1
|
Kim C, Cathey AL, Watkins DJ, Mukherjee B, Rosario-Pabón ZY, Vélez-Vega CM, Alshawabkeh AN, Cordero JF, Meeker JD. Maternal blood metal concentrations are associated with matrix metalloproteinases (MMPs) among pregnant women in Puerto Rico. ENVIRONMENTAL RESEARCH 2022; 209:112874. [PMID: 35123972 PMCID: PMC10443181 DOI: 10.1016/j.envres.2022.112874] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/11/2023]
Abstract
BACKGROUND/AIM Matrix metalloproteinases (MMPs) are important regulators of uterine remodeling, a critical process for healthy pregnancies, and studies have revealed a link between an imbalance in MMPs and adverse birth outcomes. Toxicological studies have indicated that exposure to heavy metals can alter the levels of inflammatory cytokines, including MMPs. Despite growing evidence, the clear association between heavy metal exposure and MMPs has yet to be explored extensively in human populations. To have a better understanding of the association, in this study, we assessed associations between maternal blood metal levels with MMPs among 617 pregnant women in the Puerto Rico PROTECT birth cohort. METHODS We measured blood concentrations for 11 metals in the first and/or second trimester of pregnancy using ICP-MS. MMPs (MMP1, MMP2, and MMP9) were quantified using a customized Luminex assay. Linear mixed effects models (LMEs) were used to regress MMPs on metals and included random intercepts for study participants to account for correlated repeated outcome measures. Fetal sex effects were estimated using interaction terms between metal exposure variables and fetal sex indicators. RESULTS We observed significant associations between cesium, manganese, and zinc with all the MMPs that were measured. We also observed differences in metal-MMPs associations by fetal sex. Cobalt was positively associated with MMP1 only in women with male fetuses, and cesium was negatively associated with MMP1 only in women with female fetuses. MMP2 had significant associations with maternal blood metal concentrations only in women with female fetuses. CONCLUSION Certain metals were significantly associated with MMPs that are responsible for uterine remodeling and healthy pregnancies. Most of these associations differed by fetal sex. This study highlighted significant metal-MMPs associations that may inform research on new avenues for understanding heavy metal-induced adverse birth outcomes and the development of diagnostic tools.
Collapse
Affiliation(s)
- Christine Kim
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Amber L Cathey
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Deborah J Watkins
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Bhramar Mukherjee
- University of Michigan School of Public Health, Department of Biostatistics, Ann Arbor, MI, United States
| | - Zaira Y Rosario-Pabón
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, PR, USA
| | - Carmen M Vélez-Vega
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, PR, USA
| | | | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, United States
| | - John D Meeker
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States.
| |
Collapse
|
2
|
Lead exposure of rats during and after pregnancy induces anti-myelin proteolytic activity: a potential mechanism for lead-induced neurotoxicity. Toxicology 2022; 472:153179. [DOI: 10.1016/j.tox.2022.153179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/01/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022]
|
3
|
Wang J, Zhang Z, Liang C, Lv T, Yu H, Ren S, Lin P, Du G, Sun L. Targeting Myadm to Intervene Pulmonary Hypertension on Rats Before Pregnancy Alleviates the Effect on Their Offspring's Cardiac-Cerebral Systems. Front Pharmacol 2022; 12:791370. [PMID: 35115938 PMCID: PMC8804385 DOI: 10.3389/fphar.2021.791370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
Pregnancy with pulmonary hypertension (PH) seriously threatens the life and safety of mothers and infants. Here, the long-term effect of maternal PH on the postpartum growth of rat offspring was focused for the first time, as well as explored the role of Myadm in PH rats before pregnancy based upon the previous findings. Patients with PH are prone to hypoxemia, leading to insufficient placental structure and function, which affects the organ function of fetuses, followed by evidence that differently expressed genes (DEGs) existed in the heart of maternal PH newborn rats and enriched in pathways related to cardiac and nerve development on human infants with similar birth outcome: low birth weight (LBW). LBW was one of the possible birth outcomes of pregnancy with PH, especially severe PH, accompanied by evidence that offspring derived from mothers with PH presented lower birth weights and slower growth rates than those derived from normal control mothers in a rat model. Besides, maternal PH rat offspring showed cardiac remodeling and a significant elevation of the expression levels of hypoxia- and inflammation-related markers in the cerebral cortex at both 10 and 14 weeks of age, respectively. What is more, the previous studies found that the overexpression of Myadm could result in the remodeling of the pulmonary artery. And targeting Myadm to intervene PH before pregnancy could alleviate sustained low weight growth in maternal PH rat offspring, and the pathological changes of the cardiac–cerebral system caused by maternal PH, including enlarged right heart cavity, loss of cardiomyocytes, abnormal heart index, as well as cerebral cortex hypoxia and the inflammatory state as they grew up to a certain extent. The findings show the pathological significance of maternal PH on offspring growth and the cardiac–cerebral development in a rat model, as well as point out the potential treatment target, which may provide a further reference for pregnancy outcomes in women with PH and healthy development of offspring to some extent.
Collapse
Affiliation(s)
- Jingrong Wang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
| | - Zirui Zhang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
| | - Cui Liang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Tingting Lv
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
| | - Haoying Yu
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
| | - Shuyue Ren
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
| | - Peirong Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
| | - Lan Sun
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
| |
Collapse
|
4
|
Torimoto R, Ishii C, Sato H, Saito K, Watanabe Y, Ogasawara K, Kubota A, Matsukawa T, Yokoyama K, Kobayashi A, Kimura T, Nakayama SMM, Ikenaka Y, Ishizuka M. Analysis of lead distribution in avian organs by LA-ICP-MS: Study of experimentally lead-exposed ducks and kites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117086. [PMID: 33848898 DOI: 10.1016/j.envpol.2021.117086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Lead poisoning of wild birds by ingestion of lead ammunition occurs worldwide. Histopathological changes in organs of lead-intoxicated birds are widely known, and lead concentration of each organ is measurable using mass spectrometry. However, detailed lead localization at the suborgan level has remained elusive in lead-exposed birds. Here we investigated the detailed lead localization in organs of experimentally lead-exposed ducks and kites by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). In both the ducks and kites, lead accumulated diffusely in the liver, renal cortex, and brain. Lead accumulation was restricted to the red pulp in the spleen. With regard to species differences in lead distribution patterns, it is noteworthy that intensive lead accumulation was observed in the arterial walls only in the kites. In addition, the distribution of copper in the brain was altered in the lead-exposed ducks. Thus, the present study shows suborgan lead distribution in lead-exposed birds and its differences between avian species for the first time. These findings will provide fundamental information to understand the cellular processes of lead poisoning and the mechanisms of species differences in susceptibility to lead exposure.
Collapse
Affiliation(s)
- Ryouta Torimoto
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Chihiro Ishii
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Hiroshi Sato
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Keisuke Saito
- Institute for Raptor Biomedicine Japan, Hokuto 2-2101, Kushiro, Hokkaido, 084-0922, Japan
| | - Yukiko Watanabe
- Institute for Raptor Biomedicine Japan, Hokuto 2-2101, Kushiro, Hokkaido, 084-0922, Japan
| | - Kohei Ogasawara
- Institute for Raptor Biomedicine Japan, Hokuto 2-2101, Kushiro, Hokkaido, 084-0922, Japan
| | - Ayano Kubota
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takehisa Matsukawa
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan; Department of Forensic Medicine, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kazuhito Yokoyama
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan; Department of Epidemiology and Social Medicine, Graduate School of Public Health, International University of Health and Welfare, Akasaka 4-1-26, Minato-ku, Tokyo, 107-8402, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan.
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| |
Collapse
|
5
|
Li N, Zhang D, Cao S, Qiao M, Zhang P, Zhao Q, Shen Y, Huang X, Song L. The effects of folic acid on RNA m6A methylation in hippocampus as well as learning and memory ability of rats with acute lead exposure. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
6
|
Li X, Ou X, Luo G, Ou X, Xie Y, Ying M, Qu W, Zuo H, Qi X, Wang Y, Liu Z, Zhu L. Mdr1a, Bcrp and Mrp2 regulate the efficacy and toxicity of mesaconitine and hypaconitine by altering their tissue accumulation and in vivo residence. Toxicol Appl Pharmacol 2020; 409:115332. [PMID: 33171190 DOI: 10.1016/j.taap.2020.115332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 02/05/2023]
Abstract
Mesaconitine (MA) and hypaconitine (HA) are the main bioactive/toxic alkaloids of Aconitum carmichaelii Debx, and MDR1, BCRP and MRP2 are involved in their efflux in vitro. This study aimed to explore the effects of Mdr1a, Bcrp and Mrp2 on the efficacy/toxicity of MA and HA by using efflux transporter gene knockout mouse models. The analgesic and anti-inflammatory effects, neurotoxicity/cardiotoxicity, and pharmacokinetic profiles of MA and HA were studied. Compared to wild-type mice, the analgesic effects of MA or HA were significantly enhanced in Mdr1a--/-, Bcrp1-/- and Mrp2-/- mice, and the anti-inflammatory effects notably increased in Bcrp1-/- and Mrp2-/- mice. Compared to wild-type mice, Mdr1a-/-, Bcrp1-/- and Mrp2-/- mice suffered from severe karyopyknosis and edema in the brain after MA or HA treatment. Meanwhile, significant arrhythmia appeared, and the heart rate and RR-interval were greatly altered in Mdr1a-/-, Bcrp1-/- and Mrp2-/- mice. Additionally, obvious disorder of cardiomyocytes were observed, and the CK and cTnT (indicators of heart injury) levels were greatly enhanced in efflux transporter gene knockout mice. The brain levels of MA and HA were markedly increased in Mdr1a-/-, Bcrp1-/- and Mrp2-/- mice, and the heart levels of MA and HA enhanced greatly in Mdr1a-/- mice. The MRT0-t values of MA and HA were remarkably enhanced in most efflux transporter gene knockout mice. In conclusion, Mdr1a, Bcrp and Mrp2 were all involved in regulating the efficacy/toxicity of MA and HA by altering their tissue accumulation and in vivo residence. Among the three efflux transporters, Mdr1a had a superior regulatory effect.
Collapse
Affiliation(s)
- Xiaocui Li
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, PR China
| | - Xiaowen Ou
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, PR China
| | - Guangkuo Luo
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, PR China
| | - Xiaojun Ou
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, PR China
| | - Yushan Xie
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, PR China
| | - Mengdi Ying
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, PR China
| | - Wei Qu
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, PR China
| | - Huilin Zuo
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, PR China
| | - Xiaoxiao Qi
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, PR China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, PR China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, PR China.
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, PR China.
| |
Collapse
|
7
|
Effect of developmental lead exposure on neurogenesis and cortical neuronal morphology in Wistar rats. Toxicol Ind Health 2018; 34:665-678. [DOI: 10.1177/0748233718781283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lead (Pb) is a neurotoxic heavy metal that largely affects the developing nervous system. The present study examined the temporal effect of perinatal Pb exposure on neurogenesis and cortical neuronal morphology. Wistar pregnant rats were exposed to 0.5% lead acetate throughout pregnancy and to postnatal day (PD) 28. Offspring were grouped as gestational day (GD) 18 and 21 and PD 7, 14, 21, and 28 in both control and experimental groups. Brain sections were processed for immunohistological staining with anti-proliferating cell nuclear antigen (PCNA) or glial fibrillary acidic protein (GFAP). Brains from 14, 21, and 28 PDs pups were processed for Golgi–Cox stain. Pb exposure significantly increased PCNA-positive nuclei in the ventricular and subventricular zones of the lateral ventricle at 18 and 21 GDs. Postnatally, the Pb-treated groups showed a significant decrease in PCNA-positivity and neuron density compared to control. This reduction was associated with an increase in damaged or apoptotic cell profiles in the experimental groups. At PD 21, there was a significant increase in GFAP immunoreactivity in Pb-exposed groups compared with control. Furthermore, the total apical and basal dendritic length of pyramidal neurons in layer 2–3 of the Golgi–Cox stained sensorimotor cortex was comparable in both control and Pb-exposed groups. Spine density per 10 µm was significantly increased at PD 14 and 21 on the apical dendrites but not basal dendrites of Pb-treated groups. In conclusion, developmental Pb exposure in rats induces a toxic effect on neurogenesis and on cortical neurons, which may be related to cognitive disabilities observed in children exposed to lead.
Collapse
|