Matar
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nema Mohamed
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Wessam Abdel-Wahab
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Heba Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Abdalhameid E, Abd El-Haleim EA, Abdelsalam RM, Georgy GS, Fawzy HM, Kenawy SA. Cinnamic acid mitigates methotrexate-induced lung fibrosis in rats: comparative study with pirfenidone. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1071-1079. [PMID: 37581637 PMCID: PMC10791841 DOI: 10.1007/s00210-023-02652-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/28/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE Lung fibrosis is a heterogeneous lung condition characterized by excessive accumulation of scarred tissue, leading to lung architecture destruction and restricted ventilation. The current work was conducted to examine the probable shielding influence of cinnamic acid against lung fibrosis induced by methotrexate. METHODS Rats were pre-treated with oral administration of cinnamic acid (50 mg/kg/day) for 14 days, whereas methotrexate (14 mg/kg) was orally given on the 5th and 12th days of the experiment. Pirfenidone (50 mg/kg/day) was used as a standard drug. At the end of the experiment, oxidative parameters (malondialdehyde, myeloperoxidase, nitric oxide, and total glutathione) and inflammatory mediators (tumor necrosis factor-α and interleukin-8), as well as transforming growth factor-β and collagen content, as fibrosis indicators, were measured in lung tissue. RESULTS Our results revealed that cinnamic acid, as pirfenidone, effectively prevented the methotrexate-induced overt histopathological damage. This was associated with parallel improvements in oxidative, inflammatory, and fibrotic parameters measured. The outcomes of cinnamic acid administration were more or less the same as those of pirfenidone. In conclusion, pre-treatment with cinnamic acid protects against methotrexate-induced fibrosis, making it a promising prophylactic adjuvant therapy to methotrexate and protecting against its possible induction of lung fibrosis.
Collapse
Affiliation(s)
- Eman Abdalhameid
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA), Giza, Egypt.
| | - Enas A Abd El-Haleim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Biology, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Gehan S Georgy
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Hala M Fawzy
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Sanaa A Kenawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Ragab SMM, Almohaimeed HM, Alghriany AAI, Khalil NSA, Abd-Allah EA. Protective effect of Moringa oleifera leaf ethanolic extract against uranyl acetate-induced testicular dysfunction in rats. Sci Rep 2024; 14:932. [PMID: 38195615 PMCID: PMC10776666 DOI: 10.1038/s41598-023-50854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
Uranyl acetate (UA) is used in civilian and military applications, predisposing it to wide dispersion in ecosystems. Using high-performance liquid chromatography, gas chromatography-mass spectrometry, and 2,2-Diphenyl-1-picrylhydrazyl scavenging radical analysis, we confirmed that Moringa oleifera leaf ethanolic extract (MLEE) is rich in biologically active phytochemicals. Thus, this study aims to investigate the possible defensive effect of MLEE against UA-induced testicular dysfunction. To achieve this, rats were divided randomly and evenly into three groups for 14 days. The control group received no treatment, while the UA group received a single intraperitoneal injection of UA at a dose of 5 mg/kg BW dissolved in saline on the 12th day of the experiment, followed by no treatment the following day. The MLEE + UA group received daily oral administration of MLEE (300 mg/kg BW) dissolved in distilled water before exposure to UA intoxication. The disruption observed in the pituitary-gonadal axis of UA-intoxicated rats was characterized by a significant decrease in luteinizing hormone, follicle-stimulating hormone, testosterone, and estradiol 17beta levels. Additionally, there was a notable increase in malondialdehyde and a decrease in catalase, superoxide dismutase, reduced glutathione, and nitric oxide, accompanied by an up-regulation in the immuno-expression of nuclear factor-kappa B, indicating a disturbance in the redox balance. The TUNEL assay confirmed a substantial rise in apoptotic cell numbers in the UA group. Testicular histopathological changes, excessive collagen deposition, and reduced glycogen content were evident following UA exposure. However, supplementation with MLEE effectively countered these mentioned abnormalities. MLEE is proposed to combat the toxicological molecular targets in the UA-affected testis by restoring the balance between oxidants and antioxidants while obstructing the apoptotic cascade. MLEE contains an abundance of redox-stabilizing and cytoprotective phytochemicals that have the potential to counteract the mechanistic pathways associated with UA exposure. These findings encourage further research into other plausible protective aspects of Moringa oleifera against the UA challenge.
Collapse
Affiliation(s)
- Sohair M M Ragab
- Laboratory of Physiology, Department of Zoology and Entomology, Faculty of Sciences, Assiut University, Assiut, Egypt
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | - Nasser S Abou Khalil
- Department of Basic Medical Sciences, Faculty of Physical Therapy, Merit University, Sohag, Egypt.
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Elham A Abd-Allah
- Department of Zoology, Faculty of Science, New Valley University, El-Kharga, Egypt
| |
Collapse
|
11
|
Abbas NAT, El-Sayed SS, Abd El-Fatah SS, Sarhan WM, Abdelghany EMA, Sarhan O, Mahmoud SS. Mechanistic aspects of ameliorative effects of Eicosapentanoic acid ethyl ester on methotrexate-evoked testiculopathy in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:357-369. [PMID: 37450014 PMCID: PMC10771366 DOI: 10.1007/s00210-023-02577-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Disrupted spermatogenesis and testicular injury are among the devastating outcomes of methotrexate. A major contributor to methotrexate-induced testiculopathy is oxidative damage which triggers apoptosis and altered autophagy responses. Eicosapentaenoic acid ethyl ester (EPA-E) is an antihyperlipidemic derivative of omega-3 fatty acids that exhibited affinity to peroxisome proliferator-activated receptor-γ (PPAR-γ) that possesses both antioxidant and autophagy modulating properties. This is an exploratory study aiming at assessing the effectiveness of EPA-E to alleviate testicular damage induced by methotrexate. The specific exploratory hypothesis of this experiment is: EPA-E administration for 1 week to methotrexate-treated rats reduces testicular damage compared to control rats. As a secondary outcome, we were interested in identifying the implicated mechanism that mediates the action of EPA-E. In adult male Wistar rats, testiculopathy was achieved by a single methotrexate injection (20 mg/kg, ip). Rats received vehicle, EPA-E (0.3 g/kg/day, po) alone or with selective PPAR-γ antagonist (bisphenol A diglycidyl ether, BADGE) at 30 mg/kg/day, ip for 1 week. EPA-E recuperated methotrexate-attenuated serum total testosterone while reduced testicular inflammation and oxidative stress, restoring superoxide dismutase (SOD) while reducing malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Methotrexate-induced testicular apoptosis (caspase-3 and p53) was suppressed upon EPA-E treatment. Besides, EPA-E curbed methotrexate-induced abnormal autophagy by downregulating LC3A/B and beclin-1. Interestingly, BADGE-coadministration reversed EPA-E beneficial actions. Collectively, our findings suggest PPAR-γ role in EPA-E-mediated mitigation of methotrexate-evoked testiculopathy via suppression of oxidative stress, apoptosis, as well as abnormal autophagy. Furthermore, EPA-E could be used as a preventive therapy for some testiculopathies mediated by oxidative stress.
Collapse
Affiliation(s)
- Noha A T Abbas
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig City, 44519, Egypt.
| | - Shaimaa S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig City, Egypt
| | - Samaa Salah Abd El-Fatah
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig City, Egypt
| | - Walaa M Sarhan
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig City, Egypt
- Wake Forest Institute of Regenerative Medicine (WFIRM), Winston-Salem, NC, USA
| | - Eman M A Abdelghany
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig City, Egypt
| | - Omnia Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University, Cairo, Egypt
| | - Shireen S Mahmoud
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig City, 44519, Egypt
| |
Collapse
|
12
|
Edaravone alleviates methotrexate-induced testicular injury in rats: Implications on inflammation, steroidogenesis, and Akt/p53 signaling. Int Immunopharmacol 2023; 117:109969. [PMID: 37012866 DOI: 10.1016/j.intimp.2023.109969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023]
Abstract
Edaravone (ED) is a neuroprotective drug with beneficial effects against several disorders due to its prominent antioxidant activity. However, its effect against methotrexate (MTX)-induced testicular damage was not previously investigated. Therefore, we aimed to investigate the ability of ED to prevent the oxidative stress, inflammation, and apoptosis induced by MTX on the rat testis and to examine whether ED administration modulated the Akt/p53 signaling and steroidogenesis process. Rats were allocated into; Normal, ED (20 mg/kg, PO, for 10 days), MTX (20 mg/kg, i.p., on the 5th day), and ED + MTX groups. The results showed that MTX group exhibited higher serum activities of ALT, AST, ALP, and LDH in addition to histopathological alterations in the rat testis, compared to normal group. Furthermore, MTX induced down-regulation of the steroidogenic genes; StAR, CYP11a1, and HSD17B3 and reduced FSH, LH, and testosterone levels. The MTX group also showed higher levels of MDA, NO, MPO, NF-kB, TNF-α, IL-6, IL-1β, Bax, and caspase 3, as well as, lower levels of GSH, GPx, SOD, IL-10, Bcl2 compared to normal rats, p < 0.05. In addition, MTX treatment resulted in increased p53 expression and decreased p-Akt expression. Remarkably, ED administration significantly prevented all the biochemical, genetic, and histological damage induced by MTX. Hence, ED treatment protected the rat testis from apoptosis, oxidative stress, inflammation, and impaired steroidogenesis induced by MTX. This novel protective effect was mediated by decreasing p53 while increasing p-Akt protein expression.
Collapse
|
13
|
Armağan İ, Aşcı H, Erzurumlu Y, Özkula S, Hasseyid N, Kumbul Doğuç D, Okuyucu G, Varel A. Ramelteon and mechanism of its restorative effect in an experimental lung disease model. Toxicol Mech Methods 2023; 33:239-247. [PMID: 36482745 DOI: 10.1080/15376516.2022.2156006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Methotrexate (MTX) is an anticancer agent widely used in clinical practice for various oncological, rheumatological, autoimmune, and inflammatory diseases. However, the side effects of MTX limit its usage for treatment. In addition, diffuse alveolar damage, interstitial pneumonia, fibrosis, and pleural reactions may be encountered in MTX-induced pulmonary toxicity. Ramelteon (RML), a melatonin receptor agonist, has antioxidant, anti-inflammatory, and protective effects are shown by several studies. This study aimed to show the antioxidant, anti-inflammatory, and antiapoptotic effects of RML and its effect on the airway surface liquid volume homeostasis via aquaporins (AQP) in MTX-induced lung injury. Thirty-two female Wistar Albino rats were grouped into four groups as control, MTX (20 mg/kg, intraperitoneally, a single dose), MTX + RML, and RML (10 mg/kg, via oral gavage, for seven days) groups. Once the experiment ended, the rats' lung tissues were taken for biochemical, genetic, histopathological, and immunohistochemical examinations. MTX significantly increased oxidative stress index and total oxidative status, and decreased total antioxidant status levels by 202.0%, 141.4%, 20.2%, respectively, relative to the control (p ˂ 0.001 for all). AQP-1/5, which is an indicator of lung damage, was also found to decrease significantly (p ˂ 0.001). In addition, a significant increase was observed in interleukin-1β, interferon-beta, and caspase-8 expressions and histopathological changes as a result of immunohistochemical and histochemical examinations (p ˂ 0.001). RML treatment ameliorated all these changes and significantly regressed lung damage. Our results suggest that RML might be used as a lung-protective agent in various models of lung and tissue injury.
Collapse
Affiliation(s)
- İlkay Armağan
- Department of Histology and Embryology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Halil Aşcı
- Department of Pharmacology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Yalçın Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Turkey
| | - Songül Özkula
- Department of Pharmacology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Nursel Hasseyid
- Department of Pharmacology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Duygu Kumbul Doğuç
- Department of Biochemistry, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Gözde Okuyucu
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Ahmetcan Varel
- Department of Histology and Embryology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
14
|
Waly OM, El-Mahdy NA, El-Shitany NAEA, Mohammedsaleh ZM, El-Kadem AH. Protective role of naftidrofuryl against methotrexate-induced testicular damage via the amelioration of the p53/miRNA-29a/CDC42 apoptotic pathway, inflammation, and oxidative stress. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104067. [PMID: 36649853 DOI: 10.1016/j.etap.2023.104067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/17/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
This study aimed to assess the possible protective effects of naftidrofuryl (Naf) against methotrexate (MTX)-induced testicular toxicity in rats. Male rats were randomly distributed into four groups: control, Naf, MTX, and MTX+Naf groups. MTX administration induced oxidative stress, inflammation, and apoptosis in the testicular tissue, while pretreatment with Naf attenuated these pathways. Naf pretreatment significantly decreased malondialdehyde and interleukin-6 contents, microRNA-29a (miRNA-29a) expression level, and nuclear factor kappa B and p53 immunostaining in the testicular tissues compared to the MTX group. Conversely, it significantly increased Johnsen's score, serum testosterone level, serum total antioxidant capacity, testicular superoxide dismutase activity, testicular catalase activity, and testicular cell division cycle 42 (CDC42) expression compared to the MTX group. In conclusion, Naf exerted a significant protective effect against MTX-induced testicular toxicity via antioxidant and anti-inflammatory mechanisms and modulating the p53/miRNA-29a/CDC42 apoptotic pathway.
Collapse
Affiliation(s)
- Ola Mahmoud Waly
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Nageh Ahmed El-Mahdy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Aya Hassan El-Kadem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
15
|
Elsawy H, Alzahrani AM, Alfwuaires M, Abdel-Moneim AM, Khalil M. Beneficial role of naringin against methotrexate-induced injury to rat testes: biochemical and ultrastructural analyses. Redox Rep 2022; 27:158-166. [PMID: 35861275 PMCID: PMC9310850 DOI: 10.1080/13510002.2022.2101832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background Methotrexate (MTX) is a commonly used chemotherapeutic drug that has adverse toxic effects on germ cells. Naringin (NG) is a natural flavanone glycoside, with different phytotherapeutic applications, and its possible protective effects against MTX-induced testicular tissue damage were investigated in this study. Methods Low and high doses of NG (40 and 80 mg/kg/day) were given for 10 days by intraperitoneal (i.p.) injection and MTX (20 mg/kg i.p.) was given at the 4th day of the experiment, with or without NG in rats. Results The obtained results showed that exposure to MTX increased malondialdehyde (MDA) levels and nitric oxide (NO) production compared with the control. In the meantime, MTX depleted catalse (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx), and reduced glutathione (GSH) in the testicular tissue. Further, serum testosterone levels were significantly decreased in the MTX group. NG significantly counteracted the aforementioned effects of MTX; however, NG80 was more effective in restoring SOD, GR, MDA and NO. Interestingly, NG80 achieved a better improvement in the ultrastructural pattern of the testicular cells in MTX-exposed rats. Conclusion These results indicated, for the first time, that NG could be a potential candidate therapy against MTX-reprotoxic impacts.
Collapse
Affiliation(s)
- Hany Elsawy
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Abdullah M Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Manal Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ashraf M Abdel-Moneim
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mahmoud Khalil
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.,Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
16
|
Hassanein EHM, Mohamed WR, Ahmed OS, Abdel-Daim MM, Sayed AM. The role of inflammation in cadmium nephrotoxicity: NF-κB comes into view. Life Sci 2022; 308:120971. [PMID: 36130617 DOI: 10.1016/j.lfs.2022.120971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Kidney diseases are major health problem and understanding the underlined mechanisms that lead to kidney diseases are critical research points with a marked potential impact on health. Cadmium (Cd) is a heavy metal that occurs naturally and can be found in contaminated food. Kidneys are the most susceptible organ to heavy metal intoxication as it is the main route of waste excretion. The harmful effects of Cd were previously well proved. Cd induces inflammatory responses, oxidative injury, mitochondrial dysfunction and disturbs Ca2+ homeostasis. The nuclear factor-kappa B (NF-κB) is a cellular transcription factor that regulates inflammation and controls the expression of many inflammatory cytokines. Therefore, great therapeutic benefits can be attained from NF-κB inhibition. In this review we focused on certain compounds including cytochalasin D, mangiferin, N-acetylcysteine, pyrrolidine dithiocarbamate, roflumilast, rosmarinic acid, sildenafil, sinapic acid, telmisartan and wogonin and certain plants as Astragalus Polysaccharide, Ginkgo Biloba and Thymus serrulatus that potently inhibit NF-κB and effectively counteracted Cd-associated renal intoxication. In conclusion, the proposed NF-κB involvement in Cd-renal intoxication clarified the underlined inflammation associated with Cd-nephropathy and the beneficial effects of NF-κB inhibitors that make them the potential to substantially optimize treatment protocols for Cd-renal intoxication.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt.
| |
Collapse
|
17
|
Zygo-Albuside A: New Saponin from Zygophyllum album L. with Significant Antioxidant, Anti-Inflammatory and Antiapoptotic Effects against Methotrexate-Induced Testicular Damage. Int J Mol Sci 2022; 23:ijms231810799. [PMID: 36142712 PMCID: PMC9501557 DOI: 10.3390/ijms231810799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 12/23/2022] Open
Abstract
Chemical investigation of the crude extract of the aerial part of Zygophyllum album L. (Z. album) led to the isolation of a new saponin, Zygo-albuside A (7), together with seven known compounds, one of them (caffeic acid, compound 4) is reported in the genus for the first time. NMR (1D and 2D) and mass spectrometric analysis, including high-resolution mass spectrometry (HRMS), were utilized to set up the chemical structures of these compounds. The present biological study aimed to investigate the protective antioxidant, anti-inflammatory, and antiapoptotic activities of the crude extract from the aerial part of Z. album and two of its isolated compounds, rutin and the new saponin zygo-albuside A, against methotrexate (MTX)-induced testicular injury, considering the role of miRNA-29a. In all groups except for the normal control group, which received a mixture of distilled water and DMSO (2:1) as vehicle orally every day for ten days, testicular damage was induced on the fifth day by intraperitoneal administration of MTX at a single dose of 20 mg/kg. Histopathological examination showed that pre-treatment with the crude extract of Z. album, zygo-albuside A, or rutin reversed the testicular damage induced by MTX. In addition, biochemical analysis in the protected groups showed a decrease in malondialdehyde (MDA), interleukin-6 (IL-6) and IL-1β, Bcl-2-associated-protein (Bax), and an increase in B-cell lymphoma 2 (Bcl-2) protein, catalase (CAT), superoxide dismutase (SOD) in the testis, along with an increase in serum testosterone levels compared with the unprotected (positive control) group. The mRNA expression levels of nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), p53, and miRNA-29a were downregulated in the testicular tissues of the protected groups compared with the unprotected group. In conclusion, the study provides sufficient evidence that Z. album extract, and its isolated compounds, zygo-albuside A and rutin, could alleviate testicular damage caused by the chemotherapeutic agent MTX.
Collapse
|
18
|
Eltamany EE, Mosalam EM, Mehanna ET, Awad BM, Mosaad SM, Abdel-Kader MS, Ibrahim AK, Badr JM, Goda MS. Potential Gonado-Protective Effect of Cichorium endivia and Its Major Phenolic Acids against Methotrexate-Induced Testicular Injury in Mice. Biomedicines 2022; 10:1986. [PMID: 36009533 PMCID: PMC9406180 DOI: 10.3390/biomedicines10081986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/23/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cichorium endivia L. (Asteraceae) is a wide edible plant that grows in the Mediterranean region. In this study, a phytochemical investigation of C. endivia L. ethanolic extract led to the isolation of stigmasterol (1), ursolic acid (2), β-amyrin (3), azelaic acid (4), vanillic acid (5), (6S, 7E)-6-hydroxy-4,7-megastigmadien-3,9-dione (S(+)-dehydrovomifoliol) (6), 4-hydroxy phenyl acetic acid (7), vomifoliol (8), ferulic acid (9), protocatechuic acid (10), kaempferol (11), p. coumaric acid (12), and luteolin (13). In addition, the total phenolic content as well as the in vitro antioxidant activity of C. endivia L. extract were estimated. Moreover, we inspected the potential gonado-protective effect of C. endivia crude extract, its phenolic fraction, and the isolated coumaric, vanillic, and ferulic acids against methotrexate (MTX)-induced testicular injury in mice. There were seven groups: normal control, MTX control, MTX + C. endivia crude extract, MTX + C. endivia phenolic fraction, MTX + isolated coumaric acid, MTX + isolated vanillic acid, and MTX + isolated ferulic acid. MTX was given by i.p. injection of a 20 mg/kg single dose. The crude extract and phenolic fraction were given with a dose of 100 mg/kg/day, whereas the compounds were given at a dose of 10 mg/kg/day. A histopathological examination was done. The testosterone level was detected in serum together with the testicular content of malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), interleukin 1β (IL-1β), IL-6, tumor necrosis factor alpha (TNF-α), nuclear factor kappa B (NF-κB), B-cell lymphoma 2 (Bcl-2), Bcl-2 associated x protein (Bax), p53, and miR-29a. C. endivia crude extract, the phenolic fraction, and the isolated compounds showed significant elevation in their levels of testosterone, CAT, SOD, Bcl-2 with a significant decrease in their levels of MDA, TNF-α, IL-1β, IL-6, NF-κB, Bax, P53, and miR-29a compared to those of the MTX control group. In conclusion, C. endivia mitigated MTX-induced germ cell toxicity via anti-inflammatory, antioxidant, and antiapoptotic effects.
Collapse
Affiliation(s)
- Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Esraa M. Mosalam
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Shebin El-Koum 32511, Egypt
| | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Basma M. Awad
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University, El-Arish 45518, Egypt
| | - Sarah M. Mosaad
- Division of Pharmacology and Therapeutics, Department of Continuous Medical Education, General Authority of Healthcare, Ismailia 41522, Egypt
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria 21215, Egypt
| | - Amany K. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
19
|
Tohamy HG, Lebda MA, Sadek KM, Elfeky MS, El-Sayed YS, Samak DH, Hamed HS, Abouzed TK. Biochemical, molecular and cytological impacts of alpha-lipoic acid and Ginkgo biloba in ameliorating testicular dysfunctions induced by silver nanoparticles in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38198-38211. [PMID: 35067888 DOI: 10.1007/s11356-021-18441-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles (AgNPs) are commonly utilized in medicine. However, they have negative effects on the majority of organs, including the reproductive system. AgNPs were reported to be able to reach the testicular tissues due to their nano size, which allows them to pass through blood-testicular barriers. The goal of this study was to see if alpha-lipoic acid (LA) or Ginkgo biloba (GB) might protect adult rat testes after intraperitoneal injection of AgNPs. Forty male healthy adult Wister albino rats were randomly assigned to four groups: control, AgNPs-intoxicated group intraperitoneally injected AgNPs 50 mg/kg b.w, 3 times a week; LA + AgNPs group intoxicated with AgNPs and orally gavaged with 100 mg LA/kg b.w; and GB + AgNPs group injected with AgNPs and orally given GB extract 120 mg/kg b.w for 30 consecutive days. Biochemical changes (testosterone, ACP, and prostatic acid phosphatase), oxidative indices, mRNA expression of proapoptotic (BAX) and anti-apoptotic (BCL-2) biomarkers, histological, and immunohistochemical changes in testicular tissues were investigated. Significant decrease in serum testosterone level and elevation in ACP and PACP enzyme activity in AgNPs-treated rats. As well, there were lowering in tGSH, GSH GR, GPx, and elevation in MDA and GSSG values. AgNPs-exposed rats expressed downregulation of testicular thirodexin-1 (Txn-1), transforming growth factor-1β (TGF-1β), anti-apoptotic (BCL-2), and upregulaion of proapoptotic biomarkers (BAX) mRNA expressions. Strong positive action to BAX and lowering the action of Ki-67 antibody were observed. Because of their antioxidant, anti-inflammatory, and anti-apoptotic properties, cotreatment with LA or GB could be beneficial in reducing the harmful effects of AgNPs on the testicles.
Collapse
Affiliation(s)
- Hossam G Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhur University, Damanhour, 22511, Egypt.
| | - Mohamed S Elfeky
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhur University, Damanhour, 22511, Egypt
| | - Dalia H Samak
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhur University, Damanhour, 22511, Egypt
| | - Heba S Hamed
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt
| | - Tarek K Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr Elsheikh University, Kafr Elsheikh, Egypt
| |
Collapse
|
20
|
Gao W, Guo L, Yang Y, Wang Y, Xia S, Gong H, Zhang BK, Yan M. Dissecting the Crosstalk Between Nrf2 and NF-κB Response Pathways in Drug-Induced Toxicity. Front Cell Dev Biol 2022; 9:809952. [PMID: 35186957 PMCID: PMC8847224 DOI: 10.3389/fcell.2021.809952] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Nrf2 and NF-κB are important regulators of the response to oxidative stress and inflammation in the body. Previous pharmacological and genetic studies have confirmed crosstalk between the two. The deficiency of Nrf2 elevates the expression of NF-κB, leading to increased production of inflammatory factors, while NF-κB can affect the expression of downstream target genes by regulating the transcription and activity of Nrf2. At the same time, many therapeutic drug-induced organ toxicities, including hepatotoxicity, nephrotoxicity, cardiotoxicity, pulmonary toxicity, dermal toxicity, and neurotoxicity, have received increasing attention from researchers in clinical practice. Drug-induced organ injury can destroy body function, reduce the patients’ quality of life, and even threaten the lives of patients. Therefore, it is urgent to find protective drugs to ameliorate drug-induced injury. There is substantial evidence that protective medications can alleviate drug-induced organ toxicity by modulating both Nrf2 and NF-κB signaling pathways. Thus, it has become increasingly important to explore the crosstalk mechanism between Nrf2 and NF-κB in drug-induced toxicity. In this review, we summarize the potential molecular mechanisms of Nrf2 and NF-κB pathways and the important effects on adverse effects including toxic reactions and look forward to finding protective drugs that can target the crosstalk between the two.
Collapse
Affiliation(s)
- Wen Gao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Miao Yan,
| |
Collapse
|
21
|
Sherif IO, Al-Shaalan NH. OUP accepted manuscript. Toxicol Res (Camb) 2022; 11:417-425. [PMID: 35782645 PMCID: PMC9244212 DOI: 10.1093/toxres/tfac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 11/14/2022] Open
Abstract
Acute lung injury has been reported following various chemotherapeutic agents administration. Several pathways for lung injury have been speculated however, the exact mechanism of the lung injury induced by methotrexate (MTX) is yet to be defined. The potential protective effect of Ginkgo biloba extract (GB), a Chinese herbal medicine, against MTX-induced lung injury is still not reported. Therefore, this study was performed to examine the possible implication of NLRP3 inflammasome and miRNA-21 in the pathogenesis of the MTX-induced lung injury as well as the protective role of GB in ameliorating the induced lung injury. Rats received GB (100 mg/kg/day, orally) for 10 days and MTX (20 mg/kg single dose, intraperitoneally) on the fifth day. MTX-induced lung injury was manifested by lung histopathology. MTX exhibited a marked increase in lung malondialdehyde beside a notable decrease in lung reduced glutathione. Moreover, MTX injection activated the lung NLRP3 inflammasome by significant upregulation of the NLRP3, ASC, caspase-1 lung mRNA expressions and protein levels in addition to lung NF-kBp65 protein expression, and miRNA-21 expression when compared with the normal control group. However, GB administration mitigated lung injury and inhibited the NLRP3 activation. This study is the first report to reveal the involvement of NLRP3 inflammasome in the pathogenesis of MTX-induced lung injury and also to show that the administration of GB alleviates the lung injury induced by MTX via suppressing the oxidative stress, restoring the antioxidant activity, blocking the NLRP3/ASC/Caspase-1 signaling and downregulating the NF-kBp65 protein expression ae well as miRNA-21 expression in lung tissue.
Collapse
Affiliation(s)
- Iman O Sherif
- Corresponding Author: Dr. Iman O. Sherif, PhD, Consultant of Biochemistry, Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt, ;
| | - Nora H Al-Shaalan
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
22
|
Sayed AM, Hassanein EHM, Ali FEM, Omar ZMM, Rashwan EK, Mohammedsaleh ZM, Abd El-Ghafar OAM. Regulation of Keap-1/Nrf2/AKT and iNOS/NF-κB/TLR4 signals by apocynin abrogated methotrexate-induced testicular toxicity: Mechanistic insights and computational pharmacological analysis. Life Sci 2021; 284:119911. [PMID: 34450167 DOI: 10.1016/j.lfs.2021.119911] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
AIM Male reproductive toxicity is becoming of growing significance due to clinical chemotherapy usage. Methotrexate (MTX) is an anti-folate used on a large scale for different tumors and autoimmune conditions. Despite its wide clinical use, MTX is associated with severe testicular intoxication. The exact underlying mechanism is unclear. METHODS Our study was conducted to explore the pathogenesis mechanism of MTX-induced testicular damage and the potential testicular protective effects of apocynin (APO) on testicular injury induced by single i.p. MTX (20 mg/kg). APO was administered orally (100 mg/kg) for ten days. RESULTS As compared to rats given MTX alone, co-administration of MTX with APO demonstrated multiple beneficial effects evidenced by a marked increase in testosterone, FSH, and LH and significantly restored testes histopathological alterations. Mechanistically, APO restored antioxidant status through up-regulation of Nrf2, cytoglobin, PPAR-γ, SIRT1, AKT, and p-AKT, while effectively lowering Keap-1. Moreover, APO significantly attenuated inflammation by down-regulating NF-κB-p65, iNOS, and TLR4 expressions confirmed by in-silico evidence. Additionally, network pharmacology analysis, a bioinformatics approach, was used to decipher various cellular processes' molecular mechanisms. SIGNIFICANCE The current investigation proves the beneficial effects of APO in MTX-associated testicular damage through activation of cytoglobin, Keap-1/Nrf2/AKT, PPAR-γ, SIRT1, and suppressing of TLR4/NF-κB-p65 signal. Our data collectively encourage extending the investigation to the clinical setting to explore APO effects in MTX-treated patients.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Zainab M M Omar
- Department of Pharmacology, College of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Jouf University, Sakaka 42421, Saudi Arabia; Department of Physiology, College of Medicine, Al-Azhar University, Assuit 71524, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
23
|
Mansour DF, Saleh DO, Ahmed-Farid OA, Rady M, Bakeer RM, Hashad IM. Ginkgo biloba extract (EGb 761) mitigates methotrexate-induced testicular insult in rats: Targeting oxidative stress, energy deficit and spermatogenesis. Biomed Pharmacother 2021; 143:112201. [PMID: 34560547 DOI: 10.1016/j.biopha.2021.112201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
Methotrexate (MTX) is commonly used as a therapeutic agent in the treatment of malignancies and autoimmune disorders. Risk of subsequent infertility following MTX administration has been reported as a significant side effect due to testicular toxicity. The aim of the study was to evaluate the modulatory effects of Ginkgo biloba (standardized extract, EGb 761) on MTX-induced testicular oxidative stress, energy deficits and spermatogenic status in rats. All groups received intraperitoneal injection of MTX (0.5 mg/kg) twice weekly for four weeks except the control group that received the corresponding vehicles. Other groups received oral EGb761, at doses 25, 50 or 100 mg/kg/day, for four weeks, concurrently with MTX. Blood and semen sampling followed by testis dissection were performed 24 h after last EGb 761 treatment. Semen was examined for sperm progressive motility, percent of normal spermatozoa and sperm cell concentration as well as seminal plasma essential and non-essential amino acids. Serum LH, FSH and testosterone were detected as well as testicular MDA, GSH, GSSG, TNF-α, IL-1β, IL-6, NF-κB and the nuclear, cytoplasmic and mRNA expression levels of Nrf-2 besides the testicular cell energy; AMP, ADP and ATP. Histopathological studies of interstitial fibrosis and the severity of germ cell degeneration were also conducted. MTX induced significant decline in sperm quality along with decreased essential and non-essential amino acids in seminal plasma. MTX reduced serum FSH, LH and testosterone as well as testicular ATP, GSH and Nrf2, while increased levels of testicular ADP, AMP, MDA, GSSG and TNF-α. Results were confirmed by prominent interstitial fibrosis and severe germ cell degeneration in MTX group. Concurrent treatment with EGb 761 alleviated MTX-induced testicular insult evidenced by amelioration of oxidative stress biomarkers, energy functions, seminal sperms abnormalities and spermatogenesis status. The present study suggests a beneficial role of EGb 761 in MTX-induced testicular injury and subsequent distortion of spermatogenesis.
Collapse
Affiliation(s)
- Dina F Mansour
- Department of Pharmacology, Medical division, National Research Centre (ID: 60014618), Giza, Dokki 12622, Egypt
| | - Dalia O Saleh
- Department of Pharmacology, Medical division, National Research Centre (ID: 60014618), Giza, Dokki 12622, Egypt.
| | - Omar A Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Mona Rady
- Department of Microbiology, Immunology and Biotechnology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rofanda M Bakeer
- Department of Pathology, Faculty of Medicine, Helwan University, Egypt
| | - Ingy M Hashad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
24
|
Fan X, Huang J, Xu C, Bao M, Xia W, Zhu C. Differential expression of microRNAs in human endometrium after implantation of an intrauterine contraceptive device containing copper. Mol Hum Reprod 2021; 27:6357049. [PMID: 34427668 DOI: 10.1093/molehr/gaab052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Intrauterine devices containing copper placement will release a large amount of Cu2+ into the uterine fluid, leading to local endometrial damage and inflammation, which is considered to be one of the causes of abnormal uterine bleeding. Studies have shown that the metabolism and function of metal ions are related to the regulation of microRNA. The aims of this study were to investigate changes in endometrial microRNA levels after implantation of an intrauterine device containing copper and to preliminarily explore the signalling pathways involved in abnormal uterine bleeding. The subjects were fertile women, aged 25-35, without major obstetrics and gynaecology diseases. Human endometrial tissues were collected before implantation or removal of the intrauterine device containing copper. High-throughput microRNA sequencing was performed on human endometrial tissues, and real-time quantitative PCR, western blotting and immunohistochemistry were used to detect the expression of relevant genes. MicroRNA sequencing results showed that 72 miRNAs were differentially expressed in the endometrial tissue after the insertion of the intrauterine device containing copper. Implantation of an intrauterine device containing copper implantation can up-regulate the expression of miR-144-3p in endometrial tissue, and therefore, decreases the mRNA and protein expression levels of genes related to endometrial injury and tissue repair, including the MT/NF-κB/MMP damage pathway and the THBS-1/TGF-β/SMAD3 repair pathway. In this study, the molecular mechanisms of abnormal uterine bleeding due to an intrauterine device containing copper were preliminarily investigated. The information will be beneficial for the clinical treatment of abnormal uterine bleeding caused by intrauterine device.
Collapse
Affiliation(s)
- Xiaorong Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengcheng Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Bao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|