1
|
Xu Z, Tao B, Liu C, Han D, Zhang J, Liu J, Li S, Li W, Wang J, Liang J, Cao F. Three-dimensional quantitative assessment of myocardial infarction via multimodality fusion imaging: methodology, validation, and preliminary clinical application. Quant Imaging Med Surg 2021; 11:3175-3189. [PMID: 34249644 PMCID: PMC8250027 DOI: 10.21037/qims-20-702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/24/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND The precise assessment of myocardial infarction (MI) is crucial both for therapeutic interventions in old MI and the development of new and effective techniques to repair injured myocardium. A novel method was developed to assess left ventricular (LV) quantitatively infarction through three-dimensional (3D) multimodality fusion based on computed tomography angiography (CTA) and technetium-99m methoxyisobutylisonitrile (99mTc-MIBI) single-photon emission computed tomography (SPECT) images. This study sought to develop a 3D quantitative method for MI for pre-clinical study and clinical application. METHODS Three months after the MI models were established in 20 minipigs, CTA and SPECT images were acquired separately, which were then aligned automatically with the constraints of the shape and the whole heart and LV myocardium position. Infarct ratios were quantified based on the 3D fusion images. The quantitative assessment was then experimentally validated via an ex vivo histology analysis using triphenyl-tetrazolium-chloride staining and subsequently applied to post-MI patients (n=8). RESULTS The location of an infarct identified by the SPECT was consistent with that identified by an ex vivo heart in a 3D space. Infarct size determined by CTA-SPECT was correlated with infarct size assessed by triphenyl-tetrazolium-chloride pathology {27.6% [interquartile range (IQR) 17.1-34.7%] vs. 24.1% (IQR 14.7-32.5%), r2=0.99, P<0.01}. In clinical cases, the CTA-SPECT 3D fusion quantitative results were significantly correlated with the quantitative perfusion SPECT results (r=0.976, P<0.01). CONCLUSIONS The proposed 3D fusion quantitative assessment method provides reliable and intuitive evaluations of infarction. This novel quantification technique enables whole heart quantification for the pre-operation evaluation and post-diagnosis management of old MI patients. It could also be applied to the design of 3D-printed cardiac patches.
Collapse
Affiliation(s)
- Zhenzhen Xu
- School of Life Science and Technology, Xidian University, Xi’an, China
| | - Bo Tao
- Department of Geriatric Cardiology, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Chuanbin Liu
- Department of Geriatric Cardiology, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Dong Han
- Department of Geriatric Cardiology, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jibin Zhang
- Department of Geriatric Cardiology, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Junsong Liu
- Department of Geriatric Cardiology, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Sulei Li
- Department of Geriatric Cardiology, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Weijie Li
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jimin Liang
- School of Electronic Engineering, Xidian University, Xi’an, China
| | - Feng Cao
- Department of Geriatric Cardiology, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Wahyuningrum RT, Purnama IKE, Verkerke GJ, van Ooijen PMA, Purnomo MH. A novel method for determining the Femoral-Tibial Angle of Knee Osteoarthritis on X-ray radiographs: data from the Osteoarthritis Initiative. Heliyon 2020; 6:e04433. [PMID: 32775740 PMCID: PMC7404555 DOI: 10.1016/j.heliyon.2020.e04433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 05/26/2019] [Accepted: 07/09/2020] [Indexed: 11/01/2022] Open
Abstract
Femoral-tibial alignment is a prominent risk factor for Knee Osteoarthritis (KOA) incidence and progression. One way of assessing alignment is by determining the Femoral-Tibial Angle (FTA). Several studies have investigated FTA determination; however, methods of assessment of FTA still present challenges. This paper introduces a new method for semi-automatic measurement of FTA as part of KOA research. Our novel approach combines preprocessing of X-ray images and the use of Active Shape Model (ASM) as the femoral and tibial segmentation method, followed by a thinning process. The result of the thinning process is used to predict FTA automatically by measuring the angle between the intersection of the two vectors of branching points on the femoral and tibial areas. The proposed method is trained on 10 x-ray images and tested on 50 different x-ray images of the Osteoarthritis Initiative (OAI) dataset. The outcomes of this approach were compared with manually obtained FTA measurements from the OAI dataset as the ground truth. Based on experiments, the difference in measurement results between the FTA of the OAI and the FTA obtained using our method is quite small, i.e., below 0.81° for the right FTA and below 0.77° for the left FTA with minimal average errors. This result indicates that this method is clinically suitable for semi-automatic measurement of the FTA.
Collapse
Affiliation(s)
- Rima Tri Wahyuningrum
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.,Department of Informatics, Universitas Trunojoyo Madura, Bangkalan, Indonesia
| | - I Ketut Eddy Purnama
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.,Department of Computer Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Gijsbertus Jacob Verkerke
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, the Netherlands.,Department of Biomechanical Engineering, University of Twente, the Netherlands
| | - Peter M A van Ooijen
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Mauridhi Hery Purnomo
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.,Department of Computer Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.,The Science and Technology Center of Artificial Intelligence for Healthcare and Society (PUI AI HeS), Indonesia
| |
Collapse
|
3
|
Khalil A, Ng SC, Liew YM, Lai KW. An Overview on Image Registration Techniques for Cardiac Diagnosis and Treatment. Cardiol Res Pract 2018; 2018:1437125. [PMID: 30159169 PMCID: PMC6109558 DOI: 10.1155/2018/1437125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/05/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Image registration has been used for a wide variety of tasks within cardiovascular imaging. This study aims to provide an overview of the existing image registration methods to assist researchers and impart valuable resource for studying the existing methods or developing new methods and evaluation strategies for cardiac image registration. For the cardiac diagnosis and treatment strategy, image registration and fusion can provide complementary information to the physician by using the integrated image from these two modalities. This review also contains a description of various imaging techniques to provide an appreciation of the problems associated with implementing image registration, particularly for cardiac pathology intervention and treatments.
Collapse
Affiliation(s)
- Azira Khalil
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Faculty of Science and Technology, Islamic Science University of Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Siew-Cheok Ng
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yih Miin Liew
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|