1
|
Punchai S, Chaiyagot N, Artkaew N, Jusakul A, Cha’on U, Thanan R, Vaeteewoottacharn K, Lert-Itthiporn W. Iron-induced kidney cell damage: insights into molecular mechanisms and potential diagnostic significance of urinary FTL. Front Mol Biosci 2024; 11:1352032. [PMID: 38449697 PMCID: PMC10916690 DOI: 10.3389/fmolb.2024.1352032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
Background: Iron overload can lead to organ and cell injuries. Although the mechanisms of iron-induced cell damage have been extensively studied using various cells, little is known about these processes in kidney cells. Methods: In this study, we first examined the correlation between serum iron levels and kidney function. Subsequently, we investigated the molecular impact of excess iron on kidney cell lines, HEK293T and HK-2. The presence of the upregulated protein was further validated in urine. Results: The results revealed that excess iron caused significant cell death accompanied by morphological changes. Transcriptomic analysis revealed an up-regulation of the ferroptosis pathway during iron treatment. This was confirmed by up-regulation of ferroptosis markers, ferritin light chain (FTL), and prostaglandin-endoperoxide synthase 2 (PTGS2), and down-regulation of acyl-CoA synthetase long-chain family member 4 (ACSL4) and glutathione peroxidase 4 (GPX4) using real-time PCR and Western blotting. In addition, excess iron treatment enhanced protein and lipid oxidation. Supportively, an inverse correlation between urinary FTL protein level and kidney function was observed. Conclusion: These findings suggest that excess iron disrupts cellular homeostasis and affects key proteins involved in kidney cell death. Our study demonstrated that high iron levels caused kidney cell damage. Additionally, urinary FTL might be a useful biomarker to detect kidney damage caused by iron toxicity. Our study also provided insights into the molecular mechanisms of iron-induced kidney injury, discussing several potential targets for future interventions.
Collapse
Affiliation(s)
- Soraya Punchai
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nachayada Chaiyagot
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nadthanicha Artkaew
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Apinya Jusakul
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Ubon Cha’on
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Worachart Lert-Itthiporn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
2
|
Kamt SF, Liu J, Yan LJ. Renal-Protective Roles of Lipoic Acid in Kidney Disease. Nutrients 2023; 15:nu15071732. [PMID: 37049574 PMCID: PMC10097220 DOI: 10.3390/nu15071732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The kidney is a crucial organ that eliminates metabolic waste and reabsorbs nutritious elements. It also participates in the regulation of blood pressure, maintenance of electrolyte balance and blood pH homeostasis, as well as erythropoiesis and vitamin D maturation. Due to such a heavy workload, the kidney is an energy-demanding organ and is constantly exposed to endogenous and exogenous insults, leading to the development of either acute kidney injury (AKI) or chronic kidney disease (CKD). Nevertheless, there are no therapeutic managements to treat AKI or CKD effectively. Therefore, novel therapeutic approaches for fighting kidney injury are urgently needed. This review article discusses the role of α-lipoic acid (ALA) in preventing and treating kidney diseases. We focus on various animal models of kidney injury by which the underlying renoprotective mechanisms of ALA have been unraveled. The animal models covered include diabetic nephropathy, sepsis-induced kidney injury, renal ischemic injury, unilateral ureteral obstruction, and kidney injuries induced by folic acid and metals such as cisplatin, cadmium, and iron. We highlight the common mechanisms of ALA’s renal protective actions that include decreasing oxidative damage, increasing antioxidant capacities, counteracting inflammation, mitigating renal fibrosis, and attenuating nephron cell death. It is by these mechanisms that ALA achieves its biological function of alleviating kidney injury and improving kidney function. Nevertheless, we also point out that more comprehensive, preclinical, and clinical studies will be needed to make ALA a better therapeutic agent for targeting kidney disorders.
Collapse
Affiliation(s)
- Sulin F. Kamt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
3
|
Panteli AE, Theofilis P, Vordoni A, Vlachopanos G, Koukoulaki M, Kalaitzidis RG. Narrative review of recent studies on the role of vitamin D in the prevention of cardiac and renal risk and additional considerations for COVID-19 vulnerability. Curr Vasc Pharmacol 2021; 20:168-177. [PMID: 34802405 DOI: 10.2174/1570161119666211119142746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/25/2021] [Accepted: 10/23/2021] [Indexed: 11/22/2022]
Abstract
The role of vitamin D in maintaining a healthy cardiovascular (CV) and the renal system has received increasing attention. Low vitamin D levels are associated with the incidence of hypertension, cardiac remodeling, and chronic congestive heart failure. Low vitamin D levels also influence renal disease progression and albuminuria deterioration. Moreover, recent research indicates that vitamin D deficiency can be a potential risk factor for coronavirus disease-19 (COVID-19) infection and poorer outcomes. Data are inconclusive as to whether supplementation with vitamin D agents reduces CV disease risk or COVID-19 severity. Conversely, in patients with kidney disease, vitamin D supplementation is associated with improved kidney function and albuminuria. This narrative review considers recent data on the effects of vitamin D on the CV and renal system, as well as its possible role regarding COVID-19 complications.
Collapse
Affiliation(s)
| | - Panagiotis Theofilis
- Center for Nephrology "G. Papadakis", General Hospital of Nikaia - Piraeus "Agios Panteleimon", Piraeus, Nikaia 18454. Greece
| | - Aikaterini Vordoni
- Center for Nephrology "G. Papadakis", General Hospital of Nikaia - Piraeus "Agios Panteleimon", Piraeus, Nikaia 18454. Greece
| | - Georgios Vlachopanos
- Center for Nephrology "G. Papadakis", General Hospital of Nikaia - Piraeus "Agios Panteleimon", Piraeus, Nikaia 18454. Greece
| | - Maria Koukoulaki
- Center for Nephrology "G. Papadakis", General Hospital of Nikaia - Piraeus "Agios Panteleimon", Piraeus, Nikaia 18454. Greece
| | - Rigas G Kalaitzidis
- Center for Nephrology "G. Papadakis", General Hospital of Nikaia - Piraeus "Agios Panteleimon", Piraeus, Nikaia 18454. Greece
| |
Collapse
|
4
|
Annamalai C, Seth R, Viswanathan P. Ferrotoxicity and Its Amelioration by Calcitriol in Cultured Renal Cells. Anal Cell Pathol (Amst) 2021. [DOI: https://doi.org/10.1155/2021/6634429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Globally, acute kidney injury (AKI) is associated with significant mortality and an enormous economic burden. Whereas iron is essential for metabolically active renal cells, it has the potential to cause renal cytotoxicity by promoting Fenton chemistry-based oxidative stress involving lipid peroxidation. In addition, 1,25-dihydroxyvitamin D3 (calcitriol), the active form of vitamin D, is reported to have an antioxidative role. In this study, we intended to demonstrate the impact of vitamin D on iron-mediated oxidant stress and cytotoxicity of Vero cells exposed to iohexol, a low osmolar iodine-containing contrast media in vitro. Cultured Vero cells were pretreated with 1,25-dihydroxyvitamin D3 dissolved in absolute ethanol (0.05%, 2.0 mM) at a dose of 1 mM for 6 hours. Subsequently, iohexol was added at a concentration of 100 mg iodine per mL and incubated for 3 hours. Total cellular iron content was analysed by a flame atomic absorption spectrophotometer at 372 nm. Lipid peroxidation was determined by TBARS (thiobarbituric acid reactive species) assay. Antioxidants including total thiol content were assessed by Ellman’s method, catalase by colorimetric method, and superoxide dismutase (SOD) by nitroblue tetrazolium assay. The cells were stained with DAPI (4
,6-diamidino-2-phenylindole), and the cytotoxicity was evaluated by viability assay (MTT assay). The results indicated that iohexol exposure caused a significant increase of the total iron content in Vero cells. A concomitant increase of lipid peroxidation and decrease of total thiol protein levels, catalase, and superoxide dismutase activity were observed along with decreased cell viability in comparison with the controls. Furthermore, these changes were significantly reversed when the cells were pretreated with vitamin D prior to incubation with iohexol. Our findings of this in vitro model of iohexol-induced renotoxicity lend further support to the nephrotoxic potential of iron and underpin the possible clinical utility of vitamin D for the treatment and prevention of AKI.
Collapse
Affiliation(s)
- Chandrashekar Annamalai
- Renal Research Lab, Centre for Biomedical Research, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014 Tamil Nadu, India
| | - Rohit Seth
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 Chhattisgarh, India
| | - Pragasam Viswanathan
- Renal Research Lab, Centre for Biomedical Research, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014 Tamil Nadu, India
| |
Collapse
|
5
|
Annamalai C, Seth R, Viswanathan P. Ferrotoxicity and Its Amelioration by Calcitriol in Cultured Renal Cells. Anal Cell Pathol (Amst) 2021; 2021:6634429. [PMID: 33680716 PMCID: PMC7925041 DOI: 10.1155/2021/6634429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/22/2021] [Accepted: 02/15/2021] [Indexed: 02/05/2023] Open
Abstract
Globally, acute kidney injury (AKI) is associated with significant mortality and an enormous economic burden. Whereas iron is essential for metabolically active renal cells, it has the potential to cause renal cytotoxicity by promoting Fenton chemistry-based oxidative stress involving lipid peroxidation. In addition, 1,25-dihydroxyvitamin D3 (calcitriol), the active form of vitamin D, is reported to have an antioxidative role. In this study, we intended to demonstrate the impact of vitamin D on iron-mediated oxidant stress and cytotoxicity of Vero cells exposed to iohexol, a low osmolar iodine-containing contrast media in vitro. Cultured Vero cells were pretreated with 1,25-dihydroxyvitamin D3 dissolved in absolute ethanol (0.05%, 2.0 mM) at a dose of 1 mM for 6 hours. Subsequently, iohexol was added at a concentration of 100 mg iodine per mL and incubated for 3 hours. Total cellular iron content was analysed by a flame atomic absorption spectrophotometer at 372 nm. Lipid peroxidation was determined by TBARS (thiobarbituric acid reactive species) assay. Antioxidants including total thiol content were assessed by Ellman's method, catalase by colorimetric method, and superoxide dismutase (SOD) by nitroblue tetrazolium assay. The cells were stained with DAPI (4',6-diamidino-2-phenylindole), and the cytotoxicity was evaluated by viability assay (MTT assay). The results indicated that iohexol exposure caused a significant increase of the total iron content in Vero cells. A concomitant increase of lipid peroxidation and decrease of total thiol protein levels, catalase, and superoxide dismutase activity were observed along with decreased cell viability in comparison with the controls. Furthermore, these changes were significantly reversed when the cells were pretreated with vitamin D prior to incubation with iohexol. Our findings of this in vitro model of iohexol-induced renotoxicity lend further support to the nephrotoxic potential of iron and underpin the possible clinical utility of vitamin D for the treatment and prevention of AKI.
Collapse
Affiliation(s)
- Chandrashekar Annamalai
- 1Renal Research Lab, Centre for Biomedical Research, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014 Tamil Nadu, India
| | - Rohit Seth
- 2Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 Chhattisgarh, India
| | - Pragasam Viswanathan
- 1Renal Research Lab, Centre for Biomedical Research, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014 Tamil Nadu, India
| |
Collapse
|