1
|
Oldershaw RA, Richardson G, Carling P, Owens WA, Lundy DJ, Meeson A. Cardiac Mesenchymal Stem Cell-like Cells Derived from a Young Patient with Bicuspid Aortic Valve Disease Have a Prematurely Aged Phenotype. Biomedicines 2022; 10:3143. [PMID: 36551899 PMCID: PMC9775343 DOI: 10.3390/biomedicines10123143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
There is significant interest in the role of stem cells in cardiac regeneration, and yet little is known about how cardiac disease progression affects native cardiac stem cells in the human heart. In this brief report, cardiac mesenchymal stem cell-like cells (CMSCLC) from the right atria of a 21-year-old female patient with a bicuspid aortic valve and aortic stenosis (referred to as biscuspid aortic valve disease BAVD-CMSCLC), were compared with those of a 78-year-old female patient undergoing coronary artery bypass surgery (referred to as coronary artery disease CAD-CMSCLC). Cells were analyzed for expression of MSC markers, ability to form CFU-Fs, metabolic activity, cell cycle kinetics, expression of NANOG and p16, and telomere length. The cardiac-derived cells expressed MSC markers and were able to form CFU-Fs, with higher rate of formation in CAD-CMSCLCs. BAVD-CMSCLCs did not display normal MSC morphology, had a much lower cell doubling rate, and were less metabolically active than CAD-CMSCLCs. Cell cycle analysis revealed a population of BAVD-CMSCLC in G2/M phase, whereas the bulk of CAD-CMSCLC were in the G0/G1 phase. BAVD-CMSCLC had lower expression of NANOG and shorter telomere lengths, but higher expression of p16 compared with the CAD-CMSCLC. In conclusion, BAVD-CMSCLC have a prematurely aged phenotype compared with CAD-CMSCLC, despite originating from a younger patient.
Collapse
Affiliation(s)
- Rachel A. Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Gavin Richardson
- Newcastle University Bioscience Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Phillippa Carling
- Newcastle University Bioscience Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - W. Andrew Owens
- Newcastle University Bioscience Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
- Department of Cardiothoracic Surgery, South Tees Hospitals NHS Foundation Trust, Middlesbrough TS4 3BW, UK
| | - David J. Lundy
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Annette Meeson
- Newcastle University Bioscience Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
2
|
Chen Y, Shen H, Ding Y, Yu Y, Shao L, Shen Z. The application of umbilical cord-derived MSCs in cardiovascular diseases. J Cell Mol Med 2021; 25:8103-8114. [PMID: 34378345 PMCID: PMC8419197 DOI: 10.1111/jcmm.16830] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Transplantation of stem cells is a promising, emerging treatment for cardiovascular diseases in the modern era. Mesenchymal stem cells (MSCs) derived from the umbilical cord are one of the most promising cell sources because of their capacity for differentiation into cardiomyocytes, endothelial cells and vascular smooth muscle cells in vitro/in vivo. In addition, umbilical cord‐derived MSCs (UC‐MSCs) secrete many effective molecules regulating apoptosis, fibrosis and neovascularization. Another important and specific characteristic of UC‐MSCs is their low immunogenicity and immunomodulatory properties. However, the application of UC‐MSCs still faces some challenges, such as low survivability and tissue retention in a harmful disease environment. Gene engineering and pharmacological studies have been implemented to overcome these difficulties. In this review, we summarize the differentiation ability, secretion function, immunoregulatory properties and preclinical/clinical studies of UC‐MSCs, highlighting the advantages of UC‐MSCs for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yueqiu Chen
- Institute for Cardiovascular Science, Soochow University, Suzhou, China.,Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Han Shen
- Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yinglong Ding
- Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, Suzhou, China
| | - You Yu
- Institute for Cardiovascular Science, Soochow University, Suzhou, China.,Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Lianbo Shao
- Institute for Cardiovascular Science, Soochow University, Suzhou, China.,Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zhenya Shen
- Institute for Cardiovascular Science, Soochow University, Suzhou, China.,Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, Suzhou, China
| |
Collapse
|
3
|
To the Mechanism of Adrenaline Damage to the Heart Tissue and the Mechanism of Cardioprotection by Neonatal, Xenogenic, Cardiac Cells. Dynamics of Creatine Phosphate, Lactate and Malondialdehyde. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2020-5.6.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
4
|
Zhang Q, Cheng X, Zhang H, Zhang T, Wang Z, Zhang W, Yu W. Dissecting molecular mechanisms underlying H 2O 2-induced apoptosis of mouse bone marrow mesenchymal stem cell: role of Mst1 inhibition. Stem Cell Res Ther 2020; 11:526. [PMID: 33298178 PMCID: PMC7724846 DOI: 10.1186/s13287-020-02041-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cell (BM-MSC) has been shown to treat pulmonary arterial hypertension (PAH). However, excessive reactive oxygen species (ROS) increases the apoptosis of BM-MSCs, leading to poor survival and engraft efficiency. Thus, improving the ability of BM-MSCs to scavenge ROS may considerably enhance the effectiveness of transplantation therapy. Mammalian Ste20-like kinase 1 (Mst1) is a pro-apoptotic molecule which increases ROS production. The aim of this study is to uncover the underlying mechanisms the effect of Mst1 inhibition on the tolerance of BM-MSCs under H2O2 condition. METHODS Mst1 expression in BM-MSCs was inhibited via transfection with adenoviruses expressing a short hairpin (sh) RNA directed against Mst1 (Ad-sh-Mst1) and exposure to H2O2. Cell viability was detected by Cell Counting Kit 8 (CCK-8) assay, and cell apoptosis was analyzed by Annexin V-FITC/PI, Caspase 3 Activity Assay kits, and pro caspase 3 expression. ROS level was evaluated by the ROS probe DCFH-DA, mitochondrial membrane potential (ΔΨm) assay, SOD1/2, CAT, and GPx expression. Autophagy was assessed using transmission electron microscopy, stubRFP-sensGFP-LC3 lentivirus, and autophagy-related protein expression. The autophagy/Keap1/Nrf2 signal in H2O2-treated BM-MSC/sh-Mst1 was also measured. RESULTS Mst1 inhibition reduced ROS production; increased antioxidant enzyme SOD1/2, CAT, and GPx expression; maintained ΔΨm; and alleviated cell apoptosis in H2O2-treated BM-MSCs. In addition, this phenomenon was closely correlated with the autophagy/Keap1/Nrf2 signal pathway. Moreover, the antioxidant pathway Keap1/Nrf2 was also blocked when autophagy was inhibited by the autophagy inhibitor 3-MA. However, Keap1 or Nrf2 knockout via siRNA had no effect on autophagy activation or suppression. CONCLUSION Mst1 inhibition mediated the cytoprotective action of mBM-MSCs against H2O2-induced oxidative stress injury. The underlying mechanisms involve autophagy activation and the Keap1/Nrf2 signal pathway.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Xianfeng Cheng
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China.,Department of Cardiovascular Surgery, Weifang People's Hospital, Weifang, 261000, Shandong, China
| | - Haizhou Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Tao Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Zhengjun Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Wenlong Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Wancheng Yu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China.
| |
Collapse
|
5
|
Zickri MB, Sadek EM, Fares AE, Heteba NG, Reda AM. Effect of Stem Cells, Ascorbic Acid and SERCA1a Gene Transfected Stem Cells in Experimentally Induced Type I Diabetic Myopathy. Int J Stem Cells 2020; 13:163-175. [PMID: 32114738 PMCID: PMC7119208 DOI: 10.15283/ijsc18066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/06/2018] [Accepted: 01/15/2019] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibition was proved in streptozotocin (STZ)-diabetic rats. The present study aimed at investigating and comparing the therapeutic effect of bone marrow mesenchymal stem cells (BMMSCs), BMMSCs combined with ascorbic acid (AA) and SERCA1a gene transfected BMMSCs in induced type I diabetic myopathy of male albino rat. Methods and Results 54 rats were divided into donor group of 6 rats for isolation, propagation and characterization of BMMSCs and SERCA1a transfected BMMSCs, groups I∼V 48 rats. Group I of 8 control rats, group II (Diabetic) of 10 rats given STZ 50 mg/kg intraperitoneal, group III (BMMSCs) of 10 rats given STZ and BMMSCs intravenous (IV), group IV (BMMSCs and AA) of 10 rats given STZ, BMMSCs IV and AA 500 mg/kg and group V (SERCA 1a transfected BMMSCs) of 10 rats given STZ and SERCA1a transfected BMMSCs IV. The rats were sacrificed after 8 weeks. Gastrocnemius specimens were subjected to biochemical, histological, morphometric and statistical studies. Diabetic rats revealed inflammatory and degenerative muscle changes, a significant increase in blood glucose level, mean DNA fragmentation and mean MDA values and a significant decrease in mean GSH and catalase values, area of pale nuclei, area% of CD105 and CD34 +ve cells, SERCA1a protein and gene values. The morphological changes regressed by therapy. In group III significant decrease in DNA fragmentation and MDA, significant increase in GSH and catalase, significant increase in the mean area of pale nuclei, area % of CD105 and CD34 +ve cells versus diabetic group. In group IV, same findings as group III versus diabetic and BMMSCs groups. In group V, same findings as group IV versus diabetic and treated groups. Western blot and PCR proved a mean value of SERCA1a protein and gene comparable to the control group. Mean calcium concentration values revealed a significant increase in the diabetic group, in BMMSCs and AA group versus control and SERCA1a group. Conclusions SERCA1a transfected BMMSCs proved a definite therapeutic effect, more remarkable than BMMSCs combined with AA. This effect was evidenced histologically and confirmed by significant changes in the biochemical tests indicating oxidative stress, muscle calcium concentration, morphometric parameters and PCR values of SERCA1a.
Collapse
Affiliation(s)
- Maha B Zickri
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Cairo University, Giza, Egypt.,Faculty of Oral and Dental Medicine, Future University in Egypt (FUE), New Cairo City, Egypt
| | - Eman M Sadek
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Amal E Fares
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | | | - Ahmed M Reda
- Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo City, Egypt.,Faculty of Pharmacy, Near East University, North Cyprus, Cyprus
| |
Collapse
|
6
|
Petroniene J, Morkvenaite‐Vilkonciene I, Miksiunas R, Bironaite D, Ramanaviciene A, Mikoliunaite L, Kisieliute A, Rucinskas K, Janusauskas V, Plikusiene I, Labeit S, Ramanavicius A. Evaluation of Redox Activity of Human Myocardium‐derived Mesenchymal Stem Cells by Scanning Electrochemical Microscopy. ELECTROANAL 2020. [DOI: 10.1002/elan.201900723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jurate Petroniene
- Department of Physical ChemistryFaculty of Chemistry and GeosciencesVilnius University Naugadruko str. 24 LT-03225 Vilnius Lithuania
| | - Inga Morkvenaite‐Vilkonciene
- Laboratory of Electrochemical Energy ConversionState Research Institute Centre for Physical Sciences and Technology Universiteto str. 3 LT-01513 Vilnius Lithuania
- Department of Mechatronics and RoboticsFaculty of MechanicsVilnius Gediminas Technical University Universiteto str. 3 LT-01513 Vilnius Lithuania
| | - Rokas Miksiunas
- Department of Regenerative medicineState Research Institute Centre for Innovative Medicine Universiteto str. 3 LT-01513 Vilnius Lithuania
| | - Daiva Bironaite
- Department of Regenerative medicineState Research Institute Centre for Innovative Medicine Universiteto str. 3 LT-01513 Vilnius Lithuania
| | - Almira Ramanaviciene
- Nanotechnas-Centre of Nanotechnology and Materials ScienceFaculty of Chemistry and GeosciencesVilnius University Naugadruko str. 24 LT-03225 Vilnius Lithuania
| | - Lina Mikoliunaite
- Department of Physical ChemistryFaculty of Chemistry and GeosciencesVilnius University Naugadruko str. 24 LT-03225 Vilnius Lithuania
| | - Aura Kisieliute
- Department of Physical ChemistryFaculty of Chemistry and GeosciencesVilnius University Naugadruko str. 24 LT-03225 Vilnius Lithuania
| | - Kestutis Rucinskas
- Centre of Cardiothoracic Surgery of Vilnius University Hospital Santariskiu Klinikos Universiteto str. 3 LT-01513 Vilnius Lithuania
| | - Vilius Janusauskas
- Centre of Cardiothoracic Surgery of Vilnius University Hospital Santariskiu Klinikos Universiteto str. 3 LT-01513 Vilnius Lithuania
| | - Ieva Plikusiene
- Department of Physical ChemistryFaculty of Chemistry and GeosciencesVilnius University Naugadruko str. 24 LT-03225 Vilnius Lithuania
| | - Siegfried Labeit
- Department of Integrative PathophysiologyUniversitätsmedizin Mannheim Theodor-Kutzer-Uferstr. 1–3 DE-68167 Mannheim Germany
| | - Arunas Ramanavicius
- Department of Physical ChemistryFaculty of Chemistry and GeosciencesVilnius University Naugadruko str. 24 LT-03225 Vilnius Lithuania
- Laboratory of NanotechnologyState Research Institute Centre for Physical Sciences and Technology Sauletekio str. LT-10257 Vilnius Lithuania
| |
Collapse
|
7
|
Anti-oxidant effect of bergamot polyphenolic fraction counteracts doxorubicin-induced cardiomyopathy: Role of autophagy and c-kit posCD45 negCD31 neg cardiac stem cell activation. J Mol Cell Cardiol 2018; 119:10-18. [PMID: 29654879 DOI: 10.1016/j.yjmcc.2018.04.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 03/16/2018] [Accepted: 04/09/2018] [Indexed: 02/01/2023]
Abstract
Doxorubicin (DOXO) is one of the most widely used antineoplastic drugs. Despite its highly beneficial effects against several malignancies, the clinical use of DOXO is often associated to cardiomyopathy that leads to congestive heart failure. Here we investigated the antioxidant and cardioprotective effects of a polyphenol-rich fraction of citrus bergamot (BPF), in DOXO-induced cardiac damage in rats. Moreover, we evaluated the effect of BPF on cardiomyocyte survival and resident endogenous cardiac stem/progenitor cell (eCSC) activation. Adult male Wistar rats were i.p. injected with saline (serving as controls, CTRL, n = 10), BPF (20 mg/kg daily for 14 consecutive days, n = 10), DOXO (6 doses of 2,5 mg/Kg from day 1 to day 14, n = 10), and DOXO + BPF (n = 10). Animals were then sacrificed 7 days later (i.e., at 21 days). DOXO administration reduced cardiac function at 21 days, an adverse effect significantly attenuated in animals receiving DOXO + BPF. No changes were detected in rats receiving just saline or BPF alone. The cardioprotective effect of BPF on DOXO acute toxicity was also associated with a significant antioxidant effect coupled with protective autophagy restoration, and attenuation of cardiomyocyte apoptosis and reactive hypertrophy. Finally, treatment of rats with BPF prevented eCSCs attrition by DOXO which was followed by a limited but significant increase of newly-formed BrdU+ cardiomyocytes. In conclusion, BPF reduces DOXO-induced cardiotoxicity by counteracting reactive oxygen species (ROS) overproduction, thereby restoring protective autophagy and attenuating cardiomyocyte apoptosis and pathologic remodeling. This beneficial effects on the early toxicity of DOXO is associated with enhanced CSCs survival and regenerative potential. Overall these data point to a potential clinical role by diet supplementation with polyphenol-rich fraction of citrus bergamot in counteracting antracycline-induced cardiomyopathy.
Collapse
|
8
|
Cervelli M, Leonetti A, Duranti G, Sabatini S, Ceci R, Mariottini P. Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine. Med Sci (Basel) 2018; 6:medsci6010014. [PMID: 29443878 PMCID: PMC5872171 DOI: 10.3390/medsci6010014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle comprises approximately 40% of the total body mass. Preserving muscle health and function is essential for the entire body in order to counteract chronic diseases such as type II diabetes, cardiovascular diseases, and cancer. Prolonged physical inactivity, particularly among the elderly, causes muscle atrophy, a pathological state with adverse outcomes such as poor quality of life, physical disability, and high mortality. In murine skeletal muscle C2C12 cells, increased expression of the spermine oxidase (SMOX) enzyme has been found during cell differentiation. Notably, SMOX overexpression increases muscle fiber size, while SMOX reduction was enough to induce muscle atrophy in multiple murine models. Of note, the SMOX reaction product spermidine appears to be involved in skeletal muscle atrophy/hypertrophy. It is effective in reactivating autophagy, ameliorating the myopathic defects of collagen VI-null mice. Moreover, spermidine treatment, if combined with exercise, can affect D-gal-induced aging-related skeletal muscle atrophy. This review hypothesizes a role for SMOX during skeletal muscle differentiation and outlines its role and that of spermidine in muscle atrophy. The identification of new molecular pathways involved in the maintenance of skeletal muscle health could be beneficial in developing novel therapeutic lead compounds to treat muscle atrophy.
Collapse
Affiliation(s)
- Manuela Cervelli
- Department of Science, Università degli Studi di Roma "Roma Tre", 00146 Rome, Italy.
| | - Alessia Leonetti
- Department of Science, Università degli Studi di Roma "Roma Tre", 00146 Rome, Italy.
| | - Guglielmo Duranti
- Department of of Movement Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 15, 00135 Rome, Italy.
| | - Stefania Sabatini
- Department of of Movement Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 15, 00135 Rome, Italy.
| | - Roberta Ceci
- Department of of Movement Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 15, 00135 Rome, Italy.
| | - Paolo Mariottini
- Department of Science, Università degli Studi di Roma "Roma Tre", 00146 Rome, Italy.
| |
Collapse
|