1
|
Yang CR, Lin WJ, Shen PC, Liao PY, Dai YC, Hung YC, Lai HC, Mehmood S, Cheng WC, Ma WL. Phenotypic and metabolomic characteristics of mouse models of metabolic associated steatohepatitis. Biomark Res 2024; 12:6. [PMID: 38195587 PMCID: PMC10777576 DOI: 10.1186/s40364-023-00555-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Metabolic associated steatohepatitis (MASH) is metabolic disease that may progress to cirrhosis and hepatocellular carcinoma. Mouse models of diet-induced MASH, which is characterized by the high levels of fats, sugars, and cholesterol in diets, are commonly used in research. However, mouse models accurately reflecting the progression of MASH in humans remain to be established. Studies have explored the potential use of serological metabolites as biomarkers of MASH severity in relation to human MASH. METHODS We performed a comparative analysis of three mouse models of diet-induced MASH in terms of phenotypic and metabolomic characteristics; MASH was induced using different diets: a high-fat diet; a Western diet; and a high-fat, high-cholesterol diet. Liver cirrhosis was diagnosed using standard clinical approaches (e.g., METAVIR score, hyaluronan level, and collagen deposition level). Mouse serum samples were subjected to nuclear magnetic resonance spectroscopy-based metabolomic profiling followed by bioinformatic analyses. Metabolomic analysis of a retrospective cohort of patients with hepatocellular carcinoma was performed; the corresponding cirrhosis scores were also evaluated. RESULTS Using clinically relevant quantitative diagnostic methods, the severity of MASH was evaluated. Regarding metabolomics, the number of lipoprotein metabolites increased with both diet and MASH progression. Notably, the levels of very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) significantly increased with fibrosis progression. During the development of diet-induced MASH in mice, the strongest upregulation of expression was noted for VLDL receptor. Metabolomic analysis of a retrospective cohort of patients with cirrhosis indicated lipoproteins (e.g., VLDL and LDL) as predominant biomarkers of cirrhosis. CONCLUSIONS Our findings provide insight into the pathophysiology and metabolomics of experimental MASH and its relevance to human MASH. The observed upregulation of lipoprotein expression reveals a feedforward mechanism for MASH development that may be targeted for the development of noninvasive diagnosis.
Collapse
Affiliation(s)
- Cian-Ru Yang
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Jen Lin
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Pei-Chun Shen
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Pei-Yin Liao
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Chang Dai
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City, Taiwan
| | - Yao-Ching Hung
- Department of Gynecology and Obstetrics, Asia University Hospital, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shiraz Mehmood
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan.
| | - Wen-Lung Ma
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan.
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
2
|
Zinc-glutathione in Chinese Baijiu prevents alcohol-associated liver injury. Heliyon 2023; 9:e13722. [PMID: 36873153 PMCID: PMC9975285 DOI: 10.1016/j.heliyon.2023.e13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Zinc depletion is associated with alcohol-associated liver injury. We tested the hypothesis that increasing zinc availability along with alcohol consumption prevents alcohol-associated liver injury. Zinc-glutathione (ZnGSH) was synthesized and directly added to Chinese Baijiu. Mice were administered a single gastric dose of 6 g/kg ethanol in Chinese Baijiu with or without ZnGSH. ZnGSH in Chinese Baijiu did not change the likeness of the drinkers but significantly reduced the recovery time from drunkenness along with elimination of high-dose mortality. ZnGSH in Chinese Baijiu decreased serum AST and ALT, suppressed steatosis and necrosis, and increased zinc and GSH concentrations in the liver. It also increased alcohol dehydrogenase and aldehyde dehydrogenase in the liver, stomach, and intestine and reduced acetaldehyde in the liver. Thus, ZnGSH in Chinese Baijiu prevents alcohol-associated liver injury by increasing alcohol metabolism timely with alcohol consumption, providing an alternative approach to the management of alcohol-associated drinking.
Collapse
|
3
|
Xie C, Wan L, Li C, Feng Y, Kang YJ. Selective suppression of M1 macrophages is involved in zinc inhibition of liver fibrosis in mice. J Nutr Biochem 2021; 97:108802. [PMID: 34119631 DOI: 10.1016/j.jnutbio.2021.108802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/23/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
Zinc deficiency is common in the liver of patients with chronic liver disease. Zinc supplementation suppresses the progression of liver fibrosis induced by bile duct ligation (BDL) in mice. The present study was undertaken to specifically investigate a possible mechanism by which zinc plays this role in the liver. Kunming mice were subjected to BDL for 4 weeks to induce liver fibrosis, and concomitantly treated with zinc sulfite or saline as control by gavage once a day. The results showed that zinc supplementation significantly suppressed liver fibrosis and inflammation along with inhibition of hepatic stellate cells activation induced by BDL. These inhibitory effects were accompanied by the reduction of collagen deposition and a significant reduction of macrophage infiltration affected livers. Importantly, zinc selectively inhibited M1 macrophage polarization and M1-related inflammatory cytokines. This inhibitory effect was further confirmed by the reduction of relevant biomarkers of M1 macrophages including inducible NO synthase (iNOS), monocyte chemotactic protein-1 (MCP-1/CCL2), and tumor necrosis factor-α in the zinc supplemented BDL livers. In addition, zinc inhibition of M1 macrophages was associated with a decrease of Notch1 expression. Taken together, these data indicated that zinc supplementation inhibited liver inflammation and fibrosis in BDL mice through selective suppression of M1 macrophages, which is associated with inhibition of Notch1 pathway in M1 macrophage polarization.
Collapse
Affiliation(s)
- Chengxia Xie
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Wan
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yinrui Feng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China; Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| |
Collapse
|
4
|
Abd Elmaaboud M, Khattab H, Shalaby S. Hepatoprotective effect of linagliptin against liver fibrosis induced by carbon tetrachloride in mice. Can J Physiol Pharmacol 2020; 99:294-302. [PMID: 32726558 DOI: 10.1139/cjpp-2020-0049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The current study aimed to investigate linagliptin for its potential role in the prevention of liver fibrosis progression. Balb-C mice were randomly allocated into five groups (10 each): (i) control; (ii) mice were injected intraperitoneally with 50 μL carbon tetrachloride (CCl4) in corn oil in a dose of 0.6 μL/g three times per week for four weeks; (iii) linagliptin was administered orally in a daily dose of 10 mg/kg simultaneously with CCl4; (iv) silymarin was administered orally in a daily dose of 200 mg/kg concomitantly with CCl4; and (v) only linagliptin was administered. Hepatic injury was manifested in the CCl4 group by elevation of biochemical parameters (alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP)), and hepatic fibrosis was evident histopathologically by increased METAVIR score and immunostaining expression of alpha-smooth muscle actin (α-SMA), as well as increased liver tissue oxidative stress parameters, transforming growth factor-β1 (TGF-β1), and mammalian target of rapamycin (mTOR). Linagliptin was able to stop the progression of liver fibrosis, evident histopathologically with reduced METAVIR score and α-SMA expression. The possible mechanism may be via suppression of oxidative stress, TGF-β1, and mTOR, which was associated with improvement of serum biochemical parameters ALT and AST. In conclusion, linagliptin might help to protect the liver against persistent injury-related consequences.
Collapse
Affiliation(s)
- Maaly Abd Elmaaboud
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Haidy Khattab
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Shahinaz Shalaby
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
Van Campenhout S, Van Vlierberghe H, Devisscher L. Common Bile Duct Ligation as Model for Secondary Biliary Cirrhosis. Methods Mol Biol 2019; 1981:237-247. [PMID: 31016658 DOI: 10.1007/978-1-4939-9420-5_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cholestatic liver disease covers a range of biliary disorders marked by an impaired bile duct flow. Various conditions can result in bile obstruction including choledocholithiasis, surgical trauma, and autoimmune disorders. Cholestatic liver disease can be mild but generally progresses to more severe conditions with increased hepatobiliary injury, cholangitis, and ultimately liver fibrosis and cirrhosis. An extensively used experimental model to investigate the pathophysiology of biliary cirrhosis and potential novel therapies is the common bile duct ligation in mice and rats. Common bile duct ligation induces the different stages of cholestatic-induced liver disease being cholestasis, subsequently accompanied by inflammation and finally liver fibrosis and cirrhosis. In this protocol, an outline of the surgical procedures to conduct common bile duct ligation in mice is provided. The major steps include the isolation of the common bile duct, followed by ligation and dissection.
Collapse
|
6
|
Zhao LJ, Xiao Y, Meng X, Wang N, Kang YJ. Application of a Simple Quantitative Assessment of Atherosclerotic Lesions in Freshly Isolated Aortas from Rabbits. Cardiovasc Toxicol 2019; 18:537-546. [PMID: 29858736 DOI: 10.1007/s12012-018-9465-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rabbits are widely used for the study of atherosclerosis; however, the lack of a unified and quantitative analysis of atheroma limits data interpretation and comparisons between laboratories. In this study, we applied a simple quantitative method, referred to as the oil red O (ORO) dye-eluting method, for analysis of atherosclerotic plaques in freshly isolated aortas. It employs ORO staining of the plaques followed by elution of the dye that is subjected to quantitative measurement. Atherosclerosis was induced in rabbits by feeding a 1% (w/w) high cholesterol diet for 4 or 12 weeks. Thoracic aortas were isolated and sufficiently stained by ORO. These dyes were easily and completely extracted by 100% ethanol and quantified by spectrophotometric measurement at 510 nm. A series of cross-sectional slices at 100-µm intervals were counterstained by elastic van Gieson. It was found that there was a highly positive correlation between the dye concentration and the amount of plaque tissue, determined as volume of plaques (regression coefficient r2: 0.8792, p < 0.001). The color equivalence of the dye content was expressed as µg/mm2 of intimal aorta area to allow direct comparisons among aortas. The color equivalences of ORO content in rabbits fed 12 weeks were almost 5.0 times higher than those fed 4 weeks. Thus, this ORO dye-eluting method is useful for quantification of atherosclerotic plaques in aortas in rabbits, as well as other animal models.
Collapse
Affiliation(s)
- Li-Jun Zhao
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ying Xiao
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xia Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ning Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
- College of Medicine, Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, 910 Madison Avenue, Suite 608, Memphis, TN, 38163, USA.
| |
Collapse
|