1
|
Esfahani M, Mehri F. Homeostatic changes of trace elements in diazinon toxicity in rat model: The beneficial role of resveratrol. Toxicol Rep 2024; 13:101719. [PMID: 39295954 PMCID: PMC11409013 DOI: 10.1016/j.toxrep.2024.101719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Background and objectives Diazinon (DZN) is a cholinesterase inhibitor widely used to relieve agricultural pests and upgrade the productivity of crops. Resveratrol (Res), as a phenolic plant compound, has a protective role against free radicals. This study intended to evaluate the impacts of Res on homeostatic disturbances induced by DZN in rats. Method Twenty-four Wistar rats (4 weeks) were randomly distributed into four groups of six animals each. The first group (control group) received corn oil. The second group (Res group) received orally Res (20 mg/kg. The third group (DZN group) received the oral DZN (70 mg/kg); the fourth group (Res plus DZN group) was treated simultaneously with DZN (70 mg/kg) and Res (20 mg/kg); for a period of 5 weeks. The serum, liver, kidney, and heart levels of the Copper (Cu), zinc (Zn), iron (Fe), selenium (Se), and magnesium (Mg) as main trace elements are measured. Results DZN treatment decreased significantly serum, liver, kidney, and heart levels of Cu, Zn, Fe, Se, and Mg in comparison with the control group. Res administration enhanced serum, liver, kidney, and content of heart elements compared to the DZN group. Conclusions These results suggested that Res could ameliorate the homeostatic imbalance induced by DZN. Res had a protective effect against DZN-provoking heart, renal, and hepatic toxicity in animal models.
Collapse
Affiliation(s)
- Maryam Esfahani
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Oyaluna ZE, Abolaji AO, Bodede O, Olanlokun JO, Prinsloo G, Steenkamp P, Babalola CP. Chemical analysis of Alliin-Rich Allium sativum (Garlic) extract and its safety evaluation in Drosophila melanogaster. Toxicol Rep 2024; 13:101760. [PMID: 39484636 PMCID: PMC11525231 DOI: 10.1016/j.toxrep.2024.101760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
Garlic (Allium sativum) has been traditionally valued for its medicinal properties attributed to the presence of organosulfur compounds. Despite its benefits, concerns about herbal extract toxicity have arisen, necessitating safety assessment . This study was designed to evaluate the chemical analysis and safety profile of Alliin-Rich Garlic Extract (ARGE) using Drosophila melanogaster as a model organism. The ARGE was extracted from garlic cloves (Allium sativum Linn: UIH-23262) using a microwave-assisted method and characterized using UPLC-ESI-MS, 1H NMR, HPLC and IR. Its safety evaluation was determined using D. melanogaster (Harwich strain), and various assays were conducted on 1-3-day-old flies. Toxicological markers and oxidative stress were assessed to understand the impact of ARGE on the flies. Chemical profiling of ARGE using UPLC-ESI-MS, confirmed the presence of alliin (S-ally-L-cysteine-S-oxide), L-arginine, γ-glutamylmethionine, S-(2-carboxypropyl) glutathione, N-γ-glutamyl-S-(1-propenyl) cysteine, N-γ-glutamyl-S-(2-propenyl) cysteine, N-γ-glutamylphenylalanine, S-(allylthio) cysteine, γ-glutamyl-S-allylthiocysteine and eruboside B. HPLC confirmed an alliin content of 0.073 mg/g. Toxicological assessment in D. melanogaster revealed that ARGE enhanced antioxidant defenses by increasing total thiol levels and GST activity, while reducing acetylcholinesterase activity. No significant alteration was observed in catalase activity and cellular metabolic rate. Histological examination revealed no alterations in the histoarchitecture of the brain, fat body or gut of D. melanogaster. The study demonstrated the safety of ARGE in D. melanogaster, supporting its potential as a safe herbal remedy.
Collapse
Affiliation(s)
- Zeniat Emike Oyaluna
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
- Drosophila Research and Training Centre, Basorun, Ibadan, Nigeria
- Drosophila Laboratory. Molecular Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Amos Olalekan Abolaji
- Drosophila Research and Training Centre, Basorun, Ibadan, Nigeria
- Drosophila Laboratory. Molecular Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olusola Bodede
- Department of Chemistry, University of Pretoria, Hatfield 0028, South Africa
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - John Oludele Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Gerhard Prinsloo
- Department of Agriculture and Animal Health, University of South Africa, Johannesburg, FL 1709, South Africa
| | - Paul Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Chinedum Peace Babalola
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
- Department of Pharmaceutical Chemistry and Centre for Drug Discovery Development & Production (CDDDP), Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
| |
Collapse
|
3
|
Abdalbagemohammedabdalsadeg S, Xiao BL, Ma XX, Li YY, Wei JS, Moosavi-Movahedi AA, Yousefi R, Hong J. Catalase immobilization: Current knowledge, key insights, applications, and future prospects - A review. Int J Biol Macromol 2024; 276:133941. [PMID: 39032907 DOI: 10.1016/j.ijbiomac.2024.133941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Catalase (CAT), a ubiquitous enzyme in all oxygen-exposed organisms, effectively decomposes hydrogen peroxide (H2O2), a harmful by-product, into water and oxygen, mitigating oxidative stress and cellular damage, safeguarding cellular organelles and tissues. Therefore, CAT plays a crucial role in maintaining cellular homeostasis and function. Owing to its pivotal role, CAT has garnered considerable interest. However, many challenges arise when used, especially in multiple practical processes. "Immobilization", a widely-used technique, can help improve enzyme properties. CAT immobilization offers numerous advantages, including enhanced stability, reusability, and facilitated downstream processing. This review presents a comprehensive overview of CAT immobilization. It starts with discussing various immobilization mechanisms, support materials, advantages, drawbacks, and factors influencing the performance of immobilized CAT. Moreover, the review explores the application of the immobilized CAT in various industries and its prospects, highlighting its essential role in diverse fields and stimulating further research and investigation. Furthermore, the review highlights some of the world's leading companies in the field of the CAT industry and their substantial potential for economic contribution. This review aims to serve as a discerning, source of information for researchers seeking a comprehensive cutting-edge overview of this rapidly evolving field and have been overwhelmed by the size of publications.
Collapse
Affiliation(s)
| | - Bao-Lin Xiao
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Xin-Xin Ma
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Yang-Yang Li
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Jian-She Wei
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | | | - Reza Yousefi
- Institute of Biochemistry and Biophysics, University of Tehran, 1417614418 Tehran, Iran
| | - Jun Hong
- School of Life Sciences, Henan University, 475000 Kaifeng, China.
| |
Collapse
|
4
|
Hanumanthappa R, Venugopal DM, P C N, Shaikh A, B.M S, Heggannavar GB, Patil AA, Nanjaiah H, Suresh D, Kariduraganavar MY, Raghu SV, Devaraju KS. Polyvinylpyrrolidone-Capped Copper Oxide Nanoparticles-Anchored Pramipexole Attenuates the Rotenone-Induced Phenotypes in a Drosophila Parkinson's Disease Model. ACS OMEGA 2023; 8:47482-47495. [PMID: 38144104 PMCID: PMC10734007 DOI: 10.1021/acsomega.3c04312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023]
Abstract
Parkinson's disease (PD) is a progressive, age-related neurodegenerative disease. The disease is characterized by the loss of dopaminergic neurons in the substantia nigra, pars compacta of the midbrain. Pramipexole (PPX) is a novel drug used for the treatment of PD. It has a high affinity for the dopamine (DA) D2 receptor subfamily and acts as a targeted mitochondrial antioxidant. It is less effective in the treatment of PD due to its short half-life, highly inconvenient dosing schedule, and long-term side effects. In recent years, PPX-loaded nanoformulations have been actively reported to overcome these limitations. In the current study, we focused on increasing the effectiveness of PPX by minimizing the dosing frequency and improving the treatment strategy for PD. Herein, we report the synthesis of biodegradable polyvinylpyrrolidone (PVP)-capped copper oxide nanoparticles (PVP-CuO NPs), followed by PPX anchoring on the surface of the PVP-CuO NPs (PPX-PVP-CuO NC), in a simple and inexpensive method. The newly formulated PPX-PVP-CuO NC complex was analyzed for its chemical and physical properties. The PPX-PVP-CuO NC was tested to protect against rotenone (RT)-induced toxicity in the Drosophila PD model. The in vivo studies using the RT-induced Drosophila PD model showed significant changes in negative geotaxis behavior and the level of DA and acetylcholinesterase. In addition, oxidative stress markers such as glutathione-S-transferase, total glutathione, thiobarbituric acid reactive species, and protein carbonyl content showed significant amelioration. The positive changes of PPX-PVP-CuO NC treatment in behavior, neurotransmitter level, and antioxidant level suggest its potential role in mitigating the PD phenotype. The formulation can be used for treatment or pharmacological intervention against PD.
Collapse
Affiliation(s)
- Ramesha Hanumanthappa
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
| | - Deepa Mugudthi Venugopal
- Neurogenetics
Lab, Department of Applied Zoology, Mangalore
University, Mangalagangothri, Karnataka 574199, India
| | - Nethravathi P C
- Department
of Studies and Research in Organic Chemistry, and Department of Chemistry,
University Collage of Science, Tumkur University, Tumkur, Karnataka 572103, India
| | - Ahesanulla Shaikh
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
| | - Siddaiah B.M
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
| | | | - Akshay A. Patil
- Department
of Botany, Karnataka Science College, Dharwad, Karnataka 580001, India
| | - Hemalatha Nanjaiah
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
- Department
of Microbiology and Immunology, University
of Maryland School of Medicine, 685 W. Baltimore St. HSFI-380, Baltimore, Maryland 21201, United States
| | - D. Suresh
- Department
of Studies and Research in Organic Chemistry, and Department of Chemistry,
University Collage of Science, Tumkur University, Tumkur, Karnataka 572103, India
| | | | - Shamprasad Varija Raghu
- Neurogenetics
Lab, Department of Applied Zoology, Mangalore
University, Mangalagangothri, Karnataka 574199, India
- Division
of Neuroscience, Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | | |
Collapse
|
5
|
Bhattacharya S. A Review on Experimentally Proven Medicinal Plants and Their Constituents against Fluoride Toxicity. J Environ Pathol Toxicol Oncol 2023; 42:51-64. [PMID: 36734952 DOI: 10.1615/jenvironpatholtoxicoloncol.2022043545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fluoride toxicity, principally by polluted groundwater, is regarded as a momentous global public health risk, as there is no particular and proven treatment for chronic fluoride toxicity i.e., fluorosis which leads to several serious health complications. Scientific literature reveals several medicinal plants and natural products alleviate experimentally induced fluoride toxicity. The present review attempts to collate those experimental studies on medicinal plants and plant derived natural products with fluoride toxicity ameliorative effects. Literature scrutiny was performed by using online bibliographic databases and the studies for the last 15 years were considered. Minerals and semi-synthetic or synthetic analogs of natural products were excluded. Literature study revealed that 25 medicinal plants and 17 natural products exhibited significant protection from fluoride toxicity in experimental animal models i.e., preclinical studies. Two clinical studies on medicinal plants were also found in literature showing beneficial yet poorly correlated outcome. Relevant research in this field could lead to development of a potentially useful agent in therapeutic management of fluoride toxicity in humans.
Collapse
Affiliation(s)
- Sanjib Bhattacharya
- West Bengal Medical Services Corporation Ltd., GN 29, Sector V, Salt Lake City, Kolkata 700091, West Bengal, India
| |
Collapse
|
6
|
Resveratrol thyro-protective role in fluorosis rat model (histo-morphometric, biochemical and ultrastructural study). Tissue Cell 2023; 80:101986. [PMID: 36470120 DOI: 10.1016/j.tice.2022.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Thyroid gland affection by Fluorosis is documented in a number of previous studies. Resveratrol is a natural compound of plant origin. Its protective role was demonstrated previously in mice and rats against fluoride-induced hepatotoxicity and neurotoxicity. AIM to detect the thyro-protective role of Resveratrol in sodium fluoride rat model. MATERIAL AND METHODS Forty adult male albino rats were distributed equally into: Group I (control): given 5 ml distilled water; Group II (Resveratrol): received 30 mg/kg Resveratrol; Group III (Sodium fluoride): given 10 mg/kg of Sodium Fluoride dissolved in 2.5 ml distilled water; Group IV (Sodium fluoride + Resveratrol): received 10 mg/kg of Sodium Fluoride and 30 mg/kg of Resveratrol. All doses were administered once daily by intra-gastric intubation. By the end of the experiment, rats were sedated by intra-peritoneal injection of Sodium thiopental; blood samples were collected, and thyroid lobes were dissected then processed for examination. RESULTS In the control and Resveratrol groups, there were multiple variable follicles filled with homogenous eosinophilic colloid and lined with flat to cuboidal thyrocytes. Large pale-staining Para follicular cells. In the Sodium fluoride - treated group there were multiple dark stained nuclei of shrunken and exfoliated cells, areas of exudate and multiple layered follicular cells with high activity of Para follicular cells immuno-histochemically. Sodium fluoride+ Resveratrol - treated group appeared with almost preserved control appearance. Findings were confirmed using morphometric and electron microscopic studies. CONCLUSION Resveratrol supplementation with sodium fluoride restored almost all damaged appearance and functions of the thyroid cells to normal values. Further studies are necessary to examine the extended effect of Resveratrol with increased dosage or time of treatment.
Collapse
|
7
|
El-Bestawy EM, Tolba AM, Rashad WA. Morphological, ultrastructural, and biochemical changes induced by sodium fluoride in the tongue of adult male albino rat and the ameliorative effect of resveratrol. Anat Cell Biol 2022; 55:483-496. [PMID: 36168808 PMCID: PMC9747341 DOI: 10.5115/acb.22.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/05/2022] [Accepted: 06/21/2022] [Indexed: 01/02/2023] Open
Abstract
Little knowledge is available about the effects of fluoride exposure on the tongue. This study evaluated the effects of sodium fluoride (NaF) on the tongue ultrastructure and detected the ameliorative effects of resveratrol. Forty adult albino rats were separated into 4 groups: the control group was given a balanced diet and purified water. The NaF treated group: received 10 mg/kg/d dissolved in 2.5 ml distilled water once daily for 30 days orally. The NaF+resveratrol group: received NaF 10 mg/kg/d orally together with resveratrol in a dose of 30 mg/kg daily for 30 days. The resveratrol group was subjected to resveratrol in a dose of 30 mg/kg/d by oral gavage for 30 days. Sections were stained with hematoxylin & eosin, and Masson's trichrome. Tumor necrosis factor α immunohistochemical study and electron microscopic examinations were done. The oxidative stress markers malondialdehyde, antioxidant reduced glutathione, and the total antioxidant capacity were measured. The NaF group revealed ulceration, necrotic muscle fibers, distorted papillae and a significant increase in malondialdehyde level, and a significant decrease in glutathione and the total antioxidant levels. In the NaF+resveratrol group, pathological changes were less, and the oxidant levels were decreased by the administration of resveratrol with NaF. In conclusion, NaF adversely affects the ultrastructure of the adult rat tongue and resveratrol can ameliorate this effect.
Collapse
Affiliation(s)
- Emtethal M. El-Bestawy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Sharqia Governorate, Egypt
| | - Asmaa M. Tolba
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Sharqia Governorate, Egypt
| | - Walaa A. Rashad
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Sharqia Governorate, Egypt
| |
Collapse
|
8
|
Turna Demir F. Protective effects of resveratrol against genotoxicity induced by nano and bulk hydroxyapatite in Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:850-865. [PMID: 35848415 DOI: 10.1080/15287394.2022.2101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HAp) is a naturally occurring calcium phosphate mineral predominantly used for its biocompatibility in a number of areas such as bone grafting, prosthesis coating in dentistry, and targeted drug delivery. Since the nano form of HAp (nHAp) has gained popularity attributed to a re-mineralizing effect in dental repair procedures, concerns have been raised over safety and biocompatibility of these nanoparticles (NP). This study, therefore, aimed to (1) investigate mechanisms of potential genotoxicity and enhanced generation of reactive oxygen species (ROS) initiated by bulk and nano forms of HAp and (2) test in vivo whether resveratrol, a type of natural phenol, might mitigate the extent of potential DNA damage. The size of nHAp was determined to be 192.13 ± 9.91 nm after dispersion using transmission electron microscopy (TEM). Drosophila melanogaster was employed as a model organism to determine the genotoxic potential and adverse effects of HAp by use of (comet assay), mutagenic and recombinogenic activity (wing spot test), and ROS-mediated damage. Drosophila wing-spot tests demonstrated that exposure to nontoxic bulk and nHAp concentrations (1, 2.5, 5 or 10 mM) produced no significant recombination effects or mutagenicity. However, bulk and nHAp at certain doses (2.5, 5 or 10 mM) induced genotoxicity in hemocytes and enhanced ROS production. Resveratrol was found to ameliorate the genotoxic effects induced by bulk HAp and nHAp in comet assay. Data demonstrate that treatment with nano and bulk Hap-induced DNA damage and increased ROS generation D. melanogaster which was alleviated by treatment with resveratrol.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Vocational School of Health Services, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
9
|
Velázquez-Ulloa NA, Heres-Pulido ME, Santos-Cruz LF, Durán-Díaz A, Castañeda-Partida L, Browning A, Carmona-Alvarado C, Estrada-Guzmán JC, Ferderer G, Garfias M, Gómez-Loza B, Magaña-Acosta MJ, Perry HH, Dueñas-García IE. Complex interactions between nicotine and resveratrol in the Drosophila melanogaster wing spot test. Heliyon 2022; 8:e09744. [PMID: 35770151 PMCID: PMC9234589 DOI: 10.1016/j.heliyon.2022.e09744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/30/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022] Open
Abstract
Nicotine (NIC) and resveratrol (RES) are chemicals in tobacco and wine, respectively, that are widely consumed concurrently worldwide. NIC is an alkaloid known to be toxic, addictive and to produce oxidative stress, while RES is thought of as an antioxidant with putative health benefits. Oxidative stress can induce genotoxic damage, yet few studies have examined whether NIC is genotoxic in vivo. In vitro studies have shown that RES can ameliorate deleterious effects of NIC. However, RES has been reported to have both antioxidant and pro-oxidant effects, and an in vivo study reported that 0.011 mM RES was genotoxic. We used the Drosophila melanogaster wing spot test to determine whether NIC and RES, first individually and then in combination, were genotoxic and/or altered the cell division. We hypothesized that RES would modulate NIC’s effects. NIC was genotoxic in the standard (ST) cross in a concentration-independent manner, but not genotoxic in the high bioactivation (HB) cross. RES was not genotoxic in either the ST or HB cross at the concentrations tested. We discovered a complex interaction between NIC and RES. Depending on concentration, RES was protective of NIC’s genotoxic damage, RES had no interaction with NIC, or RES had an additive or synergistic effect, increasing NIC’s genotoxic damage. Most NIC, RES, and NIC/RES combinations tested altered the cell division in the ST and HB crosses. Because we used the ST and HB crosses, we demonstrated that genotoxicity and cell division alterations were modulated by the xenobiotic metabolism. These results provide evidence of NIC’s genotoxicity in vivo at specific concentrations. Moreover, NIC’s genotoxicity can be modulated by its interaction with RES in a complex manner, in which their interaction can lead to either increasing NIC’s damage or protecting against it. Nicotine was genotoxic at specific concentrations in the Drosophila wing spot test. Resveratrol protected against nicotine’s genotoxic effects at some concentrations. Resveratrol increased nicotine’s genotoxicity at specific concentrations. Nicotine and resveratrol have a complex interaction in vivo. Studying chemicals in combination in vivo may uncover unexpected interactions.
Collapse
Affiliation(s)
| | - M E Heres-Pulido
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L F Santos-Cruz
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - A Durán-Díaz
- Mathematics, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L Castañeda-Partida
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - A Browning
- Biology Department, Lewis & Clark College, Portland, OR, USA
| | - C Carmona-Alvarado
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - J C Estrada-Guzmán
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - G Ferderer
- Biology Department, Lewis & Clark College, Portland, OR, USA
| | - M Garfias
- Biology Department, Lewis & Clark College, Portland, OR, USA.,Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - B Gómez-Loza
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - M J Magaña-Acosta
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico.,Department of Developmental Genetics & Molecular Physiology, Universidad Nacional Autónoma de México. Av Universidad, 2001, Col Chamilpa, Cuernavaca, Mexico
| | - H H Perry
- Biology Department, Lewis & Clark College, Portland, OR, USA
| | - I E Dueñas-García
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
10
|
Protective capacity of carotenoid trans-astaxanthin in rotenone-induced toxicity in Drosophila melanogaster. Sci Rep 2022; 12:4594. [PMID: 35301354 PMCID: PMC8931097 DOI: 10.1038/s41598-022-08409-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 01/23/2023] Open
Abstract
Trans-astaxanthin (TA), a keto-carotenoid found in aquatic invertebrates, possesses anti-oxidative and anti-inflammatory activities. Rotenone is used to induce oxidative stress-mediated Parkinson’s disease (PD) in animals. We probed if TA would protect against rotenone-induced toxicity in Drosophila melanogaster. Trans-astaxanthin (0, 0.1, 0.5, 1.0, 2.5, 10, and 20 mg/10 g diet) and rotenone (0, 250 and 500 μM) were separately orally exposed to flies in the diet to evaluate longevity and survival rates, respectively. Consequently, we evaluated the ameliorative actions of TA (1.0 mg/10 g diet) on rotenone (500 μM)-induced toxicity in Drosophila after 7 days’ exposure. Additionally, we performed molecular docking of TA against selected pro-inflammatory protein targets. We observed that TA (0.5 and 1.0 mg/10 g diet) increased the lifespan of D. melanogaster by 36.36%. Moreover, TA (1.0 mg/10 g diet) ameliorated rotenone-mediated inhibition of Catalase, Glutathione-S-transferase and Acetylcholinesterase activities, and depletion of Total Thiols and Non-Protein Thiols contents. Trans-astaxanthin prevented behavioural dysfunction and accumulation of Hydrogen Peroxide, Malondialdehyde, Protein Carbonyls and Nitric Oxide in D. melanogaster (p < 0.05). Trans-astaxanthin showed higher docking scores against the pro-inflammatory protein targets evaluated than the standard inhibitors. Conclusively, the structural features of TA might have contributed to its protective actions against rotenone-induced toxicity.
Collapse
|
11
|
Rahul, Naz F, Jyoti S, Siddique YH. Effect of kaempferol on the transgenic Drosophila model of Parkinson's disease. Sci Rep 2020; 10:13793. [PMID: 32796885 PMCID: PMC7429503 DOI: 10.1038/s41598-020-70236-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022] Open
Abstract
The present study was aimed to study the effect of kaempferol, on the transgenic Drosophila model of Parkinson's disease. Kaempferol was added in the diet at final concentration of 10, 20, 30 and 40 µM and the effect was studied on various cognitive and oxidative stress markers. The results of the study showed that kaempferol, delayed the loss of climbing ability as well as the activity of PD flies in a dose dependent manner compared to unexposed PD flies. A dose-dependent reduction in oxidative stress markers was also observed. Histopathological examination of fly brains using anti-tyrosine hydroxylase immunostaining has revealed a significant dose-dependent increase in the expression of tyrosine hydroxylase in PD flies exposed to kaempferol. Molecular docking results revealed that kaempferol binds to human alpha synuclein at specific sites that might results in the inhibition of alpha synuclein aggregation and prevents the formation of Lewy bodies.
Collapse
Affiliation(s)
- Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Smita Jyoti
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
12
|
Wu J, Gan Z, Zhuo R, Zhang L, Wang T, Zhong X. Resveratrol Attenuates Aflatoxin B 1-Induced ROS Formation and Increase of m 6A RNA Methylation. Animals (Basel) 2020; 10:ani10040677. [PMID: 32294948 PMCID: PMC7222704 DOI: 10.3390/ani10040677] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Aflatoxin B1 (AFB1) is highly hepatotoxic in both animals and humans. Resveratrol, a naturally-occurring polyphenolic compound, has antioxidative, anti-inflammatory, antiapoptotic, and immunomodulatory functions and plays a critical role in preventing liver damage. However, whether N6-methyladenosine (m6A) mRNA methylation, which plays critical roles in regulating gene expression for fundamental cellular processes, is associated with the protective effects of resveratrol in attenuating aflatoxin B1 induced toxicity is unclear. Here, we found that AFB1-induced reactive oxygen species (ROS) accumulation changed m6A modification, and the role of resveratrol in alleviating the effect on hepatic disorder induced by aflatoxin B1 may be due to the removal of ROS, followed by the decreased abundance of m6A modification, and ultimately exerting its protective role in the liver. Together, this work provides key insights into the potential avenues for the treatment of AFB1-induced hepatotoxicity and other relevant liver diseases. Abstract Aflatoxin B1 (AFB1) is one of the most dangerous mycotoxins in both humans and animals. Regulation of resveratrol is essential for the inhibition of AFB1-induced oxidative stress and liver injury. Whether N6-methyladenosine (m6A) mRNA methylation participates in the crosstalk between resveratrol and AFB1 is unclear. The objective of this study was to investigate the effects of AFB1 and resveratrol in m6A RNA methylation and their crosstalk in the regulation of hepatic function in mice. Thirty-two C57BL/6J male mice were randomly assigned to a CON (basal diet), RES (basal diet + 500 mg/kg resveratrol), AFB1 (basal diet + 600 μg/kg aflatoxin B1), and ARE (basal diet + 500 mg/kg resveratrol and 600 μg/kg aflatoxin B1) group for 4 weeks of feeding (n = 8/group). Briefly, redox status, apoptosis, and m6A modification in the liver were assessed. Compared to the CON group, the AFB1 group showed increased activities of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT), prevalent vacuolization and cell edema, abnormal redox status, imbalance apoptosis, and especially, the higher expression of cleaved-caspase-3 protein. On the contrary, resveratrol ameliorated adverse hepatic function, via increasing hepatic antioxidative capacity and inhibiting the expression of cleaved-caspase-3 protein. Importantly, we noted that reactive oxygen species (ROS) content could be responsible for the alterations of m6A modification. Compared to the CON group, the AFB1 group elevated the ROS accumulation, which led to the augment in m6A modification, whereas dietary resveratrol supplementation decreased ROS, followed by the reduction of m6A levels. In conclusion, our findings indicated that resveratrol decreased AFB1-induced ROS accumulation, consequently contributing to the alterations of m6A modification, and eventually impacting on the hepatic function.
Collapse
|