1
|
Wen L, Fan Z, Huang W, Miao Y, Zhang J, Liu B, Zhu D, Dai D, Zhang J, Le D, Zhang Y, Qu Q, Hu Z, Chen R. Retinoic acid drives hair follicle stem cell activation via Wnt/β-catenin signalling in androgenetic alopecia. J Eur Acad Dermatol Venereol 2025; 39:189-201. [PMID: 38629345 PMCID: PMC11664453 DOI: 10.1111/jdv.20000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/19/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Depletion or permanent quiescence of the hair follicle stem cell (HFSC) pool underlies pathogenesis in androgenetic alopecia (AGA). Reactivation of quiescent HFSCs is considered an efficient treatment strategy for hair loss. The retinoic acid (RA) is critical to ensure stem cell homeostasis and function. However, little is known about whether RA regulates HFSC homeostasis. We aimed to investigate the impact of RA on HFSC homeostasis and the underlying mechanisms, in order to provide new potential targets for medical therapies of AGA. METHODS Microdissected hair follicles from the occipital and frontal scalp in AGA were obtained for RNA sequencing analysis and test. The C57BL/6 mice model in telogen was established to investigate the effect of exogenous RA. Miniaturized hair follicles from frontal scalp were incubated with or without RA in hair follicle organ culture to test the effects on hair shaft elongation, hair cycling and HFSC activities. A strategy to characterize the effect of RA on HFSC in primary culture was developed to identify novel mechanisms that control HFSC activation. A clinical study was performed to test the efficacy of RA treatment in AGA patients. RESULTS RA signalling was inhibited in the course of AGA pathogenesis along with HFSC dysfunction. Hair regeneration was retarded in AGA miniaturized hair follicles with RA deficiency, but they tended to recover after treatment with RA. In addition, RA treatment during the telogen phase facilitated HFSC anagen entry and accelerated hair growth. Mechanistically, RA promoted hair growth by stimulating stem cells via Wnt/β-catenin signalling and accelerating the transition from a dormant to an activated state. Furthermore, a clinical study suggested that RA has obvious advantages in the early intervention of AGA by reactivating HFSCs. CONCLUSIONS Our study provides insights into the reactivation of HFSCs in AGA and provides potential targets for medical therapies.
Collapse
Affiliation(s)
- Lihong Wen
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of Plastic Surgery, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Zhexiang Fan
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Weichang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical UniversityGuangzhouChina
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jiarui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Bingcheng Liu
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Decong Zhu
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Damao Dai
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jiaxian Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Demengjie Le
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yufan Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ruosi Chen
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
2
|
Wang R, Lin J, Liu Q, Wu W, Wu J, Liu X. Micronutrients and Androgenetic Alopecia: A Systematic Review. Mol Nutr Food Res 2024; 68:e2400652. [PMID: 39440586 DOI: 10.1002/mnfr.202400652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Indexed: 10/25/2024]
Abstract
SCOPE Hair loss is a common problem that can negatively impact individuals' psychological well-being. Androgenetic alopecia (AGA) is one of the most prevalent types of nonscarring hair loss. This review summarizes the existing evidence on the relationship between AGA and various micronutrients, including vitamin B, vitamin D, vitamin A, vitamin C, iron, selenium, zinc, manganese, and copper. METHODS A literature search was conducted to identify relevant articles published between 1993 and 2023. The search identified 49 relevant articles. RESULTS The findings suggest that deficiencies or imbalances in these micronutrients may contribute to the pathogenesis of AGA and represent modifiable risk factors for hair loss prevention and treatment. Vitamin B, vitamin D, iron, and zinc appear to play critical roles in hair growth and maintenance. Deficiencies in these micronutrients have been associated with increased risk of AGA, while supplementation with these nutrients has shown potential benefits in improving hair growth and preventing hair loss. However, the current evidence is not entirely consistent, with some studies reporting no significant associations. CONCLUSION Deficiencies or imbalances in specific vitamins and minerals, especially vitamin B, vitamin D, Fe, Se, and Zn are involved in the pathogenesis of AGA and may represent modifiable risk factors for the treatment and prevention of this condition.
Collapse
Affiliation(s)
- Ruilong Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinran Lin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Zheng X, Zhang Y, Zhang Y, Chen J, Nie R, Li J, Zhang H, Wu C. HOXB8 overexpression induces morphological changes in chicken mandibular skin: an RNA-seq analysis. Poult Sci 2023; 102:102971. [PMID: 37562126 PMCID: PMC10432836 DOI: 10.1016/j.psj.2023.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023] Open
Abstract
The Huiyang beard chicken is a well-known Chinese local breed known for its elongated feathers gathered from both sides of the face (muffs) and below the beak (beard), as well as short wattles (SW). The muff and beard (Mb) mutation is caused by ectopic upregulation of the homeobox B8 (HOXB8) gene in the mandibular skin; and the chi-square test showed a significant correlation between SW and Mb genotypes. However, the underlying molecular mechanisms that regulate Mb and SW variations remain unclear. In this study, we investigated the transcriptomes of the mandibular skin and wattles of chickens with and without the Mb genotype to elucidate the molecular basis of these traits. Our results show that HOXB8 is expressed at significantly higher levels in both the mandibular skin and wattles of Mb chickens than in those of wild-type chickens, indicating that HOXB8 regulates both the Mb and SW phenotypes. Key genes for keratin synthesis were highly expressed in the mandibular skin of Mb chickens, suggesting that HOXB8 may play a role in feather development. In wattles, changes in the expression of extracellular matrix synthesis genes may contribute to SW traits. DNA-binding motif analyses revealed that differentially expressed genes were likely to be directly regulated by HOXB8 binding, indicating that HOXB8 may directly or indirectly regulate feather follicle development and wattle growth. Our study identified both known and novel targets, including several genes not previously implicated in feather development and mesenchymal formation. These findings provide insights into the molecular mechanisms of skin appendage variation in birds and offer potential applications in breeding poultry breeds with unique phenotypes.
Collapse
Affiliation(s)
- Xiaotong Zheng
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu Province, China
| | - Ying Zhang
- China Agricultural Museum, Beijing 100026, China
| | - Yawen Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianfei Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu Province, China
| | - Ruixue Nie
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junying Li
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hao Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Changxin Wu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Xiang H, Xu S, Zhang W, Xue X, Li Y, Lv Y, Chen J, Miao X. Dissolving microneedles for alopecia treatment. Colloids Surf B Biointerfaces 2023; 229:113475. [PMID: 37536169 DOI: 10.1016/j.colsurfb.2023.113475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023]
Abstract
Alopecia is a treatable benign disease, however, approximately 15-30% of women and 50% of men suffer from alopecia, which greatly affects patient's self-esteem and quality of life. Currently, commercial products for alopecia treatment include topical minoxidil solution, oral finasteride tablets and oral baricitinib tablets. However, the barrier of stratum corneum, systemic adverse effects and poor cure rate limit the application of commercial products. Therefore, researchers investigated the mechanism of alopecia, and developed new drugs that could target lactate dehydrogenase-related pathways, remove excessive reactive oxygen in hair follicles, and reduce the escape of hair follicle stem cells, thus injecting new strength into the treatment of alopecia. Moreover, starting from improving drug stratum corneum penetration and reducing side effects, researchers have developed hair loss treatment strategies based on dissolved microneedles (MNs), such as drug powders/microparticles, nanoparticles, biomimetic cell membranes, phototherapy and magnetically responsive soluble microneedles, which show exciting alopecia treatment effects. However, there are still some challenges in the practical application of the current alopecia treatment strategy with soluble microneedles, and further studies are needed to accelerate its clinical translation.
Collapse
Affiliation(s)
- Hong Xiang
- Marine College, Shandong University, Weihai 264209, China
| | - Sai Xu
- Marine College, Shandong University, Weihai 264209, China
| | - Weiwei Zhang
- Drug Research and Development Center, Shandong Drug and Food Vocational College, Weihai 264209, China
| | - Xinyue Xue
- Marine College, Shandong University, Weihai 264209, China
| | - Yixuan Li
- Marine College, Shandong University, Weihai 264209, China
| | - Yanyu Lv
- Drug Research and Development Center, Shandong Drug and Food Vocational College, Weihai 264209, China
| | - Jing Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
5
|
Yue Z, Liu M, Zhang B, Li F, Li C, Chen X, Li F, Liu L. Vitamin A regulates dermal papilla cell proliferation and apoptosis under heat stress via IGF1 and Wnt10b signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115328. [PMID: 37562175 DOI: 10.1016/j.ecoenv.2023.115328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Heat stress (HS) negatively affects the development of hair follicles. The present study investigated the effect of vitamin A (VA) on the development of rabbit dermal papilla cells (DPCs) under HS and the underlying regulatory mechanisms. Addition of 0.4 mg/L VA to the culture medium significantly enhanced cell proliferation (P < 0.001) and inhibited the apoptosis of DPCs (P < 0.01). VA decreased the proportion of DPCs in G0/G1 stage of the cell cycle under HS along with the expression of caspase 3, heat shock protein 70 (HSP70), and microRNA 195 (miR-195) (P < 0.05). VA also activated the insulin-like growth factor 1 (IGF1) and Wnt10b/β-catenin signaling pathways. The results of the dual luciferase reporter assay showed that IGF1 expression was modulated by miR-195-5p. Over-expression of miR-195-5p in DPCs with HS+VA treatment significantly reduced cell viability and IGF1 signaling (P < 0.01) and increased apoptosis (P < 0.01) compared with the HS+VA group. The positive effects of VA on proliferation and apoptosis of DPCs under HS were significantly attenu-ated by blocking Wnt10b and β-catenin signaling with IWP-2 and XAV-939, respectively. These results demonstrate that VA can promote hair follicle development following HS via modulation of miR-195/IGF1 and Wnt10b/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Zhengkai Yue
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Prov-ince), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnol-ogy and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Mengqi Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Prov-ince), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnol-ogy and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Bin Zhang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Prov-ince), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnol-ogy and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Fan Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Prov-ince), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnol-ogy and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Chenyang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Prov-ince), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnol-ogy and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiaoyang Chen
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Prov-ince), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnol-ogy and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Fuchang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Prov-ince), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnol-ogy and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Lei Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Prov-ince), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnol-ogy and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
6
|
Integrative and Mechanistic Approach to the Hair Growth Cycle and Hair Loss. J Clin Med 2023; 12:jcm12030893. [PMID: 36769541 PMCID: PMC9917549 DOI: 10.3390/jcm12030893] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
The hair cycle is composed of four primary phases: anagen, catagen, telogen, and exogen. Anagen is a highly mitotic phase characterized by the production of a hair shaft from the hair follicle, whereas catagen and telogen describe regression and the resting phase of the follicle, respectively, ultimately resulting in hair shedding. While 9% of hair follicles reside in telogen at any time, a variety of factors promote anagen to telogen transition, including inflammation, hormones, stress, nutritional deficiency, poor sleep quality, and cellular division inhibiting medication. Conversely, increased blood flow, direct stimulation of the hair follicle, and growth factors promote telogen to anagen transition and subsequent hair growth. This review seeks to comprehensively describe the hair cycle, anagen and telogen balance, factors that promote anagen to telogen transition and vice versa, and the clinical utility of a variety of lab testing and evaluations. Ultimately, a variety of factors impact the hair cycle, necessitating a holistic approach to hair loss.
Collapse
|
7
|
Vitamin A in Skin and Hair: An Update. Nutrients 2022; 14:nu14142952. [PMID: 35889909 PMCID: PMC9324272 DOI: 10.3390/nu14142952] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 12/04/2022] Open
Abstract
Vitamin A is a fat-soluble micronutrient necessary for the growth of healthy skin and hair. However, both too little and too much vitamin A has deleterious effects. Retinoic acid and retinal are the main active metabolites of vitamin A. Retinoic acid dose-dependently regulates hair follicle stem cells, influencing the functioning of the hair cycle, wound healing, and melanocyte stem cells. Retinoic acid also influences melanocyte differentiation and proliferation in a dose-dependent and temporal manner. Levels of retinoids decline when exposed to ultraviolet irradiation in the skin. Retinal is necessary for the phototransduction cascade that initiates melanogenesis but the source of that retinal is currently unknown. This review discusses new research on retinoids and their effects on the skin and hair.
Collapse
|
8
|
GOKCE NURIYE, BASGOZ NESLIHAN, KENANOGLU SERCAN, AKALIN HILAL, OZKUL YUSUF, ERGOREN MAHMUTCERKEZ, BECCARI TOMMASO, BERTELLI MATTEO, DUNDAR MUNIS. An overview of the genetic aspects of hair loss and its connection with nutrition. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E228-E238. [PMID: 36479473 PMCID: PMC9710406 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hair loss is a widespread concern in dermatology clinics, affecting both men's and women's quality of life. Hair loss can have many different causes, which are critical to identify in order to provide appropriate treatment. Hair loss can happen due to many variables, such as genetic factors or predisposition, vitamin and mineral deficiencies, skin problems, hair growth disorders, poor diet, hormonal problems, certain internal diseases, drug use, stress and depression, cosmetic factors, childbirth, and the chemotherapy process. Treatment for hair loss varies depending on the type of alopecia, deficiency, or excess of structures such as vitamins and minerals, and also on hair and skin structure. The Mediterranean diet is characterized by low amounts of saturated fat, animal protein, and high amounts of unsaturated fat, fiber, polyphenols, and antioxidants. The main nutrients found in the Mediterranean Diet are rich in antioxidant, anti-inflammatory components. It also has an important place in hair loss treatment, since recently treatment strategies have included polyphenols and unsaturated oils more and more frequently. The goal of this work was to review published articles examining alopecia and its types, the many micronutrients that affect alopecia, and the role of the Mediterranean diet in alopecia. The literature shows that little is known about hair loss, nutritional factors, and diet, and that the data collected are conflicting. Given these differences, research into the function of diet and nutrition in the treatment of baldness is a dynamic and growing topic.
Collapse
Affiliation(s)
- NURIYE GOKCE
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - NESLIHAN BASGOZ
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - SERCAN KENANOGLU
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - HILAL AKALIN
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - YUSUF OZKUL
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - MAHMUT CERKEZ ERGOREN
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
- DESAM Institute, Near East University, Nicosia, Cyprus
| | - TOMMASO BECCARI
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | - MATTEO BERTELLI
- MAGISNAT, Peachtree Corners (GA), USA
- MAGI Euregio, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
| | - MUNIS DUNDAR
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
9
|
Yue Z, Li C, Liu Y, Liu M, Zhao M, Li F, Liu L. Vitamin A alleviates heat stress-induced damage to hair follicle development in Rex rabbits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2291-2299. [PMID: 34625979 DOI: 10.1002/jsfa.11567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rex rabbits are important fur rabbits. Heat stress severely reduces the fur quality of Rex rabbits. The aim of this study was to experimentally investigate the effect of dietary vitamin A (VA) addition on hair follicle development and related signal pathways in Rex rabbits under heat stress. RESULTS In the experiment, 90 Rex rabbits were randomly divided into three groups: control group (20-25 °C, fed basic diet), heat stress group (30-34 °C, fed basic diet), and heat stress + VA group (20-25 °C, fed 12 000 IU/kg VA in addition to the basic diet). VA could significantly increase the hair follicle density (P < 0.01), hair length (P < 0.05), and the ratio of secondary to primary hair follicles (P < 0.05). In addition, VA could significantly inhibit the expression of BMP2, BMP4, FGF5, TGF-β1, and miR-214 in heat-stressed Rex rabbits and significantly increase the expression of noggin, IGF1, IGF1R, Wnt10b, CTNNB1, SHH, and miR-203 and the levels of Wnt10b and p-β-catenin; however, there was no significant effect of VA on the expression of EGF and miR-205. CONCLUSION The dietary addition of VA can increase the hair follicle density and fur quality of heat-stressed Rex rabbits. Wnt10/β-catenin, insulin-like growth factor 1 (IGF1), fibroblast growth factor 5 (FGF5), noggin-BMP, and sonic hedgehog (SHH) signaling were associated with VA regulation under heat stress. It is possible that miR-205 and miR-194 contribute to the regulation of Wnt10/β-catenin and bone morphogenetic protein (BMP) signaling. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengkai Yue
- Department of Animal Science, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Chenyang Li
- Department of Animal Science, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Yongxu Liu
- Qingdao Kangda Food Co., Ltd., Qingdao, China
| | - Mengqi Liu
- Department of Animal Science, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Man Zhao
- Department of Animal Science, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Fuchang Li
- Department of Animal Science, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Lei Liu
- Department of Animal Science, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| |
Collapse
|
10
|
Hagino T, Okazaki S, Serizawa N, Suzuki K, Kaga M, Otsuka Y, Mikami E, Hoashi T, Saeki H, Matsuda H, Mitsui H, Kanda N. Dietary Habits in Japanese Patients with Alopecia Areata. Clin Cosmet Investig Dermatol 2021; 14:1579-1591. [PMID: 34737597 PMCID: PMC8560057 DOI: 10.2147/ccid.s335440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022]
Abstract
Purpose Alopecia areata (AA) is characterized by non-scarring, patchy hair loss caused by autoimmune reactions to anagen hair follicles. The pathogenesis of AA may be affected by the diet. However, the dietary habits of patients with AA have not been precisely examined. Therefore, the aim of this study was to investigate the dietary habits of patients with AA in comparison to those of healthy controls. Patients and Methods We evaluated the dietary habits of 70 adult Japanese patients with AA using a brief-type self-administered diet history questionnaire and compared them to the habits of age- and sex-matched healthy controls. Results Japanese patients with AA had a higher body mass index (BMI) and higher intakes of vitamin C and fruit than the controls. Logistic regression analysis showed that AA was associated with BMI. Retinol intake was positively correlated with severity of alopecia tool (SALT) score, and linear regression analysis revealed that retinol intake was a predictor of SALT score. Retinol intake among patients with moderate to severe AA (ie, a SALT score >25) was higher than that in patients with mild AA (a SALT score ≤25). The mean age of AA patients with atopic dermatitis (AD) was lower than that of AA patients without AD; however, there were no differences in nutrient or food intake between these two groups. Logistic regression analysis showed that the comorbidity AD was negatively associated with age. Conclusion AA was associated with a high BMI, and high retinol intake was a predictor of SALT score. Further studies should be conducted to clarify whether dietary intervention to reduce BMI or limit retinol intake can alter the development or severity of AA.
Collapse
Affiliation(s)
- Teppei Hagino
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan.,Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Shizuka Okazaki
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Naotaka Serizawa
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Kaori Suzuki
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Mio Kaga
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Yohei Otsuka
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Erina Mikami
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | | | - Hidehisa Saeki
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Hiroki Matsuda
- Department of Dermatology, Tokyo Teishin Hospital, Tokyo, Japan
| | - Hiroshi Mitsui
- Department of Dermatology, Tokyo Teishin Hospital, Tokyo, Japan
| | - Naoko Kanda
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| |
Collapse
|
11
|
Everts HB, Silva KA, Schmidt AN, Opalenik S, Duncan FJ, King LE, Sundberg JP, Ong DE. Estrogen regulates the expression of retinoic acid synthesis enzymes and binding proteins in mouse skin. Nutr Res 2021; 94:10-24. [PMID: 34571215 PMCID: PMC8845065 DOI: 10.1016/j.nutres.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022]
Abstract
Topical 17-beta-estradiol (E2) regulates the hair cycle, hair shaft differentiation, and sebum production. Vitamin A also regulates sebum production. Vitamin A metabolism proteins localized to the pilosebaceous unit (PSU; hair follicle and sebaceous gland); and were regulated by E2 in other tissues. This study tests the hypothesis that E2 also regulates vitamin A metabolism in the PSU. First, aromatase and estrogen receptors localized to similar sites as retinoid metabolism proteins during mid-anagen. Next, female and male wax stripped C57BL/6J mice were topically treated with E2, the estrogen receptor antagonist ICI 182,780 (ICI), letrozole, E2 plus letrozole, or vehicle control (acetone) during mid-anagen. E2 or one of its inhibitors regulated most of the vitamin A metabolism genes and proteins examined in a sex-dependent manner. Most components were higher in females and reduced with ICI in females. ICI reductions occurred in the premedulla, sebaceous gland, and epidermis. Reduced E2 also reduced RA receptors in the sebaceous gland and bulge in females. However, reduced E2 increased the number of retinal dehydrogenase 2 positive hair follicle associated dermal dendritic cells in males. These results suggest that estrogen regulates vitamin A metabolism in the skin. Interactions between E2 and vitamin A have implications in acne treatment, hair loss, and skin immunity.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA; Department of Nutrition, The Ohio State University, Columbus, OH, USA; Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | | - Adriana N Schmidt
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Susan Opalenik
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - F Jason Duncan
- Department of Nutrition, The Ohio State University, Columbus, OH, USA
| | - Lloyd E King
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John P Sundberg
- The Jackson Laboratory, Bar Harbor, ME, USA; Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David E Ong
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
12
|
Suo L, VanBuren C, Hovland ED, Kedishvili NY, Sundberg JP, Everts HB. Dietary Vitamin A Impacts Refractory Telogen. Front Cell Dev Biol 2021; 9:571474. [PMID: 33614636 PMCID: PMC7892905 DOI: 10.3389/fcell.2021.571474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Hair follicles cycle through periods of growth (anagen), regression (catagen), rest (telogen), and release (exogen). Telogen is further divided into refractory and competent telogen based on expression of bone morphogenetic protein 4 (BMP4) and wingless-related MMTV integration site 7A (WNT7A). During refractory telogen hair follicle stem cells (HFSC) are inhibited. Retinoic acid synthesis proteins localized to the hair follicle and this localization pattern changed throughout the hair cycle. In addition, excess retinyl esters arrested hair follicles in telogen. The purpose of this study was to further define these hair cycle changes. BMP4 and WNT7A expression was also used to distinguish refractory from competent telogen in C57BL/6J mice fed different levels of retinyl esters from two previous studies. These two studies produced opposite results; and differed in the amount of retinyl esters the dams consumed and the age of the mice when the different diet began. There were a greater percentage of hair follicles in refractory telogen both when mice were bred on an unpurified diet containing copious levels of retinyl esters (study 1) and consumed excess levels of retinyl esters starting at 12 weeks of age, as well as when mice were bred on a purified diet containing adequate levels of retinyl esters (study 2) and remained on this diet at 6 weeks of age. WNT7A expression was consistent with these results. Next, the localization of vitamin A metabolism proteins in the two stages of telogen was examined. Keratin 6 (KRT6) and cellular retinoic acid binding protein 2 (CRABP2) localized almost exclusively to refractory telogen hair follicles in study 1. However, KRT6 and CRABP2 localized to both competent and refractory telogen hair follicles in mice fed adequate and high levels of retinyl esters in study 2. In mice bred and fed an unpurified diet retinol dehydrogenase SDR16C5, retinal dehydrogenase 2 (ALDH1A2), and cytochrome p450 26B1 (CYP26B1), enzymes and proteins involved in RA metabolism, localized to BMP4 positive refractory telogen hair follicles. This suggests that vitamin A may contribute to the inhibition of HFSC during refractory telogen in a dose dependent manner.
Collapse
Affiliation(s)
- Liye Suo
- Department of Human Nutrition, The Ohio State University, Columbus, OH, United States
| | - Christine VanBuren
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, United States
| | - Eylul Damla Hovland
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, United States
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Helen B Everts
- Department of Human Nutrition, The Ohio State University, Columbus, OH, United States.,Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, United States
| |
Collapse
|
13
|
Lan L, Wang W, Huang Y, Bu X, Zhao C. Roles of Wnt7a in embryo development, tissue homeostasis, and human diseases. J Cell Biochem 2019; 120:18588-18598. [PMID: 31271226 DOI: 10.1002/jcb.29217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022]
Abstract
Human Wnt family comprises 19 proteins which are critical to embryo development and tissue homeostasis. Binding to different frizzled (FZD) receptor, Wnt7a initiates both β-catenin dependent pathway, and β-catenin independent pathways such as PI3K/Akt, RAC/JNK, and extracellular signal-regulated kinase 5/peroxisome proliferator-activated receptor-γ. In the embryo, Wnt7a plays a crucial role in cerebral cortex development, synapse formation, and central nervous system vasculature formation and maintenance. Wnt7a is also involved in the development of limb and female reproductive system. Wnt7a mutation leads to human limb malformations and animal female reproductive system defects. Wnt7a is implicated in homeostasis maintenance of skeletal muscle, cartilage, cornea and hair follicle, and Wnt7a treatment may be potentially applied in skeletal muscle dystrophy, corneal damage, wound repair, and hair follicle regeneration. Wnt7a plays dual roles in human tumors. Wnt7a is downregulated in lung cancers, functioning as a tumor suppressor, however, it is upregulated in several other malignancies such as ovarian cancer, breast cancer, and glioma, acting as a tumor promoter. Moreover, Wnt7a overexpression is associated with inflammation and fibrosis, but its roles need to be further investigated.
Collapse
Affiliation(s)
- Lihui Lan
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.,Department of Hepatobiliary and Spleen Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yue Huang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Xianmin Bu
- Department of Hepatobiliary and Spleen Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Darwin E, Hirt PA, Fertig R, Doliner B, Delcanto G, Jimenez JJ. Alopecia Areata: Review of Epidemiology, Clinical Features, Pathogenesis, and New Treatment Options. Int J Trichology 2018; 10:51-60. [PMID: 29769777 PMCID: PMC5939003 DOI: 10.4103/ijt.ijt_99_17] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Alopecia areata (AA) is a complex autoimmune condition that causes nonscarring hair loss. It typically presents with sharply demarcated round patches of hair loss and may present at any age. In this article, we review the epidemiology, clinical features, pathogenesis, and new treatment options of AA, with a focus on the immunologic mechanism underlying the treatment. While traditional treatment options such as corticosteroids are moderately effective, a better understanding of the disease pathogenesis may lead to the development of new treatments that are more directed and effective against AA. Sources were gathered from PubMed, Embase, and the Cochrane database using the keywords: alopecia, alopecia areata, hair loss, trichoscopy, treatments, pathogenesis, and epidemiology.
Collapse
Affiliation(s)
- Evan Darwin
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| | - Penelope A Hirt
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| | - Raymond Fertig
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| | - Brett Doliner
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| | - Gina Delcanto
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| | - Joaquin J Jimenez
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| |
Collapse
|
15
|
Thompson JM, Mirza MA, Park MK, Qureshi AA, Cho E. The Role of Micronutrients in Alopecia Areata: A Review. Am J Clin Dermatol 2017; 18:663-679. [PMID: 28508256 PMCID: PMC5685931 DOI: 10.1007/s40257-017-0285-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alopecia areata (AA) is a common, non-scarring form of hair loss caused by immune-mediated attack of the hair follicle. As with other immune-mediated diseases, a complex interplay between environment and genetics is thought to lead to the development of AA. Deficiency of micronutrients such as vitamins and minerals may represent a modifiable risk factor associated with development of AA. Given the role of these micronutrients in normal hair follicle development and in immune cell function, a growing number of investigations have sought to determine whether serum levels of these nutrients might differ in AA patients, and whether supplementation of these nutrients might represent a therapeutic option for AA. While current treatment often relies on invasive steroid injections or immunomodulating agents with potentially harmful side effects, therapy by micronutrient supplementation, whether as a primary modality or as adjunctive treatment, could offer a promising low-risk alternative. However, our review highlights a need for further research in this area, given that the current body of literature largely consists of small case-control studies and case reports, which preclude any definite conclusions for a role of micronutrients in AA. In this comprehensive review of the current literature, we found that serum vitamin D, zinc, and folate levels tend to be lower in patients with AA as compared to controls. Evidence is conflicting or insufficient to suggest differences in levels of iron, vitamin B12, copper, magnesium, or selenium. A small number of studies suggest that vitamin A levels may modify the disease. Though understanding of the role for micronutrients in AA is growing, definitive clinical recommendations such as routine serum level testing or therapeutic supplementation call for additional studies in larger populations and with a prospective design.
Collapse
Affiliation(s)
- Jordan M Thompson
- Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Mehwish A Mirza
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT, 06473, USA
| | - Min Kyung Park
- Department of Dermatology, Warren Alpert Medical School, Brown University, 339 Eddy Street, Providence, RI, 02903, USA
| | - Abrar A Qureshi
- Department of Dermatology, Warren Alpert Medical School, Brown University, 339 Eddy Street, Providence, RI, 02903, USA
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, 02903, USA
| | - Eunyoung Cho
- Department of Dermatology, Warren Alpert Medical School, Brown University, 339 Eddy Street, Providence, RI, 02903, USA.
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
16
|
Guo EL, Katta R. Diet and hair loss: effects of nutrient deficiency and supplement use. Dermatol Pract Concept 2017; 7:1-10. [PMID: 28243487 PMCID: PMC5315033 DOI: 10.5826/dpc.0701a01] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/25/2016] [Indexed: 02/05/2023] Open
Abstract
Patients presenting with hair loss should be screened by medical history, dietary history and physical exam for risk factors for nutrient deficiency. If warranted, laboratory studies may be performed. In patients with no risk factors, further laboratory evaluation searching for nutritional deficiencies is not warranted. For patients with nutritional deficiencies, it is clear that those deficiencies should be corrected. Further research is required to determine whether any benefit exists for nutrient supplementation in the absence of documented deficiency. At this time, patients must be informed that such research is lacking and that in fact some supplements carry the risk of worsening hair loss or the risk of toxicity.
Collapse
Affiliation(s)
| | - Rajani Katta
- Department of Dermatology, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
17
|
Huang C, Du Y, Nabzdyk CS, Ogawa R, Koyama T, Orgill DP, Fu X. Regeneration of hair and other skin appendages: A microenvironment-centric view. Wound Repair Regen 2016; 24:759-766. [PMID: 27256925 DOI: 10.1111/wrr.12451] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/20/2016] [Accepted: 05/28/2016] [Indexed: 12/19/2022]
Abstract
Advances in skin regeneration have resulted in techniques and products that have allowed regeneration of both the dermis and epidermis. Yet complete skin regeneration requires the adnexal skin structures. Thus it is crucial to understand the regenerative potential of hair follicles where genetic, nutritional, and hormonal influences have important effects and are critical for skin regeneration. The follicular stem cell niche serves as an anatomical compartment, a structural unit, a functional integrator, and a dynamic regulator necessary to sustain internal homeostasis and respond to outside stimuli. In particular, mechanics such as pressure, compression, friction, traction, stretch, shear, and mechanical wounding can influence hair loss or growth. Relevant niche signaling pathways such as Wnt, bone morphogenetic protein, fibroblast growth factor, Shh, and Notch may yield potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Chenyu Huang
- Department of Plastic, Reconstructive and Aesthetic Surgery, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, Beijing, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Christoph S Nabzdyk
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | | | - Dennis P Orgill
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xiaobing Fu
- Institute of Basic Medical Science, The General Hospital of PLA, Beijing, China.
| |
Collapse
|
18
|
Emerging Role and Therapeutic Implication of Wnt Signaling Pathways in Autoimmune Diseases. J Immunol Res 2016; 2016:9392132. [PMID: 27110577 PMCID: PMC4826689 DOI: 10.1155/2016/9392132] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/05/2016] [Accepted: 03/09/2016] [Indexed: 12/13/2022] Open
Abstract
The Wnt signaling pathway plays a key role in many biological aspects, such as cellular proliferation, tissue regeneration, embryonic development, and other systemic effects. Under a physiological condition, it is tightly controlled at different layers and arrays, and a dysregulated activation of this signaling has been implicated into the pathogenesis of various human disorders, including autoimmune diseases. Despite the fact that therapeutic interventions are available for ameliorating disease manifestations, there is no curative therapy currently available for autoimmune disorders. Increasing lines of evidence have suggested a crucial role of Wnt signaling during the pathogenesis of many autoimmune diseases; in addition, some of microRNAs (miRNAs), a class of small, noncoding RNA molecules capable of transcriptionally regulating gene expression, have also recently been demonstrated to possess both physiological and pathological roles in autoimmune diseases by regulating the Wnt signaling pathway. This review summarizes currently our understanding of the pathogenic roles of Wnt signaling in several major autoimmune disorders and miRNAs, those targeting Wnt signaling in autoimmune diseases, with a focus on the implication of the Wnt signaling as potential biomarkers and therapeutic targets in immune diseases, as well as miRNA-mediated regulation of Wnt signaling activation in the development of autoimmune diseases.
Collapse
|