1
|
Hu Y, Lv X, Wei W, Li X, Zhang K, Zhu L, Gan T, Zeng H, Yang J, Rao N. Quantitative Analysis on Molecular Characteristics Evolution of Gastric Cancer Progression and Prognosis. Adv Biol (Weinh) 2023; 7:e2300129. [PMID: 37357148 DOI: 10.1002/adbi.202300129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Indexed: 06/27/2023]
Abstract
The dynamic changes of key biological characteristics from gastric low-grade intraepithelial neoplasia (LGIN) to high-grade intraepithelial neoplasia (HGIN) to early gastric cancer (EGC) are still unclear, which greatly affect the accurate diagnosis and treatment of EGC and prognosis evaluation of gastric cancer (GC). In this study, bioinformatics methods/tools are applied to quantitatively analyze molecular characteristics evolution of GC progression, and a prognosis model is constructed. This study finds that some dysregulated differentially expressed mRNAs (DEmRNAs) in the LGIN stage may continue to promote the occurrence and development of EGC. Among the LGIN, HGIN, and EGC stages, there are differences and relevance in the transcription expression patterns of DEmRNAs, and the activation related to immune cells is very different. The biological functions continuously changed during the progression from LGIN to HGIN to EGC. The COX model constructed based on the three EGC-related DEmRNAs has GC prognostic risk prediction ability. The evolution of biological characteristics during the development of EGC mined by the authors provides new insight into understanding the molecular mechanism of EGC occurrence and development. The three-gene prognostic risk model provides a new method for assisting GC clinical treatment decisions.
Collapse
Affiliation(s)
- Yeting Hu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xiaoqin Lv
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wenwu Wei
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xiang Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Kaixuan Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Linlin Zhu
- Digestive Endoscopic Center of West China Hospital, Sichuan University, Chengdu, 610017, China
| | - Tao Gan
- Digestive Endoscopic Center of West China Hospital, Sichuan University, Chengdu, 610017, China
| | - Hongjuan Zeng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jinlin Yang
- Digestive Endoscopic Center of West China Hospital, Sichuan University, Chengdu, 610017, China
| | - Nini Rao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
2
|
Han L, Cui DJ, Huang B, Yang Q, Huang T, Lin GY, Chen SJ. CLDN5 identified as a biomarker for metastasis and immune infiltration in gastric cancer via pan-cancer analysis. Aging (Albany NY) 2023; 15:204776. [PMID: 37286335 PMCID: PMC10292893 DOI: 10.18632/aging.204776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND CLDN5 protein is essential for the formation of tight junctions in epithelial cells, and has been associated with epithelial-mesenchymal transition. Research has indicated that CLDN5 is associated with tumor metastasis, the tumor microenvironment, and immunotherapy in multiple types of cancer. Also, no comprehensive evaluation of the expression of CLDN5 and immunotherapy signatures through a pan-cancer analysis or immunoassay has been performed. METHODS We explored CLDN5's differential expression, survival analysis and clinicopathological staging through the TCGA database, and then corroborated the expression of CLDN5 by utilizing the GEO (Gene expression omnibus) database. To analyze CLDN5 KEGG, GO, and Hallmark mutations, as well as TIMER for immune infiltration, GSEA was utilized with ROC curve, mutation, and other factors such as survival, pathological stage, TME, MSI, TMB, immune cell infiltration, and DNA methylation. Immunohistochemistry was used to assess CLDN5 staining in gastric cancer tissues and paracancerous tissues. Visualization was done with R version 4.2.0 (http://www.rproject.org/). RESULTS According to TCGA database, CLDN5 expression levels differed significantly between cancer and normal tissues, and the GEO database (GSE49051 and GSE 64951) and tissue microarrays confirmed this result. Infiltrating cluster of differentiation 8+ (CD8+) T cells, CD4+ cells, neutrophils, dendritic cells, and macrophages revealed a correlation with CLDN5 expression. DNA methylation, TMB, and MSI are related to CLDN5 expression. Based on the ROC curve analysis, CLDN5 demonstrates outstanding diagnostic effectiveness for gastric cancer and is comparable to CA-199. CONCLUSIONS The findings suggest that CLDN5 is implicated in the oncogenesis of diverse cancer types, underscoring its potential significance in cancer biology. Notably, CLDN5 could have implications in immune filtration and immune checkpoint inhibitor therapies, however, further research is needed to confirm this.
Collapse
Affiliation(s)
- Lu Han
- Department of Gastroenterology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - De-Jun Cui
- Department of Gastroenterology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Bo Huang
- Department of Gastroenterology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Qian Yang
- Department of Gastroenterology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Tao Huang
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Guo-Yuan Lin
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Shao-Jie Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Claudin-6 increases SNAI1, NANOG and SOX2 gene expression in human gastric adenocarcinoma AGS cells. Mol Biol Rep 2022; 49:11663-11674. [PMID: 36169897 DOI: 10.1007/s11033-022-07976-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Gastric cancer is a heterogeneous disease associated to deregulated gastric epithelia tight junction barrier function and di novo expression of claudin-6; these changes are associated with epithelial-mesenchymal transition, enhanced invasiveness, metastatic progression, resistance to chemotherapy, and poor prognosis. Gastric cancer stem cells represent a rare population of cells within the tumor implicated in tumor growth and higher tumorigenic capacity. The possible relation between claudin-6 expression and the expression of some markers associated to epithelial mesenchymal transition and cancer stem cells in gastric cancer cells have never been explored. METHODS AND RESULTS CD44, CD24, Twist, Villin, DCLK1, claudin-6, NANOG, E-Cadherin, SOX2, and SNAI1 expression was evaluated by immunofluorescence and cytofluorometry in wild type and Claudin-6 transfected AGS cells. Cell migration assays were also performed. Differentially expressed genes and biological processes analysis was performed to determine gene preponderance. The results showed that claudin-6 overexpression enriched the CD44 + /CD24- subpopulation with an overall increase in the expression and the number of CD44 + cells. A significant increase in NANOG, SOX2 and SNAI1 expression and enhanced cell migration was observed in claudin-6 transfected cells. Transcriptome analysis revealed 271 genes involved in enhanced biological processes with only 31 with a significantly p value; thirteen of those genes are closely associated to epithelial mesenchymal transition processes and folding and unfolding processes of proteins in the endoplasmic reticulum. CONCLUSIONS The pro-tumorigenic effect of claudin-6 in gastric cancer could be associated to dedifferentiation of epithelial cells and an increase in di novo cancer stem cell genesis.
Collapse
|
4
|
HER2 Basolateral versus Circumferential IHC Expression Is Dependent on Polarity and Differentiation of Epithelial Cells in Gastric/GE Adenocarcinoma. PATHOLOGY RESEARCH INTERNATIONAL 2018; 2018:6246493. [PMID: 30140423 PMCID: PMC6081602 DOI: 10.1155/2018/6246493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/15/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023]
Abstract
Aim Antigenic expression in epithelial cells can be heterogeneous which may pose a problem in immunohistochemical (IHC) analysis of tumor markers, in particular, predictive markers like HER2. Studies have shown that epithelial cells have distinct apical and basolateral domains which are separated by tight junctions. The cell membrane in these two domains has a different composition of macromolecules and hence can have variable antigen expression on immunohistochemistry. In our study, we aimed to investigate this phenomenon of basolateral versus circumferential IHC staining of HER2 in gastric/GE adenocarcinoma. Methods We selected 45 cases of gastric/GE adenocarcinoma and evaluated equal number of specimens (15 each) showing well-differentiated, moderately differentiated, and poorly differentiated morphology. All cases had 3+ HER2 score as per CAP guidelines. HER2-membrane staining pattern in all specimens was analyzed. Results Cases with well-differentiated morphology showed only basolateral or lateral membrane staining in most cases. Poorly differentiated adenocarcinoma samples showed circumferential staining (both basolateral and luminal) in all cases with highly significant p value. Mixed staining pattern was observed in moderately differentiated cases. Diffuse expression of E-cadherin in well-differentiated adenocarcinoma and loss in poorly differentiated tumors were also statistically significant. Conclusion These findings suggest that HER2 in gastric epithelium has a polarized distribution which is maintained by the fence function of tight junctions. With progression to high grade cancer, the glandular structural differentiation in gastric mucosa is lost, along with disruption of tight junctions. This leads to loss of cell polarity and migration of antigens across the membrane.
Collapse
|
5
|
Srivastava A, Shukla V, Tiwari D, Gupta J, Kumar S, Kumar A. Targeted therapy of chronic liver diseases with the inhibitors of angiogenesis. Biomed Pharmacother 2018; 105:256-266. [PMID: 29859468 DOI: 10.1016/j.biopha.2018.05.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 01/09/2023] Open
Abstract
Angiogenesis appears to be intrinsically associated with the progression of chronic liver diseases, which eventually leads to the development of cirrhosis and related complications, including hepatocellular carcinoma. Several studies have suggested that this association is relevant for chronic liver disease (CLD) progression, with angiogenesis. The fact that angiogenesis plays a pivotal role in CLDs gives rise to new opportunities for treating CLDs. Inhibitor of angiogenesis has proved effective for the treatment of patients suffering from CLD. However, it is limited in diagnosis. The last decade has witnessed a plethora of publications which elucidate the potential of angiogenesis inhibitors for the therapy of CLD. The close relationship between the progression of CLDs and angiogenesis emphasizes the need for anti-angiogenic therapy to block/slow down CLD progression. The present review summarizes all these discussions, the results of the related studies carried out to date and the future prospects in this field. We discuss liver angiogenesis in normal and pathophysiologic conditions with a focus on the role and future use of angiogenic factors as second-line treatment of CLD. This review compiles relevant findings and offers opinions that have emerged in last few years relating liver angiogenesis and its treatment using anti-angiogenic factors.
Collapse
Affiliation(s)
- Ankita Srivastava
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| | - Vanistha Shukla
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| | - Deepika Tiwari
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| | - Jaya Gupta
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| | - Sunil Kumar
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India.
| |
Collapse
|
6
|
Li HP, Peng CC, Wu CC, Chen CH, Shih MJ, Huang MY, Lai YR, Chen YL, Chen TW, Tang P, Chang YS, Chang KP, Hsu CL. Inactivation of the tight junction gene CLDN11 by aberrant hypermethylation modulates tubulins polymerization and promotes cell migration in nasopharyngeal carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:102. [PMID: 29747653 PMCID: PMC5946489 DOI: 10.1186/s13046-018-0754-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Aberrant hypermethylation of cellular genes is a common phenomenon to inactivate genes and promote tumorigenesis in nasopharyngeal carcinoma (NPC). METHODS Methyl binding domain (MBD)-ChIP sequencing of NPC cells, microarray data of NPC biopsies and gene ontology analysis were conducted to identify a potential tumor suppressor gene CLDN11 that was both hypermethylated and downregulated in NPC. Bisulfite sequencing, qRT-PCR, immunohistochemistry staining of the NPC clinical samples and addition of methylation inhibitor, 5'azacytidine, in NPC cells were performed to verify the correlation between DNA hypermethylation and expression of CLDN11. Promoter reporter and EMSA assays were used to dissect the DNA region responsible for transcription activator binding and to confirm whether DNA methylation could affect activator's binding, respectively. CLDN11 was transiently overexpressed in NPC cells followed by cell proliferation, migration, invasion assays to characterize its biological roles. Co-immunoprecipitation experiments and proteomic approach were carried out to identify novel interacting protein(s) and the binding domain of CLDN11. Anti-tumor activity of the CLDN11 was elucidated by in vitro functional assay. RESULTS A tight junction gene, CLDN11, was identified as differentially hypermethylated gene in NPC. High methylation percentage of CLDN11 promoter in paired NPC clinical samples was correlated with low mRNA expression level. Immunohistochemistry staining of NPC paired samples tissue array demonstrated that CLDN11 protein expression was relatively low in NPC tumors. Transcription activator GATA1 bound to CLDN11 promoter region - 62 to - 53 and its DNA binding activity was inhibited by DNA methylation. Re-expression of CLDN11 reduced cell migration and invasion abilities in NPC cells. By co-immunoprecipitation and liquid chromatography-tandem mass spectrometry LC-MS/MS, tubulin alpha-1b (TUBA1B) and beta-3 (TUBB3), were identified as the novel CLDN11-interacting proteins. CLDN11 interacted with these two tubulins through its intracellular loop and C-terminus. Furthermore, these domains were required for CLDN11-mediated cell migration inhibition. Treatment with a tubulin polymerization inhibitor, nocodazole, blocked NPC cell migration. CONCLUSIONS CLDN11 is a hypermethylated and downregulated gene in NPC. Through interacting with microtubules TUBA1B and TUBB3, CLDN11 blocks the polymerization of tubulins and cell migration activity. Thus, CLDN11 functions as a potential tumor suppressor gene and silencing of CLDN11 by DNA hypermethylation promotes NPC progression.
Collapse
Affiliation(s)
- Hsin-Pai Li
- Graduate Institute of Biomedical Sciences, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan. .,Department of Microbiology and Immunology, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan. .,Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan. .,Division of Hematology-Oncology, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist., Taoyuan City, 333, Taiwan.
| | - Chen-Ching Peng
- Graduate Institute of Biomedical Sciences, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Department of Microbiology and Immunology, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Chien-Hsun Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Department of Microbiology and Immunology, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Meng-Jhe Shih
- Graduate Institute of Biomedical Sciences, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Department of Microbiology and Immunology, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Mei-Yuan Huang
- Department of Microbiology and Immunology, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Yi-Ru Lai
- Department of Microbiology and Immunology, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Yung-Li Chen
- Department of Biomedical Sciences, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Ting-Wen Chen
- Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Bioinformatics Center, Medical School, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Petrus Tang
- Graduate Institute of Biomedical Sciences, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Bioinformatics Center, Medical School, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Cheng-Lung Hsu
- Division of Hematology-Oncology, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist., Taoyuan City, 333, Taiwan
| |
Collapse
|
7
|
Abstract
The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018.
Collapse
Affiliation(s)
- Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - V.K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
8
|
Zhang X, Wang H, Li Q, Liu Y, Zhao P, Li T. Differences in the expression profiles of claudin proteins in human nasopharyngeal carcinoma compared with non-neoplastic mucosa. Diagn Pathol 2018; 13:11. [PMID: 29402318 PMCID: PMC5800018 DOI: 10.1186/s13000-018-0685-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/15/2018] [Indexed: 11/18/2022] Open
Abstract
Background Several studies have suggested that claudin proteins, which are the main components of tight junction structures, are related to the regulation of cell polarity and cell differentiation. Method To explore the expression profiles of the tight junction proteins claudin-2, − 5, − 8 and − 9 in nasopharyngeal carcinoma, IHC (immunohistochemical analysis), Western blot and real-time PCR were used to detect the expression profiles of these claudin proteins in nasopharyngeal carcinoma tissues and in non-neoplastic mucosal tissues. Results According to our study, the expression levels of claudin-2 and claudin-5 were reduced, while the expression of claudin-8 was increased in nasopharyngeal carcinoma tissues in comparison with non-neoplastic mucosal tissues. Correlations between claudin-2 and -5 expression and metastatic progression in nasopharyngeal carcinoma patients were also found. Conclusion In summary, our research reveals distinct expression profiles of claudin-2, − 5 and − 8 in non-neoplastic mucosal tissues and nasopharyngeal carcinoma tissues. In addition, the expression of these claudin proteins was highly correlated with metastatic progression and prognosis in patients with nasopharyngeal carcinoma and had predictive value for the metastasis and survival of nasopharyngeal carcinoma patients.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Center for Translational Medicine; Department of Spinal Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Gongqingtuan Road 54Hao, Zibo, Shandong Province, China
| | - Haiming Wang
- Department of General Surgery, People's Hospital of Linzi District, Affiliated with Binzhou Medical College, Shandong Province, China
| | - Qian Li
- Department of Spinal Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Zibo, Shandong Province, China
| | - Yunpeng Liu
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Peiqing Zhao
- Center for Translational Medicine; Department of Spinal Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Gongqingtuan Road 54Hao, Zibo, Shandong Province, China
| | - Tao Li
- Center for Translational Medicine; Department of Spinal Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Gongqingtuan Road 54Hao, Zibo, Shandong Province, China.
| |
Collapse
|
9
|
Yazici O, Sendur MAN, Ozdemir N, Aksoy S. Targeted therapies in gastric cancer and future perspectives. World J Gastroenterol 2016; 22:471-89. [PMID: 26811601 PMCID: PMC4716053 DOI: 10.3748/wjg.v22.i2.471] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 10/05/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
Advanced gastric cancer (AGC) is associated with a high mortality rate and, despite multiple new chemotherapy options, the survival rates of patients with AGC remains poor. After the discovery of targeted therapies, research has focused on the new treatment options for AGC. In the last two decades, many targeted molecules were developed against AGC. Currently, two targeted therapy molecules have been approved for patients with AGC. In 2010, trastuzumab was the first molecule shown to improve survival in patients with HER2-positive AGC as part of a first-line combination regimen. In 2014, ramucirumab was the second targeted molecule to improve survival rates and was suggested as treatment for patients with AGC who had progressed after first-line platinum plus fluoropyrimidine with or without anthracycline chemotherapy. Ramucirumab was the first targeted therapy acting as a single agent in patients with advanced gastroesophageal cancers. Although these two molecules were introduced into clinical use, many other promising molecules have been tested in phase I-II trials. It is obvious that in the near future many different targeted therapies will be in use for treatment of AGC. In this review, the current status of targeted therapies in the treatment of AGC and gastroesophageal junction tumors, including HER (2-3) inhibitors, epidermal growth factor receptor inhibitors, tyrosine kinase inhibitors, antiangiogenic agents, c-MET inhibitors, mammalian target of rapamycin inhibitors, agents against other molecular pathways fibroblast growth factor, Claudins, insulin-like growth factor, heat shock proteins, and immunotherapy, will be discussed.
Collapse
Affiliation(s)
- Ozan Yazici
- Department of Medical Oncology, Ankara Numune Education and Research Hospital, Ankara 06100, Turkey
| | - M Ali Nahit Sendur
- Department of Medical Oncology, Yildirim Beyazit University, Ankara 06100, Turkey
| | - Nuriye Ozdemir
- Department of Medical Oncology, Ankara Numune Education and Research Hospital, Ankara 06100, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara 06100, Turkey
| |
Collapse
|
10
|
Caron TJ, Scott KE, Fox JG, Hagen SJ. Tight junction disruption: Helicobacter pylori and dysregulation of the gastric mucosal barrier. World J Gastroenterol 2015; 21:11411-11427. [PMID: 26523106 PMCID: PMC4616217 DOI: 10.3748/wjg.v21.i40.11411] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/26/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Long-term chronic infection with Helicobacter pylori (H. pylori) is a risk factor for gastric cancer development. In the multi-step process that leads to gastric cancer, tight junction dysfunction is thought to occur and serve as a risk factor by permitting the permeation of luminal contents across an otherwise tight mucosa. Mechanisms that regulate tight junction function and structure in the normal stomach, or dysfunction in the infected stomach, however, are largely unknown. Although conventional tight junction components are expressed in gastric epithelial cells, claudins regulate paracellular permeability and are likely the target of inflammation or H. pylori itself. There are 27 different claudin molecules, each with unique properties that render the mucosa an intact barrier that is permselective in a way that is consistent with cell physiology. Understanding the architecture of tight junctions in the normal stomach and then changes that occur during infection is important but challenging, because most of the reports that catalog claudin expression in gastric cancer pathogenesis are contradictory. Furthermore, the role of H. pylori virulence factors, such as cytotoxin-associated gene A and vacoulating cytotoxin, in regulating tight junction dysfunction during infection is inconsistent in different gastric cell lines and in vivo, likely because non-gastric epithelial cell cultures were initially used to unravel the details of their effects on the stomach. Hampering further study, as well, is the relative lack of cultured cell models that have tight junction claudins that are consistent with native tissues. This summary will review the current state of knowledge about gastric tight junctions, normally and in H. pylori infection, and make predictions about the consequences of claudin reorganization during H. pylori infection.
Collapse
|
11
|
Tonooka A, Uda S, Tanaka H, Yao A, Uekusa T. Possibility of lanthanum absorption in the stomach. Clin Kidney J 2015; 8:572-5. [PMID: 26413283 PMCID: PMC4581381 DOI: 10.1093/ckj/sfv062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/29/2015] [Indexed: 12/15/2022] Open
Abstract
Lanthanum carbonate (LC) is an orally administered phosphate binder. Its absorption is generally thought to be minimal. We report here the case of an 81-year-old woman who underwent subtotal gastrectomy for gastric cancer after receiving hemodialysis for 1 year and taking LC for 7 months. Lanthanum phosphate compounds were found histologically in the gastric mucosa and a regional lymph node and confirmed by scanning and transmission electron microscopy–energy-dispersive X-ray spectroscopy. These findings suggest that lanthanum is absorbed in the stomach and transported via lymph flow. This observation could prove helpful in future investigation of lanthanum disposition.
Collapse
Affiliation(s)
- Akiko Tonooka
- Department of Diagnostic Pathology , Kanto Rosai Hospital , Kanagawa , Japan
| | - Susumu Uda
- Department of Nephrology , Kanto Rosai Hospital , Kanagawa , Japan
| | - Hiroki Tanaka
- Department of Diagnostic Pathology , Kanto Rosai Hospital , Kanagawa , Japan
| | - Atsushi Yao
- Department of Nephrology , Kanto Rosai Hospital , Kanagawa , Japan
| | - Toshimasa Uekusa
- Department of Diagnostic Pathology , Kanto Rosai Hospital , Kanagawa , Japan
| |
Collapse
|
12
|
miR-194 targets RBX1 gene to modulate proliferation and migration of gastric cancer cells. Tumour Biol 2014; 36:2393-401. [PMID: 25412959 DOI: 10.1007/s13277-014-2849-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022] Open
Abstract
RING box protein1 (RBX1), an essential component of SCF E3 ubiquitin ligases, plays an important role in gastric cancer. In the study, miR-194 and RBX1 expression was evaluated in 76 pairs of gastric tumor and non-tumor tissue samples by qRT-PCR, and clinicopathological characteristics were analyzed. CCK8, transwell assay, wound healing assay, and flow cytometry assay were performed to evaluate the effect of miR-194 on gastric cancer (GC) cellular proliferation, invasion, migration, apoptosis, and cell cycle, respectively. Luciferase reporter assays and Western blotting were used to evaluate whether RBX1 is a direct target of miR-194. The Kaplan-Meier method and log-rank test were used to evaluate the correlation between miR-194 or RBX1 expression and patient survival. Then, we found that miR-194 was significantly downregulated and RBX1 upregulated in GC tissues; both of which showed significant association with tumor size, location, invasion, and tumor node metastasis. Cell proliferation, invasion, and migration were significantly restricted with miR-194 overexpression. miR-194 downregulated RBX1 protein expression, and luciferase assays showed that binding sites in the RBX1 3'UTR were required for miR-194-mediated repression of RBX1, indicating that RBX1 was a direct target of miR-194. Transfection of RBX1 without the 3'UTR restored the miR-194-inhibiting migration function. miR-194 overexpression or RBX1 lowexpression was associated with prolonged survival of GC patients. In conclusion, upregulation of miR-194 can inhibit proliferation, migration, and invasion of GC cells, possibly by targeting RBX1. Aberrant expression of miR-194 and RBX1 is correlated to GC patient survival time.
Collapse
|
13
|
Zhang SJ, Feng JF, Wang L, Guo W, Du YW, Ming L, Zhao GQ. miR-1303 targets claudin-18 gene to modulate proliferation and invasion of gastric cancer cells. Dig Dis Sci 2014; 59:1754-63. [PMID: 24647998 DOI: 10.1007/s10620-014-3107-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/04/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND MicroRNAs have emerged as important gene regulators and are recognized as important molecules in carcinogenesis. However, the effects of microRNA-1303 (miR-1303) on gastric cancer (GC) cells and the upstream regulation of GC-associated claudin-18 gene (CLDN18) remain unclear. miR-1303 may be involved in the tumorigenesis of GC by targeting CLDN18. AIMS The purpose of this study was to explore the effect of miR-1303 targeting of CLDN18 on the proliferation, migration and invasion of human GC cells. METHODS The expression of miR-1303 and claudin-18 in GC tissues and gastric cancer cell lines were detected by qRT-PCR and western blotting, respectively. CCK8 and colony formation assays were performed to study the influence of miR-1303 on the proliferation of the GC cell lines. Transwell and wound-healing assays were carried out to investigate the effect of miR-1303 on the invasion and migration of GC cell lines. Luciferase reporter assays, restore assays and western blotting were used to demonstrate whether CLDN18 is a direct target of miR-1303. RESULTS miR-1303 was significantly overexpressed whereas claudin-18 was downregulated in GC tissues and cell lines, which was significantly associated with tumor size, location invasion, histologic type and tumor-node-metastasis stage. Cell proliferation rates were reduced, and cell invasion and migratory ability was significantly restricted in miR-1303 inhibitor-transfected groups. miR-1303 could bind to the putative binding sites in CLDN18 mRNA 3'-UTR and visibly lower the expression of claudin-18. The introduction of claudin-18 without 3'-UTR restored the miR-1303 promoting migration function. CONCLUSIONS Downregulation of miR-1303 can inhibit proliferation, migration and invasion of GC cells by targeting CLDN18.
Collapse
Affiliation(s)
- Shi-jie Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,
| | | | | | | | | | | | | |
Collapse
|
14
|
Hu A, Yang Y, Zhang S, Zhou Q, Wei W, Wang Y. 4-Amino-2-trifluoromethyl-phenyl retinate inhibits the migration of BGC-823 human gastric cancer cells by downregulating the phosphorylation level of MLC II. Oncol Rep 2014; 32:1473-80. [PMID: 25051015 DOI: 10.3892/or.2014.3343] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/24/2014] [Indexed: 11/06/2022] Open
Abstract
4-Amino-2-trifluoromethyl-phenyl retinate (ATPR) is a novel all-trans retinoic acid (ATRA) derivative which was reported to have a superior antitumor effect in breast cancer cells. However, little is known about its antitumor effects on human gastric cancer cells and the mechanisms have not been fully elucidated. The results of the present study suggest that in the human gastric carcinoma cell line BGC-823, ATPR plays a more effective role than ATRA at the same dose in inhibiting proliferation, migration and inducing differentiation after the same treatment time. Furthermore, we investigated the preliminary mechanism of ATPR's anti‑migration effect. Immunofluorescence assay demonstrated that claudin-18 positioned from cytoplasm to cell surface following ATPR stimuli. Real-time quantitative RT-PCR and western blot analyses showed that ATPR had significant effects on downregulation of the phosphorylation level of myosin light chain II (MLC II) by suppressing myosin light chain kinase (MLCK) and Rho-associated coiled-coil containing kinase (ROCK), as well as its regulation in the protein expression of RARα and RARβ. Moreover, ATPR increased the activity of myosin phosphatase by inhibiting ROCK. Consequently, ATPR showed more promising antitumor effects than ATRA in BGC-823 in vitro, and it may conduct its anti-migration effects by decreasing the phosphorylation level of MLC II, as well as by regulating MLCK and ROCK as downstream target genes.
Collapse
Affiliation(s)
- Anla Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yanyan Yang
- Laboratory of Molecular Biology and Department of Biochemistry, Key Laboratory of Anti-Inflammatory and Immunological Pharmacology, Ministry of Education and Key Laboratory of Gene Resource Utilization for Severe Disease of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Sumei Zhang
- Laboratory of Molecular Biology and Department of Biochemistry, Key Laboratory of Anti-Inflammatory and Immunological Pharmacology, Ministry of Education and Key Laboratory of Gene Resource Utilization for Severe Disease of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qing Zhou
- Laboratory of Molecular Biology and Department of Biochemistry, Key Laboratory of Anti-Inflammatory and Immunological Pharmacology, Ministry of Education and Key Laboratory of Gene Resource Utilization for Severe Disease of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
15
|
GAO ZHITAO, ZHU MOLI, WU YAPING, GAO PAN, QIN ZHIHAI, WANG HUI. Interferon-λ1 induces G1 phase cell cycle arrest and apoptosis in gastric carcinoma cells in vitro. Oncol Rep 2014; 32:199-204. [DOI: 10.3892/or.2014.3185] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/30/2014] [Indexed: 12/16/2022] Open
|
16
|
Yang Y, Bai ZG, Yin J, Wu GC, Zhang ZT. Role of c-Src activity in the regulation of gastric cancer cell migration. Oncol Rep 2014; 32:45-9. [PMID: 24841138 PMCID: PMC4067425 DOI: 10.3892/or.2014.3188] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/04/2014] [Indexed: 01/29/2023] Open
Abstract
Gastric cancer is associated with increased migration and invasion. In the present study, we explored the role of c-Src in gastric cancer cell migration and invasion. BGC-823 gastric cancer cells were used to investigate migration following treatment of these cells with the c-Src inhibitors, PP2 and SU6656. Migration and invasion were analyzed by wound healing and Transwell assays. Western blot analysis was used to detect the expression of MT1-MMP and VEGF-C, while the activity of MMP2 and MMP9 was monitored with gelatin zymography assay. Immunoprecipitation was used to detect interactions among furin, pro-MT1-MMP and pro-VEGF-C. MT1-MMP and VEGF-C expression levels were inhibited by PP2 and SU6656 treatment, in accordance with decreased c-Src activity. Similarly, the zymography assay demonstrated that the activity of MMP2 and MMP9 was decreased following PP2 or SU6656 treatment. Blockade of c-Src also inhibited the invasive and migratory capacity of BGC-823 cells. Notably, c-Src interacted with furin in vivo, while interactions between furin and its substrates, pro-MT1-MMP and pro-VEGF-C, were decreased by c-Src inhibitors. In conclusion, the interaction among furin and pro-MT1-MMP or pro-VEGF-C or other tumor-associated precursor enzymes can be regulated by c-Src activity, thus reducing or changing the expression of these enzymes in order to reduce the development of gastric cancer, invasion and metastasis.
Collapse
Affiliation(s)
- Yun Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Xuanwu, Beijing 100050, P.R. China
| | - Zhi-Gang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Xuanwu, Beijing 100050, P.R. China
| | - Jie Yin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Xuanwu, Beijing 100050, P.R. China
| | - Guo-Cong Wu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Xuanwu, Beijing 100050, P.R. China
| | - Zhong-Tao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Xuanwu, Beijing 100050, P.R. China
| |
Collapse
|
17
|
Eftang LL, Esbensen Y, Tannæs TM, Blom GP, Bukholm IRK, Bukholm G. Up-regulation of CLDN1 in gastric cancer is correlated with reduced survival. BMC Cancer 2013; 13:586. [PMID: 24321518 PMCID: PMC4029627 DOI: 10.1186/1471-2407-13-586] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 11/21/2013] [Indexed: 12/13/2022] Open
Abstract
Background The genetic changes in gastric adenocarcinoma are extremely complex and reliable tumor markers have not yet been identified. There are also remarkable geographical differences in the distribution of this disease. Our aim was to identify the most differentially regulated genes in 20 gastric adenocarcinomas from a Norwegian selection, compared to matched normal mucosa, and we have related our findings to prognosis, survival and chronic Helicobacter pylori infection. Methods Biopsies from gastric adenocarcinomas and adjacent normal gastric mucosa were obtained from 20 patients immediately following surgical resection of the tumor. Whole genome, cDNA microarray analysis was performed on the RNA isolated from the sample pairs to compare the gene expression profiles between the tumor against matched mucosa. The samples were microscopically examined to classify gastritis. The presence of H. pylori was examined using microscopy and immunohistochemistry. Results 130 genes showed differential regulation above a predefined cut-off level. Interleukin-8 (IL-8) and Claudin-1 (CLDN1) were the most consistently up-regulated genes in the tumors. Very high CLDN1 expression in the tumor was identified as an independent and significant predictor gene of reduced post-operative survival. There were distinctly different expression profiles between the tumor group and the control mucosa group, and the histological subsets of mixed type, diffuse type and intestinal type cancer demonstrated further sub-clustering. Up-regulated genes were mapped to cell-adhesion, collagen-related processes and angiogenesis, whereas normal intestinal functions such as digestion and excretion were associated with down-regulated genes. We relate the current findings to our previous study on the gene response of gastric epithelial cells to H. pylori infection. Conclusions CLDN1 was highly up-regulated in gastric cancer, and CLDN1 expression was independently associated with a poor post-operative prognosis, and may have important prognostic value. IL-8 and CLDN1 may represent central links between the gene response seen in acute H. pylori infection of gastric epithelial cells, and ultimately gastric cancer.
Collapse
Affiliation(s)
- Lars L Eftang
- Department of Clinical Molecular Biology and Laboratory Sciences (EpiGen), Division of Medicine, Akershus University Hospital and University of Oslo, N-1478 Nordbyhagen, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|