1
|
Koc AC, Sari V, Kocak G, Recber T, Nemutlu E, Aberdam D, Güven S. Patient-derived cornea organoid model to study metabolomic characterization of rare disease: aniridia-associated keratopathy. BMC Ophthalmol 2025; 25:14. [PMID: 39794714 PMCID: PMC11724546 DOI: 10.1186/s12886-024-03831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Aniridia is a rare panocular disease caused by gene mutation in the PAX6, which is essential for eye development. Aniridia is inherited in an autosomal dominant manner, but its phenotype can vary significantly among individuals with the same mutation. Animal models, such as drosophila, zebrafish, and rodents, have been used to study aniridia through Pax6 deletions. Recently, patient-derived limbal epithelial stem cells (LESCs) and human-induced pluripotent stem cells (hiPSCs) have been used to model the disease in vitro, providing new insights into therapeutic strategies. METHODS In this study, corneal organoids were generated from hiPSCs derived from aniridia patients with three different PAX6 nonsense mutations, allowing for a detailed comparison between diseased and healthy control models. These organoids structurally mimicked the human cornea and were used to investigate histologic and metabolomic differences between healthy and aniridia-derived samples. RESULTS Untargeted metabolomic analysis revealed significant metabolic differences between wild-type (WT) and aniridia-associated keratopathy (AAK) hiPSCs. Further metabolomic profiling at different time points demonstrated distinct metabolic shifts, with amino acid metabolism pathways being consistently enriched in AAK organoids. CONCLUSIONS This study emphasizes the profound impact of AAK mutations on metabolism, particularly in amino acid biosynthesis and energy metabolism pathways.
Collapse
Affiliation(s)
- Ali Can Koc
- Izmir Biomedicine and Genome Center, 35340, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Izmir, Türkiye
| | - Vedat Sari
- Izmir Biomedicine and Genome Center, 35340, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Izmir, Türkiye
| | - Gamze Kocak
- Izmir Biomedicine and Genome Center, 35340, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Izmir, Türkiye
| | - Tuba Recber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, 06100, Ankara, Türkiye
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, 06100, Ankara, Türkiye
| | - Daniel Aberdam
- INSERM U1138, Centre de Recherche Des Cordeliers, Sorbonne Paris Cité University, Paris, France
| | - Sinan Güven
- Izmir Biomedicine and Genome Center, 35340, Izmir, Türkiye.
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Izmir, Türkiye.
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylül University, 35340, Izmir, Türkiye.
| |
Collapse
|
2
|
Landowski M, Gogoi P, Ikeda S, Ikeda A. Roles of transmembrane protein 135 in mitochondrial and peroxisomal functions - implications for age-related retinal disease. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1355379. [PMID: 38576540 PMCID: PMC10993500 DOI: 10.3389/fopht.2024.1355379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Aging is the most significant risk factor for age-related diseases in general, which is true for age-related diseases in the eye including age-related macular degeneration (AMD). Therefore, in order to identify potential therapeutic targets for these diseases, it is crucial to understand the normal aging process and how its mis-regulation could cause age-related diseases at the molecular level. Recently, abnormal lipid metabolism has emerged as one major aspect of age-related symptoms in the retina. Animal models provide excellent means to identify and study factors that regulate lipid metabolism in relation to age-related symptoms. Central to this review is the role of transmembrane protein 135 (TMEM135) in the retina. TMEM135 was identified through the characterization of a mutant mouse strain exhibiting accelerated retinal aging and positional cloning of the responsible mutation within the gene, indicating the crucial role of TMEM135 in regulating the normal aging process in the retina. Over the past decade, the molecular functions of TMEM135 have been explored in various models and tissues, providing insights into the regulation of metabolism, particularly lipid metabolism, through its action in multiple organelles. Studies indicated that TMEM135 is a significant regulator of peroxisomes, mitochondria, and their interaction. Here, we provide an overview of the molecular functions of TMEM135 which is crucial for regulating mitochondria, peroxisomes, and lipids. The review also discusses the age-dependent phenotypes in mice with TMEM135 perturbations, emphasizing the importance of a balanced TMEM135 function for the health of the retina and other tissues including the heart, liver, and adipose tissue. Finally, we explore the potential roles of TMEM135 in human age-related retinal diseases, connecting its functions to the pathobiology of AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Purnima Gogoi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Zhang W, Jiang R, Chen S, Wang Y. scIBD: a self-supervised iterative-optimizing model for boosting the detection of heterotypic doublets in single-cell chromatin accessibility data. Genome Biol 2023; 24:225. [PMID: 37814314 PMCID: PMC10561408 DOI: 10.1186/s13059-023-03072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Application of the widely used droplet-based microfluidic technologies in single-cell sequencing often yields doublets, introducing bias to downstream analyses. Especially, doublet-detection methods for single-cell chromatin accessibility sequencing (scCAS) data have multiple assay-specific challenges. Therefore, we propose scIBD, a self-supervised iterative-optimizing model for boosting heterotypic doublet detection in scCAS data. scIBD introduces an adaptive strategy to simulate high-confident heterotypic doublets and self-supervise for doublet-detection in an iteratively optimizing manner. Comprehensive benchmarking on various simulated and real datasets demonstrates the outperformance and robustness of scIBD. Moreover, the downstream biological analyses suggest the efficacy of doublet-removal by scIBD.
Collapse
Affiliation(s)
- Wenhao Zhang
- Department of Automation, Xiamen University, Xiamen, 361000, Fujian, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Rui Jiang
- Ministry of Education Key Laboratory of Bioinformatics, Research Department of Bioinformatics at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Shengquan Chen
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China.
| | - Ying Wang
- Department of Automation, Xiamen University, Xiamen, 361000, Fujian, China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361000, Fujian, China.
- Xiamen Key Laboratory of Big Data Intelligent Analysis and Decision, Xiamen, 361005, Fujian, China.
| |
Collapse
|
4
|
Landowski M, Bhute VJ, Grindel S, Haugstad Z, Gyening YK, Tytanic M, Brush RS, Moyer LJ, Nelson DW, Davis CR, Yen CLE, Ikeda S, Agbaga MP, Ikeda A. Transmembrane protein 135 regulates lipid homeostasis through its role in peroxisomal DHA metabolism. Commun Biol 2023; 6:8. [PMID: 36599953 PMCID: PMC9813353 DOI: 10.1038/s42003-022-04404-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
Transmembrane protein 135 (TMEM135) is thought to participate in the cellular response to increased intracellular lipids yet no defined molecular function for TMEM135 in lipid metabolism has been identified. In this study, we performed a lipid analysis of tissues from Tmem135 mutant mice and found striking reductions of docosahexaenoic acid (DHA) across all Tmem135 mutant tissues, indicating a role of TMEM135 in the production of DHA. Since all enzymes required for DHA synthesis remain intact in Tmem135 mutant mice, we hypothesized that TMEM135 is involved in the export of DHA from peroxisomes. The Tmem135 mutation likely leads to the retention of DHA in peroxisomes, causing DHA to be degraded within peroxisomes by their beta-oxidation machinery. This may lead to generation or alteration of ligands required for the activation of peroxisome proliferator-activated receptor a (PPARa) signaling, which in turn could result in increased peroxisomal number and beta-oxidation enzymes observed in Tmem135 mutant mice. We confirmed this effect of PPARa signaling by detecting decreased peroxisomes and their proteins upon genetic ablation of Ppara in Tmem135 mutant mice. Using Tmem135 mutant mice, we also validated the protective effect of increased peroxisomes and peroxisomal beta-oxidation on the metabolic disease phenotypes of leptin mutant mice which has been observed in previous studies. Thus, we conclude that TMEM135 has a role in lipid homeostasis through its function in peroxisomes.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Vijesh J Bhute
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical Engineering, Imperial College London, South Kensington, London, UK
| | - Samuel Grindel
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary Haugstad
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Yeboah K Gyening
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Dean A. McGee Eye Institute, Oklahoma City, OK, USA
| | - Madison Tytanic
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Dean A. McGee Eye Institute, Oklahoma City, OK, USA
| | - Richard S Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Dean A. McGee Eye Institute, Oklahoma City, OK, USA
| | - Lucas J Moyer
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - David W Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher R Davis
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin-Paul Agbaga
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Dean A. McGee Eye Institute, Oklahoma City, OK, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Landowski M, Bhute VJ, Takimoto T, Grindel S, Shahi PK, Pattnaik BR, Ikeda S, Ikeda A. A mutation in transmembrane protein 135 impairs lipid metabolism in mouse eyecups. Sci Rep 2022; 12:756. [PMID: 35031662 PMCID: PMC8760256 DOI: 10.1038/s41598-021-04644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is a significant factor in the development of age-related diseases but how aging disrupts cellular homeostasis to cause age-related retinal disease is unknown. Here, we further our studies on transmembrane protein 135 (Tmem135), a gene involved in retinal aging, by examining the transcriptomic profiles of wild-type, heterozygous and homozygous Tmem135 mutant posterior eyecup samples through RNA sequencing (RNA-Seq). We found significant gene expression changes in both heterozygous and homozygous Tmem135 mutant mouse eyecups that correlate with visual function deficits. Further analysis revealed that expression of many genes involved in lipid metabolism are changed due to the Tmem135 mutation. Consistent with these changes, we found increased lipid accumulation in mutant Tmem135 eyecup samples. Since mutant Tmem135 mice have similar ocular pathologies as human age-related macular degeneration (AMD) eyes, we compared our homozygous Tmem135 mutant eyecup RNA-Seq dataset with transcriptomic datasets of human AMD donor eyes. We found similar changes in genes involved in lipid metabolism between the homozygous Tmem135 mutant eyecups and AMD donor eyes. Our study suggests that the Tmem135 mutation affects lipid metabolism as similarly observed in human AMD eyes, thus Tmem135 mutant mice can serve as a good model for the role of dysregulated lipid metabolism in AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Vijesh J Bhute
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Tetsuya Takimoto
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel Grindel
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Pawan K Shahi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Bikash R Pattnaik
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Beasley HK, Rodman TA, Collins GV, Hinton A, Exil V. TMEM135 is a Novel Regulator of Mitochondrial Dynamics and Physiology with Implications for Human Health Conditions. Cells 2021; 10:cells10071750. [PMID: 34359920 PMCID: PMC8303332 DOI: 10.3390/cells10071750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Transmembrane proteins (TMEMs) are integral proteins that span biological membranes. TMEMs function as cellular membrane gates by modifying their conformation to control the influx and efflux of signals and molecules. TMEMs also reside in and interact with the membranes of various intracellular organelles. Despite much knowledge about the biological importance of TMEMs, their role in metabolic regulation is poorly understood. This review highlights the role of a single TMEM, transmembrane protein 135 (TMEM135). TMEM135 is thought to regulate the balance between mitochondrial fusion and fission and plays a role in regulating lipid droplet formation/tethering, fatty acid metabolism, and peroxisomal function. This review highlights our current understanding of the various roles of TMEM135 in cellular processes, organelle function, calcium dynamics, and metabolism.
Collapse
Affiliation(s)
- Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
| | - Taylor A. Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
| | - Greg V. Collins
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA 52242, USA;
- Department of Pediatrics-Cardiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
- Correspondence: (A.H.J.); (V.E.)
| | - Vernat Exil
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA 52242, USA;
- Department of Pediatrics-Cardiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Correspondence: (A.H.J.); (V.E.)
| |
Collapse
|
7
|
Landowski M, Grindel S, Shahi PK, Johnson A, Western D, Race A, Shi F, Benson J, Gao M, Santoirre E, Lee WH, Ikeda S, Pattnaik BR, Ikeda A. Modulation of Tmem135 Leads to Retinal Pigmented Epithelium Pathologies in Mice. Invest Ophthalmol Vis Sci 2020; 61:16. [PMID: 33064130 PMCID: PMC7581492 DOI: 10.1167/iovs.61.12.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Aging is a critical risk factor for the development of retinal diseases, but how aging perturbs ocular homeostasis and contributes to disease is unknown. We identified transmembrane protein 135 (Tmem135) as a gene important for regulating retinal aging and mitochondrial dynamics in mice. Overexpression of Tmem135 causes mitochondrial fragmentation and pathologies in the hearts of mice. In this study, we examine the eyes of mice overexpressing wild-type Tmem135 (Tmem135 TG) and compare their phenotype to Tmem135 mutant mice. Methods Eyes were collected for histology, immunohistochemistry, electron microscopy, quantitative PCR, and Western blot analysis. Before tissue collection, electroretinography (ERG) was performed to assess visual function. Mouse retinal pigmented epithelium (RPE) cultures were established to visualize mitochondria. Results Pathologies were observed only in the RPE of Tmem135 TG mice, including degeneration, migratory cells, vacuolization, dysmorphogenesis, cell enlargement, and basal laminar deposit formation despite similar augmented levels of Tmem135 in the eyecup (RPE/choroid/sclera) and neural retina. We observed reduced mitochondria number and size in the Tmem135 TG RPE. ERG amplitudes were decreased in 365-day-old mice overexpressing Tmem135 that correlated with reduced expression of RPE cell markers. In Tmem135 mutant mice, RPE cells are thicker, smaller, and denser than their littermate controls without any signs of degeneration. Conclusions Overexpression and mutation of Tmem135 cause contrasting RPE abnormalities in mice that correlate with changes in mitochondrial shape and size (overfragmented in TG vs. overfused in mutant). We conclude proper regulation of mitochondrial homeostasis by TMEM135 is critical for RPE health.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Pediatrics, Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Samuel Grindel
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Pawan K. Shahi
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Pediatrics, Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Abigail Johnson
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Daniel Western
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Adrienne Race
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Franky Shi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Jonathan Benson
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Marvin Gao
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Evelyn Santoirre
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Wei-Hua Lee
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Bikash R. Pattnaik
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Pediatrics, Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
8
|
Matsuyama S. Mechanisms of aging, age-associated diseases, and lifespan determination. Exp Biol Med (Maywood) 2020; 245:1529-1531. [PMID: 32903037 DOI: 10.1177/1535370220955146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Shigemi Matsuyama
- Division of Hematology and Oncology, Department of Medicine School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA
| |
Collapse
|