1
|
Jin J, Nguyen TV, Jiang Y, Yu ZN, Song CH, Lee SY, Shin HS, Chai OH. Hydrangea serrata extract attenuates PM-exacerbated airway inflammation in the CARAS model by modulating the IL-33/ST2/NF-κB signaling pathway. Biomed Pharmacother 2024; 174:116596. [PMID: 38631146 DOI: 10.1016/j.biopha.2024.116596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Particulate matter (PM) significantly contributes to the global health crisis of respiratory diseases. It is known to induce and exacerbate conditions such as asthma and respiratory infections. Long exposure to PM can increase the risk of combined allergic rhinitis and asthma syndrome (CARAS). Although therapeutic drugs can be used to improve symptoms of respiratory diseases caused by PM, their usage is often accompanied by side effects. Therefore, many studies are being conducted to discover functional food materials that can more effectively treat respiratory diseases while minimizing the side effects of these therapeutic drugs. This study was conducted to investigate the efficacy of Hydrangea serrata extract (HSE) in airway inflammation in a mouse model of CARAS exacerbated by PM. In the CARAS mouse model worsened by PM, the airway inflammation improvement effect of HSE was evaluated by analyzing allergic nasal symptoms, changes in inflammatory cells, OVA-specific immunoglobulin (Ig) levels, cytokines, mast cell activation, and histopathological findings of both nasal mucosa and lung tissue. HSE effectively reduced OVA-specific IgE and IgG1 and inhibited the production of T helper type 2 (Th2)-related cytokines such as IL-4 and IL-5. Importantly, HSE reduced IL-33 and ST2 expression and inhibited the activation of the NF-κB signaling pathway. In addition, HSE inhibited airway hypersensitivity, mucus production, and inflammatory cell infiltration. These results suggest that HSE may inhibit airway inflammation in CARAS/PM mice by regulating the IL-33/ST2/NF-κB signaling pathway, opening avenues for considering HSE as a potential material for treating allergic airway inflammation diseases in the future.
Collapse
Affiliation(s)
- Juan Jin
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea
| | - Yuna Jiang
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea
| | - Zhen Nan Yu
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea
| | - So-Young Lee
- Department of Food Biotechnology, University of Science and Technology (UST), Daejeon 34113, South Korea; Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, South Korea
| | - Hee Soon Shin
- Department of Food Biotechnology, University of Science and Technology (UST), Daejeon 34113, South Korea; Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, South Korea
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea.
| |
Collapse
|
2
|
Jin J, Fan YJ, Nguyen TV, Yu ZN, Song CH, Lee SY, Shin HS, Chai OH. Chaenomeles sinensis Extract Ameliorates Ovalbumin-Induced Allergic Rhinitis by Inhibiting the IL-33/ST2 Axis and Regulating Epithelial Cell Dysfunction. Foods 2024; 13:611. [PMID: 38397588 PMCID: PMC10888344 DOI: 10.3390/foods13040611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Chaenomeles sinensis has traditionally been used as an herbal medicine due to its characteristics that protect against inflammation, hypertension, and mutagenesis. However, the effect of Chaenomeles sinensis extract (CSE) on allergic rhinitis (AR) and its underlying mechanisms have yet to be thoroughly investigated. The current study explored the likely effect of CSE on AR in an ovalbumin (OVA)-induced AR mouse model. To this end, OVA-specific immunoglobulins, nasal symptoms, cytokine production, the infiltration of inflammatory cells, and nasal histopathology were assessed to determine the role of CSE against AR. The supplementation of CSE was found to suppress OVA-specific IgE, while OVA-specific IgG2a was increased in the serum. Further, CSE ameliorated the production of T helper type 2 (Th2) cytokines whereas it increased Th1 cytokine levels in nasal lavage fluid. Moreover, the CSE treatment group exhibited significant inhibition of IL-33/ST2 signaling. Subsequently, CES reversed the OVA-induced enhancement of epithelial permeability and upregulated E-cadherin, thus indicating that CES plays a protective role on epithelial barrier integrity. Altogether, the oral administration of CSE effectively controlled allergic response by restricting the buildup of inflammatory cells, enhancing nasal and lung histopathological traits, and regulating cytokines associated with inflammation. Collectively, the results show that the supplementation of CSE at different doses effectively regulated AR, thus suggesting the therapeutic efficiency of CSE in suppressing airway diseases.
Collapse
Affiliation(s)
- Juan Jin
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.)
| | - Yan Jing Fan
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.)
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.)
| | - Zhen Nan Yu
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.)
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.)
- Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - So-Young Lee
- Department of Food Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Hee Soon Shin
- Department of Food Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.)
- Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| |
Collapse
|
3
|
Zhang T, Zeng Y, Lin R, Xue M, Liu M, Li Y, Zhen Y, Li N, Cao W, Wu S, Zhu H, Zhao Q, Sun B. Incorporation of Suppression of Tumorigenicity 2 into Random Survival Forests for Enhancing Prediction of Short-Term Prognosis in Community-ACQUIRED Pneumonia. J Clin Med 2022; 11:jcm11206015. [PMID: 36294336 PMCID: PMC9605170 DOI: 10.3390/jcm11206015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Biomarker and model development can help physicians adjust the management of patients with community-acquired pneumonia (CAP) by screening for inpatients with a low probability of cure early in their admission; (2) Methods: We conducted a 30-day cohort study of newly admitted adult CAP patients over 20 years of age. Prognosis models to predict the short-term prognosis were developed using random survival forest (RSF) method; (3) Results: A total of 247 adult CAP patients were studied and 208 (84.21%) of them reached clinical stability within 30 days. The soluble form of suppression of tumorigenicity-2 (sST2) was an independent predictor of clinical stability and the addition of sST2 to the prognosis model could improve the performance of the prognosis model. The C-index of the RSF model for predicting clinical stability was 0.8342 (95% CI, 0.8086–0.8598), which is higher than 0.7181 (95% CI, 0.6933–0.7429) of CURB 65 score, 0.8025 (95% CI, 0.7776–8274) of PSI score, and 0.8214 (95% CI, 0.8080–0.8348) of cox regression. In addition, the RSF model was associated with adverse clinical events during hospitalization, ICU admissions, and short-term mortality; (4) Conclusions: The RSF model by incorporating sST2 was more accurate than traditional methods in assessing the short-term prognosis of CAP patients.
Collapse
Affiliation(s)
- Teng Zhang
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| | - Yifeng Zeng
- Department of Allergy and Clinical Immunology, Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Runpei Lin
- Department of Allergy and Clinical Immunology, Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Mingshan Xue
- Department of Allergy and Clinical Immunology, Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Mingtao Liu
- Department of Allergy and Clinical Immunology, Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yusi Li
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Yingjie Zhen
- Department of Allergy and Clinical Immunology, Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Ning Li
- Department of Allergy and Clinical Immunology, Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Wenhan Cao
- Department of Allergy and Clinical Immunology, Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Sixiao Wu
- Department of Allergy and Clinical Immunology, Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Huiqing Zhu
- Department of Allergy and Clinical Immunology, Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
- Correspondence: (Q.Z.); (B.S.); Tel.: +853-8822-4824 (Q.Z.); +86-138-2412-4015 (B.S.)
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Correspondence: (Q.Z.); (B.S.); Tel.: +853-8822-4824 (Q.Z.); +86-138-2412-4015 (B.S.)
| |
Collapse
|