1
|
Qin C, Li C, Ding M, Wang Y, Li Y, Wang Y, Wang X, Guo C. The regulation of ovarian degeneration in Pampus argenteus by heat shock protein genes under low-temperature stress. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39516184 DOI: 10.1111/jfb.15985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Temperature is a crucial environmental factor that significantly impacts the growth, development, metabolism, and physiological functions of fish. To study the effects of low-temperature on the gonadal development of silver pomfret (Pampus argenteus), a cold period by gradually lowering the water temperature from 18°C to 9°C was simulated. The results showed that hsp70, hsp90a, and hsp90b were widely expressed in the tissues of P. argenteus, with hsp70 primarily expressed in the pituitary, hsp90a and hsp90b mainly expressed in the lateral. The hsps were involved in the development process of P. argenteus from 1 to 27 days post-hatching (dph). The expression levels of hsp70 and hsp90b were highest at 17 dph, while the levels of hsp90a were at 25 dph. Under the condition of 9°C, regressed oocyte were observed in the ovaries, the oocyte diameter significantly decreased, and the ovaries degenerated 100% after low-temperature stress. The expression levels of hsps in the ovaries were significantly higher than in the control group, while the expression levels in the testes were significantly lower than in the control group. Taken together, hsps may regulate the ovarian degeneration under low-temperature stress. Male fish rapidly completed meiosis and maintained the testes in the prophase of meiosis to resist the low-temperature stress.
Collapse
Affiliation(s)
- Chunlai Qin
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, China
| | - Chang Li
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, China
| | - Ming Ding
- Ningbo Institute of Oceanography, Ningbo, Zhejiang, China
- Ningbo Hongmeng Testing Co., Ltd., Ningbo, China
| | - Yi Wang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yaya Li
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yajun Wang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Xubo Wang
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, China
| | - Chunyang Guo
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Onele AO, Swid MA, Leksin IY, Rakhmatullina DF, Galeeva EI, Beckett RP, Minibayeva FV, Valitova JN. Role of Squalene Epoxidase Gene ( SQE1) in the Response of the Lichen Lobaria pulmonaria to Temperature Stress. J Fungi (Basel) 2024; 10:705. [PMID: 39452657 PMCID: PMC11508302 DOI: 10.3390/jof10100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Currently, due to the increasing impact of anthropogenic factors and changes in solar activity, the temperature on Earth is rising, posing a threat to biodiversity. Lichens are among the most sensitive organisms to climate change. Elevated ambient temperatures can have a significant impact on lichens, resulting in more frequent and intense drying events that can impede metabolic activity. It has been suggested that the possession of a diverse sterol composition may contribute to the tolerance of lichens to adverse temperatures and other biotic and abiotic stresses. The major sterol found in lichens is ergosterol (ERG); however, the regulation of the ERG biosynthetic pathway, specifically the step of epoxidation of squalene to 2,3-oxidosqualene catalyzed by squalene epoxidase during stress, has not been extensively studied. In this study, we used lichen Lobaria pulmonaria as a model species that is well known to be sensitive to air pollution and habitat loss. Using in silico analysis, we identified cDNAs encoding squalene epoxidase from L. pulmonaria, designating them as LpSQE1 for the mycobiont and SrSQE1 for the photobiont Symbiochloris reticulata. Our results showed that compared with a control kept at room temperature (+20 °C), mild temperatures (+4 °C and +30 °C) did not affect the physiology of L. pulmonaria, assessed by changes in membrane integrity, respiration rates, and PSII activity. An extreme negative temperature (-20 °C) noticeably inhibited respiration but did not affect membrane stability. In contrast, treating lichen with a high positive temperature (+40 °C) significantly reduced all physiological parameters. Quantitative PCR analysis revealed that exposing thalli to -20 °C, +4 °C, +30 °C, and +40 °C stimulated the expression levels of LpSQE1 and SrSQE1 and led to a significant upregulation of Hsps. These data provide new information regarding the roles of sterols and Hsps in the response of lichens to climate change.
Collapse
Affiliation(s)
- Alfred O. Onele
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, P.O. Box 261, 420111 Kazan, Russia; (A.O.O.); (M.A.S.); (I.Y.L.); (D.F.R.); (E.I.G.); (R.P.B.); (F.V.M.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya 18, 420008 Kazan, Russia
| | - Moatasem A. Swid
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, P.O. Box 261, 420111 Kazan, Russia; (A.O.O.); (M.A.S.); (I.Y.L.); (D.F.R.); (E.I.G.); (R.P.B.); (F.V.M.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya 18, 420008 Kazan, Russia
| | - Ilya Y. Leksin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, P.O. Box 261, 420111 Kazan, Russia; (A.O.O.); (M.A.S.); (I.Y.L.); (D.F.R.); (E.I.G.); (R.P.B.); (F.V.M.)
| | - Daniya F. Rakhmatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, P.O. Box 261, 420111 Kazan, Russia; (A.O.O.); (M.A.S.); (I.Y.L.); (D.F.R.); (E.I.G.); (R.P.B.); (F.V.M.)
| | - Ekaterina I. Galeeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, P.O. Box 261, 420111 Kazan, Russia; (A.O.O.); (M.A.S.); (I.Y.L.); (D.F.R.); (E.I.G.); (R.P.B.); (F.V.M.)
| | - Richard P. Beckett
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, P.O. Box 261, 420111 Kazan, Russia; (A.O.O.); (M.A.S.); (I.Y.L.); (D.F.R.); (E.I.G.); (R.P.B.); (F.V.M.)
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| | - Farida V. Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, P.O. Box 261, 420111 Kazan, Russia; (A.O.O.); (M.A.S.); (I.Y.L.); (D.F.R.); (E.I.G.); (R.P.B.); (F.V.M.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya 18, 420008 Kazan, Russia
| | - Julia N. Valitova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, P.O. Box 261, 420111 Kazan, Russia; (A.O.O.); (M.A.S.); (I.Y.L.); (D.F.R.); (E.I.G.); (R.P.B.); (F.V.M.)
| |
Collapse
|
3
|
Elmorsy EA, Saber S, Hamad RS, Abdel-Reheim MA, Nadwa EH, Alibrahim AOE, Alkhamiss AS, AlSalloom AA, Mohamed EA, Nour-El-Din M, Amer MM, Abdel-Hamed MR, Mohamed NB, Abozaid L, Mostafa-Hedeab G, Ahmed SS, Taha HH, Khalifa AK. Modulating the HSP90 control over NFκB/NLRP3/Caspase-1 axis is a new therapeutic target in the management of liver fibrosis: Insights into the role of TAS-116 (Pimitespib). Life Sci 2024; 354:122966. [PMID: 39147320 DOI: 10.1016/j.lfs.2024.122966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/06/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Aberrant activation of the NLRP3 inflammasome is recognized to induce a chronic inflammatory response in the liver, ultimately leading to hepatic fibrosis. HSP90 is suggested to regulate NLRP3 activation and its downstream signaling. This study is the first to explore the potential therapeutic role of pimitespib in mitigating liver fibrosis in rats. The results of the study revealed that pimitespib effectively suppressed hepatic inflammation and fibrogenesis by modulating HSP90's control over the NFκB/NLRP3/caspase-1 axis. In vitro experiments demonstrated that pimitespib reduced LDH levels and increased hepatocyte survival, whereas in vivo, it prolonged the survival of rats with hepatic fibrosis. Additionally, pimitespib exhibited improvements in the function and microscopic characteristics of rat livers. Pimitespib effectively inhibited NFκB, which serves as the priming signal for NLRP3 activation. Pimitespib's inhibitory effect on NLRP3, identified as an HSP90 client protein, plays a central role in the observed anti-fibrotic effect. The simultaneous inhibition of both priming and activation signals of NLRP3 by pimitespib led to a reduction in caspase-1 activity and subsequent suppression of the N-terminal fragment of gasdermin D, ultimately constraining hepatocyte pyroptotic cell death. These diverse effects were associated with a decrease in the transcription of inflammatory mediators IL-1β, IL-18, and TNF-α, as well as the fibrogenic mediators TGF-β, TIMP-1, PDGF-BB, and Col1a1. Moreover, pimitespib induced the expression of HSP70, which could further contribute to the repression of fibrosis development. In summary, our findings provide an evolutionary perspective on managing liver fibrosis, positioning pimitespib as a promising candidate for anti-inflammatory and antifibrotic therapy.
Collapse
Affiliation(s)
- Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia; Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Eman Hassan Nadwa
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka, Saudi Arabia; Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt.
| | - Alaa Oqalaa E Alibrahim
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia.
| | - Abdullah S Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia.
| | - A A AlSalloom
- Department of Pathology, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia.
| | - Enas A Mohamed
- Department of Anatomy, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - M Nour-El-Din
- Department of Anatomy, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia.
| | - Maha M Amer
- Department of Anatomy, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia; Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Mohamed R Abdel-Hamed
- Department of Anatomy, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia; Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Nahla B Mohamed
- Department of Pathology, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia.
| | - Lobaina Abozaid
- Department of Pathology, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia.
| | - Gomaa Mostafa-Hedeab
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka, Saudi Arabia; Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt.
| | - Syed Suhail Ahmed
- Department of Microbiology and Immunology, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia.
| | - Hagir Hussein Taha
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah 51452, Saudi Arabia.
| | - Amira Karam Khalifa
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Nahda University, New Beni Suef 62521, Egypt.
| |
Collapse
|
4
|
Mathenjwa GS, Chakraborty A, Chakraborty A, Muller R, Akerman MP, Bode ML, Edkins AL, Veale CGL. Rationally modified SNX-class Hsp90 inhibitors disrupt extracellular fibronectin assembly without intracellular Hsp90 activity. RSC Med Chem 2024:d4md00501e. [PMID: 39290382 PMCID: PMC11403943 DOI: 10.1039/d4md00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
Despite Hsp90's well documented promise as a target for developing cancer chemotherapeutics, its inhibitors have struggled to progress through clinical trials. This is, in part, attributed to the cytoprotective compensatory heat shock response (HSR) stimulated through intracellular Hsp90 inhibition. Beyond its intracellular role, secreted extracellular Hsp90 (eHsp90) interacts with numerous pro-oncogenic extracellular clients. This includes fibronectin, which in the tumour microenvironment enhances cell invasiveness and metastasis. Through the rational modification of known Hsp90 inhibitors (SNX2112 and SNX25a) we developed four Hsp90 inhibitory compounds, whose alterations restricted their interaction with intracellular Hsp90 and did not stimulate the HSR. Two of the modified cohort (compounds 10 and 11) were able to disrupt the assembly of the extracellular fibronectin network at non-cytotoxic concentrations, and thus represent promising new tool compounds for studying the druggability of eHsp90 as a target for inhibition of tumour invasiveness and metastasis.
Collapse
Affiliation(s)
- Gciniwe S Mathenjwa
- Department of Chemistry, University of Cape Town Rondebosch Cape Town 7701 South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X01 Scottsville 3209 South Africa
| | - Abir Chakraborty
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University Makhanda 6139 South Africa
| | - Abantika Chakraborty
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University Makhanda 6139 South Africa
| | - Ronel Muller
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X01 Scottsville 3209 South Africa
| | - Mathew P Akerman
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X01 Scottsville 3209 South Africa
| | - Moira L Bode
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Private Bag 3, PO WITS 2050 Johannesburg South Africa
| | - Adrienne L Edkins
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University Makhanda 6139 South Africa
| | - Clinton G L Veale
- Department of Chemistry, University of Cape Town Rondebosch Cape Town 7701 South Africa
| |
Collapse
|
5
|
Paoletti N, Supuran CT. Benzothiazole derivatives in the design of antitumor agents. Arch Pharm (Weinheim) 2024; 357:e2400259. [PMID: 38873921 DOI: 10.1002/ardp.202400259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Benzothiazoles are a class of heterocycles with multiple applications as anticancer, antibiotic, antiviral, and anti-inflammatory agents. Benzothiazole is a privileged scaffold in drug discovery programs for modulating a variety of biological functions. This review focuses on the design and synthesis of new benzothiazole derivatives targeting hypoxic tumors. Cancer is a major health problem, being among the leading causes of death. Tumor-hypoxic areas promote proliferation, malignancy, and resistance to drug treatment, leading to the dysregulation of key signaling pathways that involve drug targets such as vascular endothelial growth factor, epidermal growth factor receptor, hepatocyte growth factor receptor, dual-specificity protein kinase, cyclin-dependent protein kinases, casein kinase 2, Rho-related coil formation protein kinase, tunica interna endothelial cell kinase, cyclooxygenase-2, adenosine kinase, lysophosphatidic acid acyltransferases, stearoyl-CoA desaturase, peroxisome proliferator-activated receptors, thioredoxin, heat shock proteins, and carbonic anhydrase IX/XII. In turn, they regulate angiogenesis, proliferation, differentiation, and cell survival, controlling the cell cycle, inflammation, the immune system, and metabolic alterations. A wide diversity of benzothiazoles were reported over the last years to interfere with various proteins involved in tumorigenesis and, more specifically, in hypoxic tumors. Many hypoxic targets are overexpressed as a result of the hypoxia-inducible factor activation cascade and may not be present in normal tissues, providing a potential strategy for selectively targeting hypoxic cancers.
Collapse
Affiliation(s)
- Niccolò Paoletti
- Department of Neurofarba, Section of Pharmaceutical & Nutraceutical Sciences, Polo Scientifico, University of Florence, Sesto Fiorentino (Firenze), Italy
| | - Claudiu T Supuran
- Department of Neurofarba, Section of Pharmaceutical & Nutraceutical Sciences, Polo Scientifico, University of Florence, Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
6
|
Zayed M, Kim YC, Jeong BH. Assessment of the therapeutic potential of Hsp70 activator against prion diseases using in vitro and in vivo models. Front Cell Dev Biol 2024; 12:1411529. [PMID: 39105172 PMCID: PMC11298377 DOI: 10.3389/fcell.2024.1411529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Prion diseases are deadly neurodegenerative disorders in both animals and humans, causing the destruction of neural tissue and inducing behavioral manifestations. Heat shock proteins (Hsps), act as molecular chaperones by supporting the appropriate folding of proteins and eliminating the misfolded proteins as well as playing a vital role in cell signaling transduction, cell cycle, and apoptosis control. SW02 is a potent activator of Hsp 70 kDa (Hsp70). Methods In the current study, the protective effects of SW02 against prion protein 106-126 (PrP106-126)-induced neurotoxicity in human neuroblastoma cells (SH-SY5Y) were investigated. In addition, the therapeutic effects of SW02 in ME7 scrapie-infected mice were evaluated. Results The results showed that SW02 treatment significantly increased Hsp70 mRNA expression levels and Hsp70 ATPase activity (p < 0.01). SW02 also significantly inhibited cytotoxicity and apoptosis induced by PrP106-126 (p < 0.01) and promoted neurite extension. In vivo, intraperitoneal administration of SW02 did not show a statistically significant difference in survival time (p = 0.16); however, the SW02-treated group exhibited a longer survival time of 223.6 ± 6.0 days compared with the untreated control group survival time of 217.6 ± 5.4 days. In addition, SW02 reduced the PrPSc accumulation in ME7 scrapie-infected mice at 5 months post-injection (p < 0.05). A significant difference was not observed in GFAP expression, an astrocyte marker, between the treated and untreated groups. Conclusion In conclusion, the potential therapeutic role of the Hsp70 activator SW02 was determined in the present study and may be a novel and effective drug to mitigate the pathologies of prion diseases and other neurodegenerative diseases. Further studies using a combination of two pharmacological activators of Hsp70 are required to maximize the effectiveness of each intervention.
Collapse
Affiliation(s)
- Mohammed Zayed
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Yong-Chan Kim
- Department of Biological Sciences, Andong National University, Andong, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
7
|
Joëls M, Karst H, Tasker JG. The emerging role of rapid corticosteroid actions on excitatory and inhibitory synaptic signaling in the brain. Front Neuroendocrinol 2024; 74:101146. [PMID: 39004314 DOI: 10.1016/j.yfrne.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Over the past two decades, there has been increasing evidence for the importance of rapid-onset actions of corticosteroid hormones in the brain. Here, we highlight the distinct rapid corticosteroid actions that regulate excitatory and inhibitory synaptic transmission in the hypothalamus, the hippocampus, basolateral amygdala, and prefrontal cortex. The receptors that mediate rapid corticosteroid actions are located at or close to the plasma membrane, though many of the receptor characteristics remain unresolved. Rapid-onset corticosteroid effects play a role in fast neuroendocrine feedback as well as in higher brain functions, including increased aggression and anxiety, and impaired memory retrieval. The rapid non-genomic corticosteroid actions precede and complement slow-onset, long-lasting transcriptional actions of the steroids. Both rapid and slow corticosteroid actions appear to be indispensable to adapt to a continuously changing environment, and their imbalance can increase an individual's susceptibility to psychopathology.
Collapse
Affiliation(s)
- Marian Joëls
- University Medical Center Groningen, University of Groningen, the Netherlands; University Medical Center Utrecht, Utrecht University, the Netherlands.
| | - Henk Karst
- University Medical Center Utrecht, Utrecht University, the Netherlands; SILS-CNS. University of Amsterdam, the Netherlands.
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, and Southeast Louisiana Veterans Affairs Healthcare System, New Orleans, USA.
| |
Collapse
|
8
|
Pham HA, Cho K, Tran AD, Chandra D, So J, Nguyen HTT, Sang H, Lee JY, Han O. Compensatory Modulation of Seed Storage Protein Synthesis and Alteration of Starch Accumulation by Selective Editing of 13 kDa Prolamin Genes by CRISPR-Cas9 in Rice. Int J Mol Sci 2024; 25:6579. [PMID: 38928285 PMCID: PMC11204006 DOI: 10.3390/ijms25126579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Rice prolamins are categorized into three groups by molecular size (10, 13, or 16 kDa), while the 13 kDa prolamins are assigned to four subgroups (Pro13a-I, Pro13a-II, Pro13b-I, and Pro13b-II) based on cysteine residue content. Since lowering prolamin content in rice is essential to minimize indigestion and allergy risks, we generated four knockout lines using CRISPR-Cas9, which selectively reduced the expression of a specific subgroup of the 13 kDa prolamins. These four mutant rice lines also showed the compensatory expression of glutelins and non-targeted prolamins and were accompanied by low grain weight, altered starch content, and atypically-shaped starch granules and protein bodies. Transcriptome analysis identified 746 differentially expressed genes associated with 13 kDa prolamins during development. Correlation analysis revealed negative associations between genes in Pro13a-I and those in Pro13a-II and Pro13b-I/II subgroups. Furthermore, alterations in the transcription levels of 9 ER stress and 17 transcription factor genes were also observed in mutant rice lines with suppressed expression of 13 kDa prolamin. Our results provide profound insight into the functional role of 13 kDa rice prolamins in the regulatory mechanisms underlying rice seed development, suggesting their promising potential application to improve nutritional and immunological value.
Collapse
Affiliation(s)
- Hue Anh Pham
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Kyoungwon Cho
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Anh Duc Tran
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Deepanwita Chandra
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Jinpyo So
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Hanh Thi Thuy Nguyen
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi 12406, Vietnam;
| | - Hyunkyu Sang
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Jong-Yeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, RDA, Jeonju 54874, Republic of Korea
| | - Oksoo Han
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| |
Collapse
|
9
|
Hao X, He S. Genome-wide identification, classification and expression analysis of the heat shock transcription factor family in Garlic (Allium sativum L.). BMC PLANT BIOLOGY 2024; 24:421. [PMID: 38760734 PMCID: PMC11102281 DOI: 10.1186/s12870-024-05018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND The heat shock transcription factor (HSF) plays a crucial role in the regulatory network by coordinating responses to heat stress as well as other stress signaling pathways. Despite extensive studies on HSF functions in various plant species, our understanding of this gene family in garlic, an important crop with nutritional and medicinal value, remains limited. In this study, we conducted a comprehensive investigation of the entire garlic genome to elucidate the characteristics of the AsHSF gene family. RESULTS In this study, we identified a total of 17 AsHSF transcription factors. Phylogenetic analysis classified these transcription factors into three subfamilies: Class A (9 members), Class B (6 members), and Class C (2 members). Each subfamily was characterized by shared gene structures and conserved motifs. The evolutionary features of the AsHSF genes were investigated through a comprehensive analysis of chromosome location, conserved protein motifs, and gene duplication events. These findings suggested that the evolution of AsHSF genes is likely driven by both tandem and segmental duplication events. Moreover, the nucleotide diversity of the AsHSF genes decreased by only 0.0002% from wild garlic to local garlic, indicating a slight genetic bottleneck experienced by this gene family during domestication. Furthermore, the analysis of cis-acting elements in the promoters of AsHSF genes indicated their crucial roles in plant growth, development, and stress responses. qRT-PCR analysis, co-expression analysis, and protein interaction prediction collectively highlighted the significance of Asa6G04911. Subsequent experimental investigations using yeast two-hybridization and yeast induction experiments confirmed its interaction with HSP70/90, reinforcing its significance in heat stress. CONCLUSIONS This study is the first to unravel and analyze the AsHSF genes in garlic, thereby opening up new avenues for understanding their functions. The insights gained from this research provide a valuable resource for future investigations, particularly in the functional analysis of AsHSF genes.
Collapse
Affiliation(s)
- Xiaomeng Hao
- Institute of Neurobiology, Jining Medical University, Jining, China
| | - Shutao He
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing, China.
| |
Collapse
|
10
|
Alem F, Brahms A, Tarasaki K, Omole S, Kehn-Hall K, Schmaljohn CS, Bavari S, Makino S, Hakami RM. HSP90 is part of a protein complex with the L polymerase of Rift Valley fever phlebovirus and prevents its degradation by the proteasome during the viral genome replication/transcription stage. Front Cell Infect Microbiol 2024; 14:1331755. [PMID: 38800833 PMCID: PMC11127626 DOI: 10.3389/fcimb.2024.1331755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
The mosquito-borne Rift Valley fever virus (RVFV) from the Phenuiviridae family is a single-stranded RNA virus that causes the re-emerging zoonotic disease Rift Valley fever (RVF). Classified as a Category A agent by the NIH, RVFV infection can cause debilitating disease or death in humans and lead to devastating economic impacts by causing abortion storms in pregnant cattle. In a previous study, we showed that the host chaperone protein HSP90 is an RVFV-associated host factor that plays a critical role post viral entry, during the active phase of viral genome replication/transcription. In this study, we have elucidated the molecular mechanisms behind the regulatory effect of HSP90 during infection with RVFV. Our results demonstrate that during the early infection phase, host HSP90 associates with the viral RNA-dependent RNA polymerase (L protein) and prevents its degradation through the proteasome, resulting in increased viral replication.
Collapse
Affiliation(s)
- Farhang Alem
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Ashwini Brahms
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Kaori Tarasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Samson Omole
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Kylene Kehn-Hall
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Connie S. Schmaljohn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, United States
| | - Sina Bavari
- Tonix Pharmaceuticals, Frederick, MD, United States
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Ramin M. Hakami
- School of Systems Biology, George Mason University, Manassas, VA, United States
- Center for Infectious Disease Research, George Mason University, Manassas, VA, United States
| |
Collapse
|
11
|
Singh MK, Shin Y, Ju S, Han S, Choe W, Yoon KS, Kim SS, Kang I. Heat Shock Response and Heat Shock Proteins: Current Understanding and Future Opportunities in Human Diseases. Int J Mol Sci 2024; 25:4209. [PMID: 38673794 PMCID: PMC11050489 DOI: 10.3390/ijms25084209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The heat shock response is an evolutionarily conserved mechanism that protects cells or organisms from the harmful effects of various stressors such as heat, chemicals toxins, UV radiation, and oxidizing agents. The heat shock response triggers the expression of a specific set of genes and proteins known as heat shock genes/proteins or molecular chaperones, including HSP100, HSP90, HSP70, HSP60, and small HSPs. Heat shock proteins (HSPs) play a crucial role in thermotolerance and aiding in protecting cells from harmful insults of stressors. HSPs are involved in essential cellular functions such as protein folding, eliminating misfolded proteins, apoptosis, and modulating cell signaling. The stress response to various environmental insults has been extensively studied in organisms from prokaryotes to higher organisms. The responses of organisms to various environmental stressors rely on the intensity and threshold of the stress stimuli, which vary among organisms and cellular contexts. Studies on heat shock proteins have primarily focused on HSP70, HSP90, HSP60, small HSPs, and ubiquitin, along with their applications in human biology. The current review highlighted a comprehensive mechanism of heat shock response and explores the function of heat shock proteins in stress management, as well as their potential as therapeutic agents and diagnostic markers for various diseases.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Fatani A, Wu X, Gbotsyo Y, MacRae TH, Song X, Tan J. ArHsp90 is important in stress tolerance and embryo development of the brine shrimp, Artemia franciscana. Cell Stress Chaperones 2024; 29:285-299. [PMID: 38428516 PMCID: PMC10972811 DOI: 10.1016/j.cstres.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Females of the extremophile crustacean, Artemia franciscana, either release motile nauplii via the ovoviviparous pathway or encysted embryos (cysts) via the oviparous pathway. Cysts contain an abundant amount of the ATP-independent small heat shock protein that contributes to stress tolerance and embryo development, however, little is known of the role of ATP-dependent molecular chaperone, heat shock protein 90 (Hsp90) in the two processes. In this study, a hsp90 was cloned from A. franciscana. Characteristic domains of ArHsp90 were simulated from the deduced amino acid sequence, and 3D structures of ArHsp90 and Hsp90s of organisms from different groups were aligned. RNA interference was then employed to characterize ArHsp90 in A. franciscana nauplii and cysts. The partial knockdown of ArHsp90 slowed the development of nauplius-destined, but not cyst-destined embryos. ArHsp90 knockdown also reduced the survival and stress tolerance of nauplii newly released from A. franciscana females. Although the reduction of ArHsp90 had no effect on the development of diapause-destined embryos, the resulting cysts displayed reduced tolerance to desiccation and low temperature, two stresses normally encountered by A. franciscana in its natural environment. The results reveal that Hsp90 contributes to the development, growth, and stress tolerance of A. franciscana, an organism of practical importance as a feed source in aquaculture.
Collapse
Affiliation(s)
- Afnan Fatani
- Infection Prevention and Control Department, East Jeddah Hospital, Ministry of Health, Al Sulaymaniyah, Jeddah, Saudi Arabia
| | - Xiangyang Wu
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yayra Gbotsyo
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Xiaojun Song
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jiabo Tan
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China.
| |
Collapse
|
13
|
Jia J, Zoeschg M, Barth H, Pulliainen AT, Ernst K. The Chaperonin TRiC/CCT Inhibitor HSF1A Protects Cells from Intoxication with Pertussis Toxin. Toxins (Basel) 2024; 16:36. [PMID: 38251252 PMCID: PMC10819386 DOI: 10.3390/toxins16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Pertussis toxin (PT) is a bacterial AB5-toxin produced by Bordetella pertussis and a major molecular determinant of pertussis, also known as whooping cough, a highly contagious respiratory disease. In this study, we investigate the protective effects of the chaperonin TRiC/CCT inhibitor, HSF1A, against PT-induced cell intoxication. TRiC/CCT is a chaperonin complex that facilitates the correct folding of proteins, preventing misfolding and aggregation, and maintaining cellular protein homeostasis. Previous research has demonstrated the significance of TRiC/CCT in the functionality of the Clostridioides difficile TcdB AB-toxin. Our findings reveal that HSF1A effectively reduces the levels of ADP-ribosylated Gαi, the specific substrate of PT, in PT-treated cells, without interfering with enzyme activity in vitro or the cellular binding of PT. Additionally, our study uncovers a novel interaction between PTS1 and the chaperonin complex subunit CCT5, which correlates with reduced PTS1 signaling in cells upon HSF1A treatment. Importantly, HSF1A mitigates the adverse effects of PT on cAMP signaling in cellular systems. These results provide valuable insights into the mechanisms of PT uptake and suggest a promising starting point for the development of innovative therapeutic strategies to counteract pertussis toxin-mediated pathogenicity.
Collapse
Affiliation(s)
- Jinfang Jia
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Manuel Zoeschg
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
14
|
Nalbantoglu D, Preuss JM, Vettorazzi S. Glucocorticoid Receptor-Dependent Binding Analysis Using Chromatin Immunoprecipitation and Quantitative Polymerase Chain Reaction. Methods Mol Biol 2024; 2846:17-34. [PMID: 39141227 DOI: 10.1007/978-1-0716-4071-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
ChIP-qPCR offers the opportunity to identify interactions of DNA-binding proteins such as transcription factors and their respective DNA binding sites. Thereby, transcription factors can interfere with gene expression, resulting in up- or downregulation of their target genes. Utilizing ChIP, it is possible to identify specific DNA binding sites that are bound by the DNA-binding proteins in dependence on treatment or prevailing conditions. During ChIP, DNA-binding proteins are reversibly cross-linked to their DNA binding sites and the DNA itself is fragmented. Using bead-captured antibodies, the target proteins are isolated while still binding their respective DNA response element. Using quantitative PCR, these DNA fragments are amplified and quantified. In this protocol, DNA binding sites of the glucocorticoid receptor are identified by treatment with the synthetic glucocorticoid Dexamethasone in murine bone marrow-derived macrophages.
Collapse
Affiliation(s)
- Denis Nalbantoglu
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany.
| | - Jonathan M Preuss
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany.
| |
Collapse
|
15
|
Mohamed ME, El-Shafae AM, Fikry E, Elbaramawi SS, Elbatreek MH, Tawfeek N. Casuarina glauca branchlets' extract as a potential treatment for ulcerative colitis: chemical composition, in silico and in vivo studies. Front Pharmacol 2023; 14:1322181. [PMID: 38196993 PMCID: PMC10774231 DOI: 10.3389/fphar.2023.1322181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that is often resistant to current treatment options, leading to a need for alternative therapies. Herbal products have shown promise in managing various conditions, including UC. However, the potential of Casuarina glauca branchlets ethanolic extract (CGBRE) in treating UC has not been explored. This study aimed to analyze the chemical composition of CGBRE and evaluate its efficacy in UC treatment through in silico and in vivo experiments. LC-ESI-MS/MS was used to identify 86 compounds in CGBRE, with 21 potential bioactive compounds determined through pharmacokinetic analysis. Network pharmacology analysis revealed 171 potential UC targets for the bioactive compounds, including EGFR, LRRK2, and HSP90 as top targets, which were found to bind to key CGBRE compounds through molecular docking. Molecular docking findings suggested that CGBRE may be effective in the prevention or treatment of ulcerative colitis mediated by these proteins, where key CGBRE compounds exhibited good binding affinities through formation of numerous interactions. In vivo studies in rats with acetic acid-induced UC demonstrated that oral administration of 300 mg/kg CGBRE for 6 days reduced UC symptoms and colonic expression of EGFR, LRRK2, and HSP90. These findings supported the therapeutic potential of CGBRE in UC and suggested the need for further preclinical and clinical investigation.
Collapse
Affiliation(s)
- Maged E. Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Azza M. El-Shafae
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Fikry
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samar S. Elbaramawi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mahmoud H. Elbatreek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Nora Tawfeek
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
16
|
Gujar G, Tiwari M, Yadav N, Monika D. Heat stress adaptation in cows - Physiological responses and underlying molecular mechanisms. J Therm Biol 2023; 118:103740. [PMID: 37976864 DOI: 10.1016/j.jtherbio.2023.103740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/04/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
Heat stress is a key abiotic stressor for dairy production in the tropics which is further compounded by the ongoing climate change. Heat stress not only adversely impacts the production and welfare of dairy cows but severely impacts the economics of dairying due to production losses and increased cost of rearing. Over the years, selection has ensured development of high producing breeds, however, the thermotolerance ability of animals has been largely overlooked. In the past decade, the ill effects of climate change have made it pertinent to rethink the selection strategies to opt for climate resilient breeds, to ensure optimum production and reproduction. This has led to renewed interest in evaluation of the impacts of heat stress on cows and the underlying mechanisms that results in their acclimatization and adaptation to varied thermal ambience. The understanding of heat stress and associated responses at various level of animal is crucial to device amelioration strategies to secure optimum production and welfare of cows. With this review, an effort has been made to provide an overview on temperature humidity index as an important indicator of heat stress, general effect of heat stress in dairy cows, and impact of heat stress and subsequent response at physiological, haematological, molecular and genetic level of dairy cows.
Collapse
Affiliation(s)
- Gayatri Gujar
- Livestock Production Management, Bikaner, Rajasthan, 334001, India.
| | - Manish Tiwari
- Animal Biotechnology, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Nistha Yadav
- Department of Animal Genetics and Breeding, College of Veterinary and Animal Science, Bikaner, Rajasthan, 334001, India
| | - Dr Monika
- Veterinary Parasitology, Jaipur, Rajasthan, 302012, India
| |
Collapse
|
17
|
Marie C, Pierre A, Mayeur A, Giton F, Corre R, Grynberg M, Cohen-Tannoudji J, Guigon CJ, Chauvin S. Dysfunction of Human Estrogen Signaling as a Novel Molecular Signature of Polycystic Ovary Syndrome. Int J Mol Sci 2023; 24:16689. [PMID: 38069013 PMCID: PMC10706349 DOI: 10.3390/ijms242316689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Estradiol (E2) is a major hormone-controlling folliculogenesis whose dysfunction may participate in polycystic ovary syndrome (PCOS) infertility. To determine whether both the concentration and action of E2 could be impaired in non-hyperandrogenic overweight PCOS women, we isolated granulosa cells (GCs) and follicular fluid (FF) from follicles of women undergoing ovarian stimulation (27 with PCOS, and 54 without PCOS). An analysis of the transcript abundance of 16 genes in GCs showed that androgen and progesterone receptor expressions were significantly increased in GCs of PCOS (by 2.7-fold and 1.5-fold, respectively), while those of the steroidogenic enzymes CYP11A1 and HSD3B2 were down-regulated (by 56% and 38%, respectively). Remarkably, treatment of GC cultures with E2 revealed its ineffectiveness in regulating the expression of several key endocrine genes (e.g., GREB1 or BCL2) in PCOS. Additionally, a comparison of the steroid concentrations (measured by GC/MS) in GCs with those in FF of matched follicles demonstrated that the significant decline in the E2 concentration (by 23%) in PCOS FF was not the result of the E2 biosynthesis reduction. Overall, our study provides novel hallmarks of PCOS by highlighting the ineffective E2 signaling in GCs as well as the dysregulation in the expression of genes involved in follicular growth, which may contribute to aberrant folliculogenesis in non-hyperandrogenic women with PCOS.
Collapse
Affiliation(s)
- Clémentine Marie
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France; (C.M.); (A.P.); (R.C.); (M.G.); (J.C.-T.); (C.J.G.)
| | - Alice Pierre
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France; (C.M.); (A.P.); (R.C.); (M.G.); (J.C.-T.); (C.J.G.)
| | - Anne Mayeur
- Service de Médecine de la Reproduction et Préservation de la Fertilité, Hôpital Antoine Béclère, 92140 Clamart, France;
| | - Frank Giton
- AP-HP, Pôle Biologie-Pathologie Henri Mondor, Inserm IMRB U955, 94010 Créteil, France;
| | - Raphael Corre
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France; (C.M.); (A.P.); (R.C.); (M.G.); (J.C.-T.); (C.J.G.)
| | - Michaël Grynberg
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France; (C.M.); (A.P.); (R.C.); (M.G.); (J.C.-T.); (C.J.G.)
- Service de Médecine de la Reproduction et Préservation de la Fertilité, Hôpital Antoine Béclère, 92140 Clamart, France;
| | - Joëlle Cohen-Tannoudji
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France; (C.M.); (A.P.); (R.C.); (M.G.); (J.C.-T.); (C.J.G.)
| | - Céline J. Guigon
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France; (C.M.); (A.P.); (R.C.); (M.G.); (J.C.-T.); (C.J.G.)
| | - Stéphanie Chauvin
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France; (C.M.); (A.P.); (R.C.); (M.G.); (J.C.-T.); (C.J.G.)
| |
Collapse
|
18
|
Huang Z, Ito M, Zhang S, Toda T, Takeda JI, Ogi T, Ohno K. Extremely low-frequency electromagnetic field induces acetylation of heat shock proteins and enhances protein folding. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115482. [PMID: 37717354 DOI: 10.1016/j.ecoenv.2023.115482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
The pervasive weak electromagnetic fields (EMF) inundate the industrialized society, but the biological effects of EMF as weak as 10 µT have been scarcely analyzed. Heat shock proteins (HSPs) are molecular chaperones that mediate a sequential stress response. HSP70 and HSP90 provide cells under undesirable situations with either assisting covalent folding of proteins or degrading improperly folded proteins in an ATP-dependent manner. Here we examined the effect of extremely low-frequency (ELF)-EMF on AML12 and HEK293 cells. Although the protein expression levels of HSP70 and HSP90 were reduced after an exposure to ELF-EMF for 3 h, acetylations of HSP70 and HSP90 were increased, which was followed by an enhanced binding affinities of HSP70 and HSP90 for HSP70/HSP90-organizing protein (HOP/STIP1). After 3 h exposure to ELF-EMF, the amount of mitochondria was reduced but the ATP level and the maximal mitochondrial oxygen consumption were increased, which was followed by the reduced protein aggregates and the increased cell viability. Thus, ELF-EMF exposure for 3 h activated acetylation of HSPs to enhance protein folding, which was returned to the basal level at 12 h. The proteostatic effects of ELF-EMF will be able to be applied to treat pathological states in humans.
Collapse
Affiliation(s)
- Zhizhou Huang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shaochuan Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuro Toda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
19
|
Armstrong HC, Russell DJF, Moss SEW, Pomeroy P, Bennett KA. Fitness correlates of blubber oxidative stress and cellular defences in grey seals (Halichoerus grypus): support for the life-history-oxidative stress theory from an animal model of simultaneous lactation and fasting. Cell Stress Chaperones 2023; 28:551-566. [PMID: 36933172 PMCID: PMC10469160 DOI: 10.1007/s12192-023-01332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/19/2023] Open
Abstract
Life-history-oxidative stress theory predicts that elevated energy costs during reproduction reduce allocation to defences and increase cellular stress, with fitness consequences, particularly when resources are limited. As capital breeders, grey seals are a natural system in which to test this theory. We investigated oxidative damage (malondialdehyde (MDA) concentration) and cellular defences (relative mRNA abundance of heat shock proteins (Hsps) and redox enzymes (REs)) in blubber of wild female grey seals during the lactation fast (n = 17) and summer foraging (n = 13). Transcript abundance of Hsc70 increased, and Nox4, a pro-oxidant enzyme, decreased throughout lactation. Foraging females had higher mRNA abundance of some Hsps and lower RE transcript abundance and MDA concentrations, suggesting they experienced lower oxidative stress than lactating mothers, which diverted resources into pup rearing at the expense of blubber tissue damage. Lactation duration and maternal mass loss rate were both positively related to pup weaning mass. Pups whose mothers had higher blubber glutathione-S-transferase (GST) expression at early lactation gained mass more slowly. Higher glutathione peroxidase (GPx) and lower catalase (CAT) were associated with longer lactation but reduced maternal transfer efficiency and lower pup weaning mass. Cellular stress, and the ability to mount effective cellular defences, could proscribe lactation strategy in grey seal mothers and thus affect pup survival probability. These data support the life-history-oxidative stress hypothesis in a capital breeding mammal and suggest lactation is a period of heightened vulnerability to environmental factors that exacerbate cellular stress. Fitness consequences of stress may thus be accentuated during periods of rapid environmental change.
Collapse
Affiliation(s)
- Holly C Armstrong
- Marine Biology and Ecology Research Centre, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK.
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, UK.
| | - Debbie J F Russell
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, UK
| | - Simon E W Moss
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, UK
| | - Paddy Pomeroy
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, UK
| | - Kimberley A Bennett
- Division of Health Science, School of Applied Sciences, Abertay University, Dundee, DD1 1HG, UK
| |
Collapse
|
20
|
Mohajershojai T, Spangler D, Chopra S, Frejd FY, Yazaki PJ, Nestor M. Enhanced Therapeutic Effects of 177Lu-DOTA-M5A in Combination with Heat Shock Protein 90 Inhibitor Onalespib in Colorectal Cancer Xenografts. Cancers (Basel) 2023; 15:4239. [PMID: 37686514 PMCID: PMC10486833 DOI: 10.3390/cancers15174239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Carcinoembryonic antigen (CEA) has emerged as an attractive target for theranostic applications in colorectal cancers (CRCs). In the present study, the humanized anti-CEA antibody hT84.66-M5A (M5A) was labeled with 177Lu for potential CRC therapy. Moreover, the novel combination of 177Lu-DOTA-M5A with the heat shock protein 90 inhibitor onalespib, suggested to mediate radiosensitizing properties, was assessed in vivo for the first time. M5A antibody uptake and therapeutic effects, alone or in combination with onalespib, were assessed in human CRC xenografts and visualized using SPECT/CT imaging. Although both 177Lu-DOTA-M5A and onalespib monotherapies effectively reduced tumor growth rates, the combination therapy demonstrated the most substantial impact, achieving a fourfold reduction in tumor growth compared to the control group. Median survival increased by 33% compared to 177Lu-DOTA-M5A alone, and tripled compared to control and onalespib groups. Importantly, combination therapy yielded comparable or superior effects to the double dose of 177Lu-DOTA-M5A monotherapy. 177Lu-DOTA-M5A increased apoptotic cell levels, indicating its potential to induce tumor cell death. These findings show promise for 177Lu-DOTA-M5A as a CRC therapeutic agent, and its combination with onalespib could significantly enhance treatment efficacy. Further in vivo studies are warranted to validate these findings fully and explore the treatment's potential for clinical use.
Collapse
Affiliation(s)
- Tabassom Mohajershojai
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.M.); (S.C.); (F.Y.F.)
| | - Douglas Spangler
- Department of Public Health and Caring Sciences, Uppsala University, 751 22 Uppsala, Sweden;
| | - Saloni Chopra
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.M.); (S.C.); (F.Y.F.)
| | - Fredrik Y. Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.M.); (S.C.); (F.Y.F.)
| | - Paul J. Yazaki
- Department of Immunology & Theranostics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA;
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.M.); (S.C.); (F.Y.F.)
| |
Collapse
|
21
|
Zhu J, Yu Z, He L, Jiang Y, Cao X, Song X. The molecular mechanisms and environmental effects of modified clay control algal blooms in aquacultural water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117715. [PMID: 36934499 DOI: 10.1016/j.jenvman.2023.117715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Modified clay (MC) technology is an effective method for controlling harmful algal blooms (HABs). Based on field experience, a bloom does not continue after treatment with MC, even though the residual HAB biomass accounts for 20-30% of the initial biomass. Laboratory studies using unialgal cultures have found that MC could inhibit the growth of the residual algal cells to prevent HABs. Nevertheless, the phytoplankton in field waters is diverse. Therefore, unclassified complex mechanisms may exist. To illustrate the molecular mechanisms through which MC controls HABs in the field and verify the previous laboratory findings, a series of experiments and bioinformatics analyses were conducted using bloom waters from aquacultural ponds. The results showed that a 72.29% removal efficiency of algal biomass could effectively control blooms. The metatranscriptomic results revealed that the number of downregulated genes (131,546) was greater than that of upregulated genes (24,318) at 3 h after MC addition. Among these genes, several genes related to DNA replication were downregulated; however, genes involved in DNA repair were upregulated. Metabolism-related pathways were the most significantly upregulated (q < 0.05), including photosynthesis and oxidative phosphorylation. The results also showed that MC reduced most of the biomass of the dominant phytoplankton species, likely by removing apical dominance, which increased the diversity and stability of the phytoplankton community. In addition to reducing the pathogenic bacterial density, MC reduced the concentrations of PO43- (96.22%) and SiO32- (66.77%), thus improving the aquaculture water quality, altering the phytoplankton community structure (the proportion of Diatomea decreased, and that of Chlorophyta increased), and inhibiting phytoplankton growth. These effects hindered the rapid development of large phytoplankton biomasses and allowed the community structure to remain stable, reducing HAB threats. This study illustrates the molecular mechanisms through which MC controls HABs in the field and provides a scientific method for removing HABs in aquacultural waters.
Collapse
Affiliation(s)
- Jianan Zhu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yuxin Jiang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xihua Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Borin C, Pieters T, Serafin V, Ntziachristos P. Emerging Epigenetic and Posttranslational Mechanisms Controlling Resistance to Glucocorticoids in Acute Lymphoblastic Leukemia. Hemasphere 2023; 7:e916. [PMID: 37359189 PMCID: PMC10289758 DOI: 10.1097/hs9.0000000000000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Glucocorticoids are extensively used for the treatment of acute lymphoblastic leukemia as they pressure cancer cells to undergo apoptosis. Nevertheless, glucocorticoid partners, modifications, and mechanisms of action are hitherto poorly characterized. This hampers our understanding of therapy resistance, frequently occurring in leukemia despite the current therapeutic combinations using glucocorticoids in acute lymphoblastic leukemia. In this review, we initially cover the traditional view of glucocorticoid resistance and ways of targeting this resistance. We discuss recent progress in our understanding of chromatin and posttranslational properties of the glucocorticoid receptor that might be proven beneficial in our efforts to understand and target therapy resistance. We discuss emerging roles of pathways and proteins such as the lymphocyte-specific kinase that antagonizes glucocorticoid receptor activation and nuclear translocation. In addition, we provide an overview of ongoing therapeutic approaches that sensitize cells to glucocorticoids including small molecule inhibitors and proteolysis-targeting chimeras.
Collapse
Affiliation(s)
- Cristina Borin
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Valentina Serafin
- Department of Surgery Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Italy
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| |
Collapse
|
23
|
Pires CV, Chawla J, Simmons C, Gibbons J, Adams JH. Heat-shock responses: systemic and essential ways of malaria parasite survival. Curr Opin Microbiol 2023; 73:102322. [PMID: 37130502 PMCID: PMC10247345 DOI: 10.1016/j.mib.2023.102322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
Fever is a part of the human innate immune response that contributes to limiting microbial growth and development in many infectious diseases. For the parasite Plasmodium falciparum, survival of febrile temperatures is crucial for its successful propagation in human populations as well as a fundamental aspect of malaria pathogenesis. This review discusses recent insights into the biological complexity of the malaria parasite's heat-shock response, which involves many cellular compartments and essential metabolic processes to alleviate oxidative stress and accumulation of damaged and unfolded proteins. We highlight the overlap between heat-shock and artemisinin resistance responses, while also explaining how the malaria parasite adapts its fever response to fight artemisinin treatment. Additionally, we discuss how this systemic and essential fight for survival can also contribute to parasite transmission to mosquitoes.
Collapse
Affiliation(s)
- Camilla V Pires
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States
| | - Jyotsna Chawla
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Caroline Simmons
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Justin Gibbons
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
24
|
Kacar AK, Aylar D, Kazdal F, Bahadori F. BuOH fraction of Salix Babylonica L. extract increases pancreatic beta-cell tumor death at lower doses without harming their function. Toxicol In Vitro 2023; 90:105609. [PMID: 37164183 DOI: 10.1016/j.tiv.2023.105609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Salix babylonica L. is a species of the willow tree. Insulinoma is a tumor originating from pancreatic beta cells. This study aims to research the effect of different fractions of Salix babylonica L. leaf extract on INS-1 cells for treating pancreatic tumors. Cell death occurred at lower doses in the EtOAc fraction. The cells are functional in the BuOH fraction but not in EtOAc and H2O fractions. The EtOAc fraction has a higher percentage of necrosis and ROS. INS1, INS2, and AKT gene expressions in the H2O fraction, GLUT2, IR, HSP70 gene expressions, and WNT4 protein levels increased in the BuOH fraction. HSP90 gene expression, Beta-actin, GAPDH, insulin, HSP70, HSP90, HSF1, Beta-Catenin, and WNT7A protein levels were decreased, while IR immunolabelling intensity increased in both fractions. Ca+2, K+, Na+, and CA-19-9 in the cell, Ca+2 and K+ in secretion increased. The secondary metabolites in the EtOAc fraction cause more damage in INS-1 cells. Since the water fraction also causes the cells to die in high doses, cell function is damaged. The secondary metabolites in the BuOH fraction kill INS-1 cells with less damage. This makes the BuOH fraction of Salix babylonica L. more valuable.
Collapse
Affiliation(s)
- Ayse Karatug Kacar
- Istanbul University, Faculty of Science, Department of Biology, Istanbul, Turkey.
| | - Dilara Aylar
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Fatma Kazdal
- Bezmialem Vakif University, Institute of Health Sciences, Department of Medicinal Biochemistry, Istanbul, Turkey
| | - Fatemeh Bahadori
- Istanbul University-Cerrahpasa, Faculty of Pharmacy, Department of Analytical Chemistry, Istanbul, Turkey
| |
Collapse
|
25
|
Wu S, Zhao Y, Wang D, Chen Z. Mode of Action of Heat Shock Protein (HSP) Inhibitors against Viruses through Host HSP and Virus Interactions. Genes (Basel) 2023; 14:genes14040792. [PMID: 37107550 PMCID: PMC10138296 DOI: 10.3390/genes14040792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Misfolded proteins after stress-induced denaturation can regain their functions through correct re-folding with the aid of molecular chaperones. As a molecular chaperone, heat shock proteins (HSPs) can help client proteins fold correctly. During viral infection, HSPs are involved with replication, movement, assembly, disassembly, subcellular localization, and transport of the virus via the formation of macromolecular protein complexes, such as the viral replicase complex. Recent studies have indicated that HSP inhibitors can inhibit viral replication by interfering with the interaction of the virus with the HSP. In this review, we describe the function and classification of HSPs, the transcriptional mechanism of HSPs promoted by heat shock factors (HSFs), discuss the interaction between HSPs and viruses, and the mode of action of HSP inhibitors at two aspects of inhibiting the expression of HSPs and targeting the HSPs, and elaborate their potential use as antiviral agents.
Collapse
|
26
|
Son H, Choi HS, Baek SE, Kim YH, Hur J, Han JH, Moon JH, Lee GS, Park SG, Woo CH, Eo SK, Yoon S, Kim BS, Lee D, Kim K. Shear stress induces monocyte/macrophage-mediated inflammation by upregulating cell-surface expression of heat shock proteins. Biomed Pharmacother 2023; 161:114566. [PMID: 36963359 DOI: 10.1016/j.biopha.2023.114566] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
The loss of endothelial cells is associated with the accumulation of monocytes/macrophages underneath the surface of the arteries, where cells are prone to mechanical stimulation, such as shear stress. However, the impact of mechanical stimuli on monocytic cells remains unclear. To assess whether mechanical stress affects monocytic cell function, we examined the expression of inflammatory molecules and surface proteins, whose levels changed following shear stress in human THP-1 cells. Shear stress increased the inflammatory chemokine CCL2, which enhanced the migration of monocytic cells and tumor necrosis factor (TNF)-α and interleukin (IL)- 1β at transcriptional and protein levels. We identified that the surface levels of heat shock protein 70 (HSP70), HSP90, and HSP105 increased using mass spectrometry-based proteomics, which was confirmed by western blot analysis, flow cytometry, and immunofluorescence. Treatment with HSP70/HSP105 and HSP90 inhibitors suppressed the expression and secretion of CCL2 and monocytic cell migration, suggesting an association between HSPs and inflammatory responses. We also demonstrated the coexistence and colocalization of increased HSP90 immunoreactivity and CD68 positive cells in atherosclerotic plaques of ApoE deficient mice fed a high-fat diet and human femoral artery endarterectomy specimens. These results suggest that monocytes/macrophages affected by shear stress polarize to a pro-inflammatory phenotype and increase surface protein levels involved in inflammatory responses. The regulation of the abovementioned HSPs upregulated on the monocytes/macrophages surface may serve as a novel therapeutic target for inflammation due to shear stress.
Collapse
Affiliation(s)
- Hyojae Son
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hee-Seon Choi
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Seung Eun Baek
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yun-Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Department of Bioinformatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jin Hur
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jung-Hwa Han
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Ga Seul Lee
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Chang-Hoon Woo
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu 49415, Republic of Korea
| | - Seong-Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea.
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
| |
Collapse
|
27
|
Rastmanesh R, Flack KD. Dietary Temperature's Influence on Energy Balance in Humans: Protocol for a Randomized Controlled Trial and Crossover Design. JMIR Res Protoc 2023; 12:e42846. [PMID: 36867437 PMCID: PMC10024216 DOI: 10.2196/42846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND According to the first law of thermodynamics, energy cannot be created or destroyed in an isolated system. Water has a characteristically high heat capacity, indicating that the temperature of ingested fluids and meals could contribute to energy homeostasis. Citing the underlying molecular mechanisms, we present a novel hypothesis that states that the temperature of one's food and drink contributes to energy balance and plays a role in the development of obesity. We provide strong associations with certain molecular mechanisms that are activated by heat and correlate them with obesity and a hypothetical trial that could test this hypothesis. We conclude that if meal or drink temperature proves to contribute to energy homeostasis, then depending on its contribution and scale, future clinical trials should attempt to adjust this effect when analyzing data. In addition, previous research and established relationships of disease states with dietary patterns, energy intake, and food component intakes should be revisited. We understand the common assumption that thermal energy in food is absorbed by the body during digestion and dissipated as heat into the environment, not contributing to the energy balance. We challenge this assumption herein, including a proposed study design that would test our hypothesis. OBJECTIVE This paper hypothesizes that the temperature of ingested foods or fluids influences energy homeostasis through the expression of heat shock proteins (HSPs), especially HSP-70 and HSP-90, which are expressed to a greater extent in obesity and are known to cause deficits in glucose metabolism. METHODS We provide preliminary evidence supporting our hypothesis that greater dietary temperatures disproportionally induce activation of both intracellular and extracellular HSPs and that these HSPs influence energy balance and contribute to obesity. RESULTS This trial protocol has not been initiated and funding has not been sought at the time of this publication. CONCLUSIONS To date, no clinical trials are available regarding the potential effects of meal and fluid temperature on weight status or its confounding effects in data analysis. A potential mechanism is proposed as a basis by which higher temperatures of foods and beverages might influence energy balance via HSP expression. On the basis of the evidence supporting our hypothesis, we propose a clinical trial that will further elucidate these mechanisms. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/42846.
Collapse
Affiliation(s)
| | - Kyle D Flack
- Department of Dietetics and Human Nutrition, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
28
|
Morishima Y, Lau M, Pratt WB, Osawa Y. Dynamic cycling with a unique Hsp90/Hsp70-dependent chaperone machinery and GAPDH is needed for heme insertion and activation of neuronal NO synthase. J Biol Chem 2023; 299:102856. [PMID: 36596358 PMCID: PMC9922822 DOI: 10.1016/j.jbc.2022.102856] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/02/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is known to mediate heme insertion and activation of heme-deficient neuronal nitric oxide (NO) synthase (apo-nNOS) in cells by a highly dynamic interaction that has been extremely difficult to study mechanistically with the use of subcellular systems. In that the heme content of many critical hemeproteins is regulated by Hsp90 and the heme chaperone GAPDH, the development of an in vitro system for the study of this chaperone-mediated heme regulation would be extremely useful. Here, we show that use of an antibody-immobilized apo-nNOS led not only to successful assembly of chaperone complexes but the ability to show a clear dependence on Hsp90 and GAPDH for heme-mediated activation of apo-nNOS. The kinetics of binding for Hsp70 and Hsp90, the ATP and K+ dependence, and the absolute requirement for Hsp70 in assembly of Hsp90•apo-nNOS heterocomplexes all point to a similar chaperone machinery to the well-established canonical machine regulating steroid hormone receptors. However, unlike steroid receptors, the use of a purified protein system containing Hsp90, Hsp70, Hsp40, Hop, and p23 is unable to activate apo-nNOS. Thus, heme insertion requires a unique Hsp90-chaperone complex. With this newly developed in vitro system, which recapitulates the cellular process requiring GAPDH as well as Hsp90, further mechanistic studies are now possible to better understand the components of the Hsp90-based chaperone system as well as how this heterocomplex works with GAPDH to regulate nNOS and possibly other hemeproteins.
Collapse
Affiliation(s)
- Yoshihiro Morishima
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Miranda Lau
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - William B Pratt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yoichi Osawa
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
29
|
Pascual S, Rodríguez-Álvarez CI, Kaloshian I, Nombela G. Hsp90 Gene Is Required for Mi-1-Mediated Resistance of Tomato to the Whitefly Bemisia tabaci. PLANTS (BASEL, SWITZERLAND) 2023; 12:641. [PMID: 36771723 PMCID: PMC9919380 DOI: 10.3390/plants12030641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The Mi-1 gene of tomato (Solanum lycopersicum) confers resistance against some nematodes and insects, but the resistance mechanisms differ depending on the harmful organism, as a hypersensitive reaction (HR) occurs only in the case of nematodes. The gene Rme1 is required for Mi-1-mediated resistance to nematodes, aphids, and whiteflies, and several additional proteins also play a role in this resistance. Among them, the involvement of the chaperone HSP90 has been demonstrated in Mi-1-mediated resistance for aphids and nematodes, but not for whiteflies. In this work, we studied the implication of the Hsp90 gene in the Mi-1 resistance against the whitefly Bemisia tabaci by means of Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS). The silencing of the Hsp90 gene in tomato Motelle plants carrying the Mi-1 gene resulted in a decrease in resistance to whiteflies, as oviposition values were significantly higher than those on non-silenced plants. This decrease in resistance was equivalent to that caused by the silencing of the Mi-1 gene itself. Infiltration with the control TRV vector did not alter Mi-1 mediated resistance to B. tabaci. Similar to the Mi-1 gene, silencing of Hsp90-1 occurs partially, as silenced plants showed a significant but not complete suppression of gene expression. Thus, our results demonstrate the requirement of Hsp90 in the Mi-1-mediated resistance to B. tabaci and reinforce the hypothesis of a common model for this resistance to nematodes and insects.
Collapse
Affiliation(s)
- Susana Pascual
- Entomology Group, Plant Protection Department, National Institute of Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Ctra. Coruña km 7, 28040 Madrid, Spain
| | - Clara I. Rodríguez-Álvarez
- Department of Plant Protection, Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., 28006 Madrid, Spain
| | - Isgouhi Kaloshian
- Department of Nematology, University of California, Riverside, CA 92521, USA
| | - Gloria Nombela
- Department of Plant Protection, Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., 28006 Madrid, Spain
| |
Collapse
|
30
|
HSP70 mediates a crosstalk between the estrogen and the heat shock response pathways. J Biol Chem 2023; 299:102872. [PMID: 36610605 PMCID: PMC9926311 DOI: 10.1016/j.jbc.2023.102872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Cells respond to multiple signals from the environment simultaneously, which often creates crosstalk between pathways affecting the capacity to adapt to the changing environment. Chaperones are an important component in the cellular integration of multiple responses to environmental signals, often implicated in negative feedback and inactivation mechanisms. These mechanisms include the stabilization of steroid hormone nuclear receptors in the cytoplasm in the absence of their ligand. Here, we show using immunofluorescence, chromatin immunoprecipitation, and nascent transcripts production that the heat shock protein 70 (HSP70) chaperone plays a central role in a new crosstalk mechanism between the steroid and heat shock response pathways. HSP70-dependent feedback mechanisms are required to inactivate the heat shock factor 1 (HSF1) after activation. Interestingly, a steroid stimulation leads to faster accumulation of HSF1 in inactive foci following heat shock. Our results further show that in the presence of estrogen, HSP70 accumulates at HSF1-regulated noncoding regions, leading to deactivation of HSF1 and the abrogation of the heat shock transcriptional response. Using an HSP70 inhibitor, we demonstrate that the crosstalk between both pathways is dependent on the chaperone activity. These results suggest that HSP70 availability is a key determinant in the transcriptional integration of multiple external signals. Overall, these results offer a better understanding of the crosstalk between the heat shock and steroid responses, which are salient in neurodegenerative disorders and cancers.
Collapse
|
31
|
Ishii T, Warabi E, Mann GE. Stress Activated MAP Kinases and Cyclin-Dependent Kinase 5 Mediate Nuclear Translocation of Nrf2 via Hsp90α-Pin1-Dynein Motor Transport Machinery. Antioxidants (Basel) 2023; 12:antiox12020274. [PMID: 36829834 PMCID: PMC9952688 DOI: 10.3390/antiox12020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Non-lethal low levels of oxidative stress leads to rapid activation of the transcription factor nuclear factor-E2-related factor 2 (Nrf2), which upregulates the expression of genes important for detoxification, glutathione synthesis, and defense against oxidative damage. Stress-activated MAP kinases p38, ERK, and JNK cooperate in the efficient nuclear accumulation of Nrf2 in a cell-type-dependent manner. Activation of p38 induces membrane trafficking of a glutathione sensor neutral sphingomyelinase 2, which generates ceramide upon depletion of cellular glutathione. We previously proposed that caveolin-1 in lipid rafts provides a signaling hub for the phosphorylation of Nrf2 by ceramide-activated PKCζ and casein kinase 2 to stabilize Nrf2 and mask a nuclear export signal. We further propose a mechanism of facilitated Nrf2 nuclear translocation by ERK and JNK. ERK and JNK phosphorylation of Nrf2 induces the association of prolyl cis/trans isomerase Pin1, which specifically recognizes phosphorylated serine or threonine immediately preceding a proline residue. Pin1-induced structural changes allow importin-α5 to associate with Nrf2. Pin1 is a co-chaperone of Hsp90α and mediates the association of the Nrf2-Pin1-Hsp90α complex with the dynein motor complex, which is involved in transporting the signaling complex to the nucleus along microtubules. In addition to ERK and JNK, cyclin-dependent kinase 5 could phosphorylate Nrf2 and mediate the transport of Nrf2 to the nucleus via the Pin1-Hsp90α system. Some other ERK target proteins, such as pyruvate kinase M2 and hypoxia-inducible transcription factor-1, are also transported to the nucleus via the Pin1-Hsp90α system to modulate gene expression and energy metabolism. Notably, as malignant tumors often express enhanced Pin1-Hsp90α signaling pathways, this provides a potential therapeutic target for tumors.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
- Correspondence:
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Giovanni E. Mann
- King’s British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
32
|
CTNNAL1 enhances glucocorticoid sensitivity in HDM-induced asthma mouse model through deactivating hsp90 signaling pathway. Life Sci 2023; 313:121304. [PMID: 36535402 DOI: 10.1016/j.lfs.2022.121304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
AIMS Adhesion molecules play vital roles in the induction of airway hyperresponsiveness (AHR) or airway inflammation. The down-regulation of catenin alpha-like 1 (CTNNAL1) in the bronchial epithelial cells of asthma patients and mice models has been noted in our previous study. In this work, we further explore the underlying mechanism of CTNNAL1 in asthma. MAIN METHODS We constructed a house dust mite (HDM)-induced asthma animal model on control mice and applied CTNNAL1-siRNA transfection to create CTNNAL1-deficient mice. KEY FINDINGS We documented much more severe airway inflammation and increased leukocyte infiltration in the lungs of the CTNNAL1-deficient mice comparing to control mice, along with elevated expression of inflammatory cytokines. Dexamethasone (DEX) treatment led to less reduced inflammation in CTNNAL1-deficient mice compared with control mice. Immunoprecipitation confirmed the interaction between heat shock protein90 (hsp90) and CTNNAL1. The expression of hsp90 was upregulated after CTNNAL1 silencing. Meanwhile, the use of hsp90 inhibitor geldanamycin significantly decreased the expression of NR3C1, ICAM-1 and the ratio of p-p65/p65 in CTNNAL1-silenced 16HBE14o- cells. Both geldanamycin and DEX could function to suppress the expression of ICAM-1 and the phosphorylation level of p65. Nevertheless, the anti-inflammatory effect of DEX proved less potent than geldanamycin in the CTNNAL1-silenced group. The combined therapy of geldanamycin and DEX significantly decreased the inflammatory responses in CTNNAL1-deficient HBE cells than DEX monotherapy. SIGNIFICANCE Our study corroborates that CTNNAL1 deficiency induced aggravated airway inflammation and rendered insensitivity to glucocorticoids via triggering hsp90 signaling pathway.
Collapse
|
33
|
p23 and Aha1: Distinct Functions Promote Client Maturation. Subcell Biochem 2023; 101:159-187. [PMID: 36520307 DOI: 10.1007/978-3-031-14740-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hsp90 is a conserved molecular chaperone regulating the folding and activation of a diverse array of several hundreds of client proteins. The function of Hsp90 in client processing is fine-tuned by a cohort of co-chaperones that modulate client activation in a client-specific manner. They affect the Hsp90 ATPase activity and the recruitment of client proteins and can in addition affect chaperoning in an Hsp90-independent way. p23 and Aha1 are central Hsp90 co-chaperones that regulate Hsp90 in opposing ways. While p23 inhibits the Hsp90 ATPase and stabilizes a client-bound Hsp90 state, Aha1 accelerates ATP hydrolysis and competes with client binding to Hsp90. Even though both proteins have been intensively studied for decades, research of the last few years has revealed intriguing new aspects of these co-chaperones that expanded our perception of how they regulate client activation. Here, we review the progress in understanding p23 and Aha1 as promoters of client processing. We highlight the structures of Aha1 and p23, their interaction with Hsp90, and how their association with Hsp90 affects the conformational cycle of Hsp90 in the context of client maturation.
Collapse
|
34
|
Hsp70/Hsp90 Organising Protein (Hop): Coordinating Much More than Chaperones. Subcell Biochem 2023; 101:81-125. [PMID: 36520304 DOI: 10.1007/978-3-031-14740-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Hsp70/Hsp90 organising protein (Hop, also known as stress-inducible protein 1/STI1/STIP1) has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins, although recent evidence suggests that eukaryotic Hop is regulatory within chaperone complexes rather than essential. Consequently, Hop is implicated in many key signalling pathways, including aberrant pathways leading to cancer. Hop is also secreted, and it is now well established that Hop interacts with the prion protein, PrPC, to mediate multiple signalling events. The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrPC. While the various cellular functions of Hop have been described, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseased states.
Collapse
|
35
|
Suresh PS, Thakur KG, Sharma U. Molecular docking and dynamic simulation approach to decipher steroidal sapogenins (genus Trillium) derived agonists for glucocorticoid receptor. J Biomol Struct Dyn 2023; 41:55-66. [PMID: 34825633 DOI: 10.1080/07391102.2021.2003864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Steroidal sapogenins (SS) are structural analogues of steroidal drugs, which are frequently used for the treatment of several diseases including reproductive, malignancies, neurological, and inflammation-related diseases. The glucocorticoid receptor (GR) is a nuclear receptor that regulates development, metabolism, and inflammation, in response to steroidal ligands. Therefore, GR is considered as a potential therapeutic target for steroidal agents to the treatment of inflammation-related diseases. We hypothesized that SS may act as an agonist for GR due to structural similarity with corticosteroids. In this study, we carried out in silico screening of various SS from the genus Trillium to check their potential as an agonist for GR. Our data suggest that out of 42 SS, only 7 molecules have interacted with GR. However, molecular mechanics with generalized Born and surface area (MM-GBSA) analysis revealed that only two SS (SS 38 and SS 39) molecules bind favorably to GR. Among these, SS 38 (docking score: -9.722 Kcal/mol and MM-GBSA ΔGbind: -50.192 Kcal/mol) and SS 39 (docking score: -11.20 Kcal/mol and MM-GBSA ΔGbind: -58.937 Kcal/mol) have best docking and MM-GBSA scores. Molecular dynamics (MD) simulation studies of SS 38, SS 39, and dexamethasone-GR complex revealed that both SS shows hydrogen bonding and hydrophobic interaction with GR over the 120 ns simulation with mild fluctuations. The current study suggests that SS 38 and SS 39 may be further explored as a potential agonist to treat several disease conditions mediated by GR.
Collapse
Affiliation(s)
- Patil Shivprasad Suresh
- Chemical Technology Division, CSIR-IHBT, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P, India
| | - Krishan Gopal Thakur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P, India.,Structural Biology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-IHBT, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P, India
| |
Collapse
|
36
|
Prodromou C, Aran-Guiu X, Oberoi J, Perna L, Chapple JP, van der Spuy J. HSP70-HSP90 Chaperone Networking in Protein-Misfolding Disease. Subcell Biochem 2023; 101:389-425. [PMID: 36520314 DOI: 10.1007/978-3-031-14740-1_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein-folding, quality control and function. In particular, the heat-shock protein (HSP) 70 and HSP90 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein-folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and HSP90, plus their co-chaperones, have been recognised as potent modulators of misfolded protein toxicity, inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. Moreover, these chaperone machines function not only in folding but also in proteasome-mediated degradation of neurodegenerative disease proteins. This chapter gives an overview of the HSP70 and HSP90 chaperones, and their respective regulatory co-chaperones, and explores how the HSP70 and HSP90 chaperone systems form a larger functional network and its relevance to counteracting neurodegenerative disease associated with misfolded proteins and disruption of proteostasis.
Collapse
Affiliation(s)
| | - Xavi Aran-Guiu
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Laura Perna
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | |
Collapse
|
37
|
Sagarika P, Yadav K, Sahi C. Volleying plasma membrane proteins from birth to death: Role of J-domain proteins. Front Mol Biosci 2022; 9:1072242. [PMID: 36589230 PMCID: PMC9798423 DOI: 10.3389/fmolb.2022.1072242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The function, stability, and turnover of plasma membrane (PM) proteins are crucial for cellular homeostasis. Compared to soluble proteins, quality control of plasma membrane proteins is extremely challenging. Failure to meet the high quality control standards is detrimental to cellular and organismal health. J-domain proteins (JDPs) are among the most diverse group of chaperones that collaborate with other chaperones and protein degradation machinery to oversee cellular protein quality control (PQC). Although fragmented, the available literature from different models, including yeast, mammals, and plants, suggests that JDPs assist PM proteins with their synthesis, folding, and trafficking to their destination as well as their degradation, either through endocytic or proteasomal degradation pathways. Moreover, some JDPs interact directly with the membrane to regulate the stability and/or functionality of proteins at the PM. The deconvoluted picture emerging is that PM proteins are relayed from one JDP to another throughout their life cycle, further underscoring the versatility of the Hsp70:JDP machinery in the cell.
Collapse
|
38
|
Babi A, Menlibayeva K, Bex T, Doskaliev A, Akshulakov S, Shevtsov M. Targeting Heat Shock Proteins in Malignant Brain Tumors: From Basic Research to Clinical Trials. Cancers (Basel) 2022; 14:5435. [PMID: 36358853 PMCID: PMC9659111 DOI: 10.3390/cancers14215435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 05/03/2024] Open
Abstract
Heat shock proteins (HSPs) are conservative and ubiquitous proteins that are expressed both in prokaryotic and eukaryotic organisms and play an important role in cellular homeostasis, including the regulation of proteostasis, apoptosis, autophagy, maintenance of signal pathways, protection from various stresses (e.g., hypoxia, ionizing radiation, etc.). Therefore, HSPs are highly expressed in tumor cells, including malignant brain tumors, where they also associate with cancer cell invasion, metastasis, and resistance to radiochemotherapy. In the current review, we aimed to assess the diagnostic and prognostic values of HSPs expression in CNS malignancies as well as the novel treatment approaches to modulate the chaperone levels through the application of inhibitors (as monotherapy or in combination with other treatment modalities). Indeed, for several proteins (i.e., HSP10, HSPB1, DNAJC10, HSPA7, HSP90), a direct correlation between the protein level expression and poor overall survival prognosis for patients was demonstrated that provides a possibility to employ them as prognostic markers in neuro-oncology. Although small molecular inhibitors for HSPs, particularly for HSP27, HSP70, and HSP90 families, were studied in various solid and hematological malignancies demonstrating therapeutic potential, still their potential was not yet fully explored in CNS tumors. Some newly synthesized agents (e.g., HSP40/DNAJ inhibitors) have not yet been evaluated in GBM. Nevertheless, reported preclinical studies provide evidence and rationale for the application of HSPs inhibitors for targeting brain tumors.
Collapse
Affiliation(s)
- Aisha Babi
- National Centre for Neurosurgery, Turan Ave., 34/1, Astana 010000, Kazakhstan
| | | | - Torekhan Bex
- National Centre for Neurosurgery, Turan Ave., 34/1, Astana 010000, Kazakhstan
| | - Aidos Doskaliev
- National Centre for Neurosurgery, Turan Ave., 34/1, Astana 010000, Kazakhstan
| | - Serik Akshulakov
- National Centre for Neurosurgery, Turan Ave., 34/1, Astana 010000, Kazakhstan
| | - Maxim Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
39
|
Kumar S, Basu M, Ghosh MK. Chaperone-assisted E3 ligase CHIP: A double agent in cancer. Genes Dis 2022; 9:1521-1555. [PMID: 36157498 PMCID: PMC9485218 DOI: 10.1016/j.gendis.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The carboxy-terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase and co-chaperone belonging to Ubox family that plays a crucial role in the maintenance of cellular homeostasis by switching the equilibrium of the folding-refolding mechanism towards the proteasomal or lysosomal degradation pathway. It links molecular chaperones viz. HSC70, HSP70 and HSP90 with ubiquitin proteasome system (UPS), acting as a quality control system. CHIP contains charged domain in between N-terminal tetratricopeptide repeat (TPR) and C-terminal Ubox domain. TPR domain interacts with the aberrant client proteins via chaperones while Ubox domain facilitates the ubiquitin transfer to the client proteins for ubiquitination. Thus, CHIP is a classic molecule that executes ubiquitination for degradation of client proteins. Further, CHIP has been found to be indulged in cellular differentiation, proliferation, metastasis and tumorigenesis. Additionally, CHIP can play its dual role as a tumor suppressor as well as an oncogene in numerous malignancies, thus acting as a double agent. Here, in this review, we have reported almost all substrates of CHIP established till date and classified them according to the hallmarks of cancer. In addition, we discussed about its architectural alignment, tissue specific expression, sub-cellular localization, folding-refolding mechanisms of client proteins, E4 ligase activity, normal physiological roles, as well as involvement in various diseases and tumor biology. Further, we aim to discuss its importance in HSP90 inhibitors mediated cancer therapy. Thus, this report concludes that CHIP may be a promising and worthy drug target towards pharmaceutical industry for drug development.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal 743372, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
40
|
Agathis robusta Bark Extract Protects from Renal Ischemia-Reperfusion Injury: Phytochemical, In Silico and In Vivo Studies. Pharmaceuticals (Basel) 2022; 15:ph15101270. [PMID: 36297382 PMCID: PMC9610891 DOI: 10.3390/ph15101270] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Acute kidney injury (AKI) induced by renal ischemia-reperfusion injury (RIRI) is associated with a high incidence of mortality. Existing therapies are mainly supportive, with no available nephroprotective agent. The purpose of this study is to examine the potential protective effect of Agathis robusta Bark Extract (ARBE) in RIRI. Methods: The chemical composition of ARBE was examined by LC-ESI-MS/MS. Network pharmacology was utilized to identify the RIRI molecular targets that could be aimed at by the identified major components of ARBE. Experimentally validated protein–protein interactions (PPIs) and compound-target networks were constructed using the STRING database and Cytoscape software. Molecular docking studies were employed to assess the interaction of the most relevant ARBE compounds with the hub RIRI-related targets. Furthermore, ARBE was tested in a rat model of RIRI. Results: The phytochemical analysis identified 95 components in ARBE, 37 of which were majors. Network analysis identified 312 molecular targets of RIRI that were associated with ARBE major compounds. Of these 312, the top targets in the experimentally validated PPI network were HSP90, EGFR, and P53. The most relevant compounds based on their peak area and network degree value included narcissoside, isorhamnetin-3-O-glucoside, and syringetin-3-O-glucoside, among others. Docking studies of the most relevant compounds revealed significant interactions with the top RIRI-related targets. In the in vivo RIRI experiments, pretreatment of ARBE improved kidney function and structural changes. ARBE reduced the renal expression of p-NfkB and cleaved caspase-3 by downregulating HSP90 and P53 in rats exposed to RIRI. Conclusion: Taken together, this study revealed the chemical composition of ARBE, depicted the interrelationship of the bioactive ingredients of ARBE with the RIRI-related molecular targets, and validated a nephroprotective effect of ARBE in RIRI.
Collapse
|
41
|
The Crucial Role of AR-V7 in Enzalutamide-Resistance of Castration-Resistant Prostate Cancer. Cancers (Basel) 2022; 14:cancers14194877. [PMID: 36230800 PMCID: PMC9563243 DOI: 10.3390/cancers14194877] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Androgen receptor splice variant 7 (AR-V7) has always been considered a key driver for triggering enzalutamide resistance of castration-resistant prostate cancer (CRPC). In recent years, both the homeostasis of AR-V7 protein and AR-V7’s relationship with LncRNAs have gained great attention with in-depth studies. Starting from protein stability and LncRNA, the paper discusses and summarizes the mechanisms and drugs that affect the CRPC patients’ sensitivity to enzalutamide by regulating the protein or transcriptional stability of AR-V7, hoping to provide therapeutic ideas for subsequent research to break through the CRPC therapeutic bottleneck. Abstract Prostate cancer (PCa) has the second highest incidence of malignancies occurring in men worldwide. The first-line therapy of PCa is androgen deprivation therapy (ADT). Nonetheless, most patients progress to castration-resistant prostate cancer (CRPC) after being treated by ADT. As a second-generation androgen receptor (AR) antagonist, enzalutamide (ENZ) is the current mainstay of new endocrine therapies for CRPC in clinical use. However, almost all patients develop resistance during AR antagonist therapy due to various mechanisms. At present, ENZ resistance (ENZR) has become challenging in the clinical treatment of CRPC. AR splice variant 7 (AR-V7) refers to a ligand-independent and constitutively active variant of the AR and is considered a key driver of ENZR in CRPC. In this review, we summarize the mechanisms and biological behaviors of AR-V7 in ENZR of CRPC to contribute novel insights for CRPC therapy.
Collapse
|
42
|
Abstract
Endogenous Cushing's syndrome (CS) is associated with morbidities (diabetes, hypertension, clotting disorders) and shortens life because of infections, pulmonary thromboembolism, and cardiovascular disease. Its clinical presentation is immensely variable, and diagnosis and treatment are often delayed. Thus, there are many opportunities for basic and clinical research leading to better tests, faster diagnosis, and optimized medical treatments. This review focuses on CS caused by excessive adrenocorticotropin (ACTH) production. It describes current concepts of the regulation of ACTH synthesis and secretion by normal corticotropes and mechanisms by which dysregulation occurs in corticotrope (termed "Cushing's disease") and noncorticotrope (so-called ectopic) ACTH-producing tumors. ACTH causes adrenal gland synthesis and pulsatile release of cortisol; the excess ACTH in these forms of CS leads to the hypercortisolism of endogenous CS. Again, the differences between healthy individuals and those with CS are highlighted. The clinical presentations and their use in the interpretation of CS screening tests are described. The tests used for screening and differential diagnosis of CS are presented, along with their relationship to cortisol dynamics, pathophysiology, and negative glucocorticoid feedback regulation in the two forms of ACTH-dependent CS. Finally, several gaps in current understanding are highlighted in the hope of stimulating additional research into this challenging disorder.
Collapse
Affiliation(s)
- Lynnette K Nieman
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Ernst K. Requirement of Peptidyl-Prolyl Cis/Trans isomerases and chaperones for cellular uptake of bacterial AB-type toxins. Front Cell Infect Microbiol 2022; 12:938015. [PMID: 35992160 PMCID: PMC9387773 DOI: 10.3389/fcimb.2022.938015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Bacterial AB-type toxins are proteins released by the producing bacteria and are the causative agents for several severe diseases including cholera, whooping cough, diphtheria or enteric diseases. Their unique AB-type structure enables their uptake into mammalian cells via sophisticated mechanisms exploiting cellular uptake and transport pathways. The binding/translocation B-subunit facilitates binding of the toxin to a specific receptor on the cell surface. This is followed by receptor-mediated endocytosis. Then the enzymatically active A-subunit either escapes from endosomes in a pH-dependent manner or the toxin is further transported through the Golgi to the endoplasmic reticulum from where the A-subunit translocates into the cytosol. In the cytosol, the A-subunits enzymatically modify a specific substrate which leads to cellular reactions resulting in clinical symptoms that can be life-threatening. Both intracellular uptake routes require the A-subunit to unfold to either fit through a pore formed by the B-subunit into the endosomal membrane or to be recognized by the ER-associated degradation pathway. This led to the hypothesis that folding helper enzymes such as chaperones and peptidyl-prolyl cis/trans isomerases are required to assist the translocation of the A-subunit into the cytosol and/or facilitate their refolding into an enzymatically active conformation. This review article gives an overview about the role of heat shock proteins Hsp90 and Hsp70 as well as of peptidyl-prolyl cis/trans isomerases of the cyclophilin and FK506 binding protein families during uptake of bacterial AB-type toxins with a focus on clostridial binary toxins Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, Clostridioides difficile CDT toxin, as well as diphtheria toxin, pertussis toxin and cholera toxin.
Collapse
|
44
|
Gujar G, Choudhary VK, Vivek P, Sodhi M, Choudhary M, Tiwari M, Masharing N, Mukesh M. Characterization of thermo-physiological, hematological, and molecular changes in response to seasonal variations in two tropically adapted native cattle breeds of Bos indicus lineage in hot arid ambience of Thar Desert. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1515-1529. [PMID: 35759145 DOI: 10.1007/s00484-022-02293-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/12/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
The selection of climate resilient animal is necessary to secure the future of sustainable animal production. The present investigation therefore was an effort to unravel answers to the adaptation at physiological, hematological, and molecular levels in cows of hot arid region that helps them to survive harsh environment, to continue production and reproduction. This investigation was carried out in indicine cows over a period of one year, encompassing four seasons, wherein physiological data of 50 animals, hematological data of 15 animals, and gene expression profile of 5 animals from each of Sahiwal and Kankrej breeds per season was generated. In total, 5600 physiological observations, 1344 hematological observations, and 480 molecular samples were processed. The meteorological data revealed a high diurnal variation of temperature across seasons, with THI exceeding 80 during the months of summer and hot-humid seasons, indicating significant heat stress (HS). The physiological parameters showed an increasing trend with the incremental THI, with significantly (p < 0.05) higher values of rectal temperature (RT), respiration rate (RR), pulse rate (PR), and body surface temperature (BST) at ventral (VT), lateral (LT), dorsal (DT), and frontal (FT), in both breeds recorded during HS. The hematological pictures also revealed significant (p < 0.05) seasonal perturbations in erythrocytic and leucocytic parameters. Moreover, the molecular response was driven by a significant (p < 0.05) upregulation of all the key HSPs, HSP70, HSP90, HSP60, and HSP40, except HSP27 during the hotter months of summer and hot-humid seasons. The expression of HSF1, an important transcriptional regulator of HSP70 was also significantly (p < 0.05) upregulated during summer season in both breeds. All the molecular chaperones revealed a significant upregulation during the summer season, followed by a decreasing trend by hot-humid season. The study indicated a well-developed thermotolerance mechanism in animals of both breeds, with Kankrej cows exhibiting better thermotolerance compared to Sahiwal cows.
Collapse
Affiliation(s)
- Gayatri Gujar
- Rajasthan University of Animal and Veterinary Sciences, Bikaner, Rajasthan, India
- National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | | | - Prince Vivek
- National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Monika Sodhi
- National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Monika Choudhary
- Rajasthan University of Animal and Veterinary Sciences, Bikaner, Rajasthan, India
| | - Manish Tiwari
- National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Nampher Masharing
- National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Manishi Mukesh
- National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India.
- ICAR-NBAGR, Karnal, India.
| |
Collapse
|
45
|
BAG9 Confers Thermotolerance by Regulating Cellular Redox Homeostasis and the Stability of Heat Shock Proteins in Solanum lycopersicum. Antioxidants (Basel) 2022; 11:antiox11081467. [PMID: 36009189 PMCID: PMC9404849 DOI: 10.3390/antiox11081467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
The Bcl-2-associated athanogene (BAG) family, a group of co-chaperones that share conservative domains in flora and fauna, is involved in plant growth, development, and stress tolerance. However, the function of tomato BAG genes on thermotolerance remains largely unknown. Herein, we found that the expression of BAG9 was induced during heat stress in tomato plants. Knockout of the BAG9 gene by CRISPR/Cas9 reduced, while its overexpression increased thermotolerance in tomato plants as reflected by the phenotype, photosynthesis rate, and membrane peroxidation. Heat-induced reactive oxygen species and oxidative/oxidized proteins were further increased in bag9 mutants and were normalized in BAG9 overexpressing plants. Furthermore, the activities of antioxidant enzymes, ascorbic acid (AsA)/dehydroascorbic acid (DHA), and reduced glutathione (GSH)/oxidized glutathione (GSSG) were reduced in bag9 mutants and were increased in BAG9 overexpressing plants under heat stress. Additionally, BAG9 interacted with Hsp20 proteins in vitro and in vivo. Accumulation of Hsp proteins induced by heat showed a reduction in bag9 mutants; meanwhile, it was increased in BAG9 overexpressing plants. Thus, BAG9 played a crucial role in response to heat stress by regulating cellular redox homeostasis and the stability of heat shock proteins.
Collapse
|
46
|
Hsp90 and Associated Co-Chaperones of the Malaria Parasite. Biomolecules 2022; 12:biom12081018. [PMID: 35892329 PMCID: PMC9332011 DOI: 10.3390/biom12081018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 12/14/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is one of the major guardians of cellular protein homeostasis, through its specialized molecular chaperone properties. While Hsp90 has been extensively studied in many prokaryotic and higher eukaryotic model organisms, its structural, functional, and biological properties in parasitic protozoans are less well defined. Hsp90 collaborates with a wide range of co-chaperones that fine-tune its protein folding pathway. Co-chaperones play many roles in the regulation of Hsp90, including selective targeting of client proteins, and the modulation of its ATPase activity, conformational changes, and post-translational modifications. Plasmodium falciparum is responsible for the most lethal form of human malaria. The survival of the malaria parasite inside the host and the vector depends on the action of molecular chaperones. The major cytosolic P. falciparum Hsp90 (PfHsp90) is known to play an essential role in the development of the parasite, particularly during the intra-erythrocytic stage in the human host. Although PfHsp90 shares significant sequence and structural similarity with human Hsp90, it has several major structural and functional differences. Furthermore, its co-chaperone network appears to be substantially different to that of the human host, with the potential absence of a key homolog. Indeed, PfHsp90 and its interface with co-chaperones represent potential drug targets for antimalarial drug discovery. In this review, we critically summarize the current understanding of the properties of Hsp90, and the associated co-chaperones of the malaria parasite.
Collapse
|
47
|
Backe SJ, Sager RA, Regan BR, Sit J, Major LA, Bratslavsky G, Woodford MR, Bourboulia D, Mollapour M. A specialized Hsp90 co-chaperone network regulates steroid hormone receptor response to ligand. Cell Rep 2022; 40:111039. [PMID: 35830801 PMCID: PMC9306012 DOI: 10.1016/j.celrep.2022.111039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 12/29/2022] Open
Abstract
Heat shock protein-90 (Hsp90) chaperone machinery is involved in the stability and activity of its client proteins. The chaperone function of Hsp90 is regulated by co-chaperones and post-translational modifications. Although structural evidence exists for Hsp90 interaction with clients, our understanding of the impact of Hsp90 chaperone function toward client activity in cells remains elusive. Here, we dissect the impact of recently identified higher eukaryotic co-chaperones, FNIP1/2 (FNIPs) and Tsc1, toward Hsp90 client activity. Our data show that Tsc1 and FNIP2 form mutually exclusive complexes with FNIP1, and that unlike Tsc1, FNIP1/2 interact with the catalytic residue of Hsp90. Functionally, these co-chaperone complexes increase the affinity of the steroid hormone receptors glucocorticoid receptor and estrogen receptor to their ligands in vivo. We provide a model for the responsiveness of the steroid hormone receptor activation upon ligand binding as a consequence of their association with specific Hsp90:co-chaperone subpopulations.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Bethany R Regan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Julian Sit
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Lauren A Major
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
48
|
Gene expression and functional analysis of Aha1a and Aha1b in stress response in zebrafish. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110777. [PMID: 35830921 DOI: 10.1016/j.cbpb.2022.110777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
Abstract
Activator of heat shock protein 90 (hsp90) ATPase (Aha1) is a Hsp90 co-chaperone required for Hsp90 ATPase activation. Aha1 is essential for yeast survival and muscle development in C. elegans under elevated temperature and hsp90-deficeiency induced stress conditions. The roles of Aha1 in vertebrates are poorly understood. Here, we characterized the expression and function of Aha1 in zebrafish. We showed that zebrafish genome contains two aha1 genes, aha1a and aha1b, that show distinct patterns of expression during development. Under the normal physiological conditions, aha1a is primarily expressed in skeletal muscle cells of zebrafish embryos, while aha1b is strongly expressed in the head region. aha1a and aha1b expression increased dramatically in response to heat shock induced stress. In addition, Aha1a-GFP fusion protein exhibited a dynamic translocation in muscle cells in response to heat shock. Moreover, upregulation of aha1 expression was also observed in hsp90a1 knockdown embryos that showed a muscle defect. Genetic studies demonstrated that knockout of aha1a, aha1b or both had no detectable effect on embryonic development, survival, and growth in zebrafish. The aha1a and aha1b mutant embryos showed normal muscle development and stress response in response to heat shock. Single or double aha1a and aha1b mutants could grow into normal reproductive adults with normal skeletal muscle structure and morphology compared with wild type control. Together, data from these studies indicate that Aha1a and Aha1b are involved in stress response. However, they are dispensable in zebrafish embryonic development, growth, and survival.
Collapse
|
49
|
Liu X, Yang YY, Wang Y. HSP90 and Aha1 modulate microRNA maturation through promoting the folding of Dicer1. Nucleic Acids Res 2022; 50:6990-7001. [PMID: 35736213 PMCID: PMC9262616 DOI: 10.1093/nar/gkac528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Aha1 is a co-chaperone of heat shock protein 90 (HSP90), and it stimulates the ATPase activity of HSP90 to promote the folding of its client proteins. By employing ascorbate peroxidase (APEX)-based proximity labeling and proteomic analysis, we identified over 30 proteins exhibiting diminished abundances in the proximity proteome of HSP90 in HEK293T cells upon genetic depletion of Aha1. Dicer1 is a top-ranked protein, and we confirmed its interactions with HSP90 and Aha1 by immunoprecipitation followed by western blot analysis. Genetic depletion of Aha1 and pharmacological inhibition of HSP90 both led to reduced levels of Dicer1 protein. Additionally, HSP90 and Aha1 bind preferentially to newly translated Dicer1. Reconstitution of Aha1-depleted cells with wild-type Aha1 substantially rescued Dicer1 protein level, and a lower level of restoration was observed for complementation with the HSP90-binding-defective Aha1-E67K, whereas an Aha1 mutant lacking the first 20 amino acids-which abolishes its chaperone activity-failed to rescue Dicer1 protein level. Moreover, knockdown of Aha1 and inhibition of HSP90 led to diminished levels of mature microRNAs (miRNAs), but not their corresponding primary miRNAs. Together, we uncovered a novel mechanism of HSP90 and Aha1 in regulating the miRNA pathway through promoting the folding of Dicer1 protein, and we also demonstrated that Aha1 modulates this process by acting as an autonomous chaperone and a co-chaperone for HSP90.
Collapse
Affiliation(s)
- Xiaochuan Liu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92502, USA
| | - Yen-Yu Yang
- Department of Chemistry, University of California, Riverside, Riverside, CA 92502, USA
| | - Yinsheng Wang
- To whom correspondence should be addressed. Tel: +1 951 827 2700; Fax: +1 951 827 4713;
| |
Collapse
|
50
|
Ku T, Gu H, Li Z, Tian B, Xie Z, Shi G, Chen W, Wei F, Cao G. Developmental Differences between Anthers of Diploid and Autotetraploid Rice at Meiosis. PLANTS (BASEL, SWITZERLAND) 2022; 11:1647. [PMID: 35807599 PMCID: PMC9268837 DOI: 10.3390/plants11131647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/25/2022]
Abstract
Newly synthetic autotetraploid rice shows lower pollen fertility and seed setting rate relative to diploid rice, which hinders its domestication and breeding. In this study, cytological analysis showed that at meiosis I stage, an unbalanced segregation of homologous chromosomes, occurred as well as an early degeneration of tapetal cells in autotetraploid rice. We identified 941 differentially expressed proteins (DEPs) in anthers (meiosis I), including 489 upregulated and 452 downregulated proteins. The DEPs identified were related to post-translational modifications such as protein ubiquitination. These modifications are related to chromatin remodeling and homologous recombination abnormalities during meiosis. In addition, proteins related to the pentose phosphate pathway (BGIOSGA016558, BGIOSGA022166, and BGIOSGA028743) were downregulated. This may be related to the failure of autotetraploid rice to provide the energy needed for cell development after polyploidization, which then ultimately leads to the early degradation of the tapetum. Moreover, we also found that proteins (BGIOSGA017346 and BGIOSGA027368) related to glutenin degradation were upregulated, indicating that a large loss of glutenin cannot provide nutrition for the development of tapetum, resulting in early degradation of tapetum. Taken together, these evidences may help to understand the differences in anther development between diploid and autotetraploid rice during meiosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fang Wei
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.K.); (H.G.); (Z.L.); (B.T.); (Z.X.); (G.S.); (W.C.)
| | - Gangqiang Cao
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.K.); (H.G.); (Z.L.); (B.T.); (Z.X.); (G.S.); (W.C.)
| |
Collapse
|