1
|
Navarro KL, Huss M, Smith JC, Sharp P, Marx JO, Pacharinsak C. Mouse Anesthesia: The Art and Science. ILAR J 2021; 62:238-273. [PMID: 34180990 PMCID: PMC9236661 DOI: 10.1093/ilar/ilab016] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/04/2021] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
There is an art and science to performing mouse anesthesia, which is a significant component to animal research. Frequently, anesthesia is one vital step of many over the course of a research project spanning weeks, months, or beyond. It is critical to perform anesthesia according to the approved research protocol using appropriately handled and administered pharmaceutical-grade compounds whenever possible. Sufficient documentation of the anesthetic event and procedure should also be performed to meet the legal, ethical, and research reproducibility obligations. However, this regulatory and documentation process may lead to the use of a few possibly oversimplified anesthetic protocols used for mouse procedures and anesthesia. Although a frequently used anesthetic protocol may work perfectly for each mouse anesthetized, sometimes unexpected complications will arise, and quick adjustments to the anesthetic depth and support provided will be required. As an old saying goes, anesthesia is 99% boredom and 1% sheer terror. The purpose of this review article is to discuss the science of mouse anesthesia together with the art of applying these anesthetic techniques to provide readers with the knowledge needed for successful anesthetic procedures. The authors include experiences in mouse inhalant and injectable anesthesia, peri-anesthetic monitoring, specific procedures, and treating common complications. This article utilizes key points for easy access of important messages and authors’ recommendation based on the authors’ clinical experiences.
Collapse
Affiliation(s)
- Kaela L Navarro
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | - Monika Huss
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | - Jennifer C Smith
- Bioresources Department, Henry Ford Health System, Detroit, Michigan, USA
| | - Patrick Sharp
- Office of Research and Economic Development, University of California, Merced, California, USA
- Animal Resources Authority, Murdoch, Australia
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - James O Marx
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cholawat Pacharinsak
- Corresponding Author: Cholawat Pacharinsak, DVM, PhD, DACVAA, Stanford University, Department of Comparative Medicine, 287 Campus Drive, Stanford, CA 94305-5410, USA. E-mail:
| |
Collapse
|
2
|
Oliveira MA, Lino-Alvarado AE, Moriya HT, Vitorasso RL. Drug class effects on respiratory mechanics in animal models: access and applications. Exp Biol Med (Maywood) 2021; 246:1094-1103. [PMID: 33601911 DOI: 10.1177/1535370221993095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Assessment of respiratory mechanics extends from basic research and animal modeling to clinical applications in humans. However, to employ the applications in human models, it is desirable and sometimes mandatory to study non-human animals first. To acquire further precise and controlled signals and parameters, the animals studied must be further distant from their spontaneous ventilation. The majority of respiratory mechanics studies use positive pressure ventilation to model the respiratory system. In this scenario, a few drug categories become relevant: anesthetics, muscle blockers, bronchoconstrictors, and bronchodilators. Hence, the main objective of this study is to briefly review and discuss each drug category, and the impact of a drug on the assessment of respiratory mechanics. Before and during the positive pressure ventilation, the experimental animal must be appropriately sedated and anesthetized. The sedation will lower the pain and distress of the studied animal and the plane of anesthesia will prevent the pain. With those drugs, a more controlled procedure is carried out; further, because many anesthetics depress the respiratory system activity, a minimum interference of the animal's respiration efforts are achieved. The latter phenomenon is related to muscle blockers, which aim to minimize respiratory artifacts that may interfere with forced oscillation techniques. Generally, the respiratory mechanics are studied under appropriate anesthesia and muscle blockage. The application of bronchoconstrictors is prevalent in respiratory mechanics studies. To verify the differences among studied groups, it is often necessary to challenge the respiratory system, for example, by pharmacologically inducing bronchoconstriction. However, the selected bronchoconstrictor, doses, and administration can affect the evaluation of respiratory mechanics. Although not prevalent, studies have applied bronchodilators to return (airway resistance) to the basal state after bronchoconstriction. The drug categories can influence the mathematical modeling of the respiratory system, systemic conditions, and respiratory mechanics outcomes.
Collapse
Affiliation(s)
- Maria A Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo (USP) Sao Paulo, SP 05508-000, Brazil
| | - Alembert E Lino-Alvarado
- Biomedical Engineering Laboratory - University of Sao Paulo (USP) Sao Paulo, SP 05508-010, Brazil
| | - Henrique T Moriya
- Biomedical Engineering Laboratory - University of Sao Paulo (USP) Sao Paulo, SP 05508-010, Brazil
| | - Renato L Vitorasso
- Biomedical Engineering Laboratory - University of Sao Paulo (USP) Sao Paulo, SP 05508-010, Brazil
| |
Collapse
|
3
|
LaTourette PC, David EM, Pacharinsak C, Jampachaisri K, Smith JC, Marx JO. Effects of Standard and Sustained-release Buprenorphine on the Minimum Alveolar Concentration of Isoflurane in C57BL/6 Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2020; 59:298-304. [PMID: 32268932 DOI: 10.30802/aalas-jaalas-19-000106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Both standard and sustained-release injectable formulations of buprenorphine (Bup and BupSR, respectively) are used as preemptive analgesics, potentially affecting gas anesthetic requirements. This study tested the effects of Bup and BupSR on isoflurane requirements and confirmed that buprenorphine could reduce isoflurane requirements during a laparotomy in mice. We hypothesized that both Bup and BupSR would significantly decrease the required minimum alveolar concentration (MAC) of isoflurane. C57BL/6 mice received either isotonic crystalloid fluid (control), Bup (0.1 mg/kg), or BupSR (1.2 mg/kg) subcutaneously 10 min prior to the induction of anesthesia. Each anesthetized mouse was tested at 2 isoflurane concentrations. A 300-g noxious stimulus was applied at each isoflurane concentration, alternating between hindfeet. In addition, a subset of mice underwent terminal laparotomy or 60 min of anesthesia after injection with Bup, BupSR, or saline to ensure an appropriate surgical plane of anesthesia. Mice were maintained at the lowest isoflurane concentration that resulted in 100% of mice at a surgical plane from the aforementioned MAC experiments (control, 2.0%; Bup and BupSR, 1.7%). Analysis showed that both Bup and BupSR significantly decreased isoflurane requirements by 25.5% and 14.4%, respectively. The isoflurane MAC for the control injection was 1.80% ± 0.09%; whereas Bup and BupSR decreased MAC to 1.34% ± 0.08% and 1.54% ± 0.09%, respectively. Sex was not a significantly different between the injection groups during MAC determination. All of the mice that underwent surgery achieved a surgical plane of anesthesia on the prescribed regimen and recovered normally after discontinuation of isoflurane. Lastly, heart and respiratory rates did not differ between mice that underwent surgery and those that were anesthetized only. Bup and BupSR are MAC-sparing in male and female C57BL/6 mice and can be used for effective multimodal anesthesia.
Collapse
Affiliation(s)
- Philip C LaTourette
- University Laboratory Animal Resources, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Emily M David
- University Laboratory Animal Resources, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | | | | | - Jennifer C Smith
- Bioresources Department, Henry Ford Health System, Detroit, Michigan
| | - James O Marx
- University Laboratory Animal Resources, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania;,
| |
Collapse
|
4
|
Liu D, Yuan J, Fei X, Zhu Y, Zhou Y, Zhang C, Dong L, Zhu Z. Effects of inhalation of sevoflurane at different concentrations on TRPV1 in airways of rats at different developmental stages. Life Sci 2020; 249:117472. [PMID: 32112870 DOI: 10.1016/j.lfs.2020.117472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
Aim Determine changes in the expressions of the ion channel-TRPV1-and neuropeptides-NKA, NKB, calcitonin gene-related peptide (CGRP), and SP-in 14-, 21-, and 42-day-old rats after inhaling 1.5% and 2.6% sevoflurane. MAIN METHODS A small in-house inhalation anesthesia chamber was designed to allow 14-, 21-, and 42-day-old rats inhale 1.5% and 2.6% sevoflurane, and rats in the control group inhaled carrier gas(1 L/min air +1 L/min O2). In addition, 14- and 21-day-old rats were pretreated with capsazepine, followed by inhalation of 1.5% and 2.6% sevoflurane or the carrier gas. The expression of TRPV1 in lung tissues was detected by Western blotting, whereas the expressions of NKA, NKB, CGRP, and SP in the trachea were detected by immunohistochemistry. KEY FINDINGS After inhalation of 1.5% sevoflurane, the expression of TRPV1 in the lung tissues of 14- and 21-day-old rats was significantly increased compared with that in the control group, which was antagonized by capsazepine pretreatment. Moreover, inhalation of 1.5% sevoflurane markedly increased the expressions of NKA, NKB, CGRP, and SP in the trachea of 21-day-old rats and of NKB, CGRP, and SP in the trachea of 14-day-old rats. The expressions of these molecules were antagonized by capsazepine pretreatment. Conversely, inhalation of 2.6% sevoflurane decreased the expressions of NKA and NKB in the trachea of 42-day-old rats. SIGNIFICANCE Sevoflurane did not upregulate the expression of TRPV1 in the airways of late-developing rats. This anesthetic may have a two-way effect on airways, resulting in considerable effects in pediatric clinical anesthesia management.
Collapse
Affiliation(s)
- Dexing Liu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jie Yuan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xia Fei
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuhang Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yannan Zhou
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chao Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Liang Dong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhaoqiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
5
|
Koska I, van Dijk RM, Seiffert I, Di Liberto V, Möller C, Palme R, Hellweg R, Potschka H. Toward evidence-based severity assessment in rat models with repeated seizures: II. Chemical post-status epilepticus model. Epilepsia 2019; 60:2114-2127. [PMID: 31471910 DOI: 10.1111/epi.16330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Considering the complexity of neuronal circuits and their epilepsy-associated alterations, epilepsy models cannot be completely replaced by in vitro experimental approaches. Decisions about ethical approval of in vivo studies require a thorough weighing of the animal's burden and the benefit regarding the expected gain in knowledge. METHODS Based on combined behavioral, biochemical, and physiological analyses, we assessed the impact on animal well-being and condition in different phases of the pilocarpine post-status epilepticus (SE) model in rats. RESULTS As a consequence of SE, increased levels of impairment were evident in the early postinsult phase and late chronic phase, whereas only mild impairment was observed in the interim phase. Parameters that stood out as sensitive indicators of animal distress include burrowing, which proved to be affected throughout all experimental phases, saccharin preference, fecal corticosterone metabolites, heart rate, and heart rate variability. SIGNIFICANCE The cumulative burden with temporary but not long-lasting phases of more pronounced impairment suggests a classification of severe as a basis for laboratory-specific prospective and retrospective evaluation. Among the parameters analyzed, burrowing behavior and saccharin preference stand out as candidate parameters that seem to be well suited to obtain information about animal distress in epileptogenesis models.
Collapse
Affiliation(s)
- Ines Koska
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Roelof Maarten van Dijk
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Isabel Seiffert
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Valentina Di Liberto
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany.,Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Christina Möller
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Rainer Hellweg
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|