Golder S, O'Connor K, Wang Y, Klein A, Gonzalez Hernandez G. The Value of Social Media Analysis for Adverse Events Detection and Pharmacovigilance: Scoping Review.
JMIR Public Health Surveill 2024;
10:e59167. [PMID:
39240684 DOI:
10.2196/59167]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND
Adverse drug events pose an enormous public health burden, leading to hospitalization, disability, and death. Even the adverse events (AEs) categorized as nonserious can severely impact on patient's quality of life, adherence, and persistence. Monitoring medication safety is challenging. Web-based patient reports on social media may be a useful supplementary source of real-world data. Despite the growth of sophisticated techniques for identifying AEs using social media data, a consensus has not been reached as to the value of social media in relation to more traditional data sources.
OBJECTIVE
This study aims to evaluate and characterize the utility of social media analysis in adverse drug event detection and pharmacovigilance as compared with other data sources (such as spontaneous reporting systems and the clinical literature).
METHODS
In this scoping review, we searched 11 bibliographical databases and Google Scholar, followed by handsearching and forward and backward citation searching. Each record was screened by 2 independent reviewers at both the title and abstract stage and the full-text screening stage. Studies were included if they used any type of social media (such as Twitter or patient forums) to detect AEs associated with any drug medication and compared the results ascertained from social media to any other data source. Study information was collated using a piloted data extraction sheet. Data were extracted on the AEs and drugs searched for and included; the methods used (such as machine learning); social media data source; volume of data analyzed; limitations of the methodology; availability of data and code; comparison data source and comparison methods; results, including the volume of AEs, and how the AEs found compared with other data sources in their seriousness, frequencies, and expectedness or novelty (new vs known knowledge); and conclusions.
RESULTS
Of the 6538 unique records screened, 73 publications representing 60 studies with a wide variety of extraction methods met our inclusion criteria. The most common social media platforms used were Twitter and online health forums. The most common comparator data source was spontaneous reporting systems, although other comparisons were also made, such as with scientific literature and product labels. Although similar patterns of AE reporting tended to be identified, the frequencies were lower in social media. Social media data were found to be useful in identifying new or unexpected AEs and in identifying AEs in a timelier manner.
CONCLUSIONS
There is a large body of research comparing AEs from social media to other sources. Most studies advocate the use of social media as an adjunct to traditional data sources. Some studies also indicate the value of social media in understanding patient perspectives such as the impact of AEs, which could be better explored.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID)
RR2-10.2196/47068.
Collapse