1
|
Azcona JA, Wacker AS, Lee CH, Fung EK, Jeitner TM, Manzo OL, Lorenzo AD, Babich JW, Amor-Coarasa A, Kelly JM. 2-[ 18F]Fluoropropionic Acid PET Imaging of Doxorubicin-induced Cardiotoxicity. RESEARCH SQUARE 2024:rs.3.rs-4876095. [PMID: 39483906 PMCID: PMC11527236 DOI: 10.21203/rs.3.rs-4876095/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Purpose Treatment of pediatric cancers with doxorubicin is a common and predictable cause of cardiomyopathy. Early diagnosis of treatment-induced cardiotoxicity and intervention are major determinants for the prevention of advanced disease. The onset of cardiomyopathies is often accompanied by profound changes in lipid metabolism, including an enhanced uptake of short-chain fatty acids (SCFA). Therefore, we explored the utility of 2-[18F]fluoropropionic acid ([18F]FPA), an SCFA analog, as an imaging biomarker of cardiac injury in mice exposed to doxorubicin. Procedures: Cardiotoxicity and cardiac dysfunction were induced in mice by an 8-dose regimen of doxorubicin (cumulative dose 24 mg/kg) administered over 14 days. The effects of doxorubicin exposure were assessed by measurement of heart weights, left ventricular ejection fractions, and blood cardiac troponin levels. Whole body and cardiac [18F]FPA uptakes were determined by PET and tissue gamma counting in the presence or absence of AZD3965, a pharmacological inhibitor of monocarboxylate transporter 1 (MCT1). Radiation absorbed doses were estimated using tissue time-activity concentrations. Results Significantly higher cardiac [18F]FPA uptake was observed in doxorubicin-treated animals. This uptake remained constant from 30 min to 120 min post-injection. Pharmacological inhibition of MCT1-mediated transport by AZD3965 selectively decreased the uptake of [18F]FPA in tissues other than the heart. Co-administration of [18F]FPA and AZD3965 enhanced the imaging contrast of the diseased heart while reducing overall exposure to radioactivity. Conclusions [18F]FPA, especially when co-administered with AZD3965, is a new tool for imaging changes in fatty acid metabolism occurring in response to doxorubicin-induced cardiomyopathy by PET.
Collapse
Affiliation(s)
- Juan A Azcona
- Weill Cornell Medical College: Weill Cornell Medicine
| | - Anja S Wacker
- Weill Cornell Medical College: Weill Cornell Medicine
| | - Chul-Hee Lee
- Weill Cornell Medical College: Weill Cornell Medicine
| | - Edward K Fung
- Weill Cornell Medical College: Weill Cornell Medicine
| | | | | | | | - John W Babich
- Weill Cornell Medical College: Weill Cornell Medicine
| | | | - James M Kelly
- Weill Cornell Medical College: Weill Cornell Medicine
| |
Collapse
|
2
|
De Martino M, Daviaud C, Minns HE, Lazarian A, Wacker A, Costa AP, Attarwala N, Chen Q, Choi SW, Rabadàn R, McIntire LBJ, Gartrell RD, Kelly JM, Laiakis EC, Vanpouille-Box C. Radiation therapy promotes unsaturated fatty acids to maintain survival of glioblastoma. Cancer Lett 2023; 570:216329. [PMID: 37499741 DOI: 10.1016/j.canlet.2023.216329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Radiation therapy (RT) is essential for the management of glioblastoma (GBM). However, GBM frequently relapses within the irradiated margins, thus suggesting that RT might stimulate mechanisms of resistance that limits its efficacy. GBM is recognized for its metabolic plasticity, but whether RT-induced resistance relies on metabolic adaptation remains unclear. Here, we show in vitro and in vivo that irradiated GBM tumors switch their metabolic program to accumulate lipids, especially unsaturated fatty acids. This resulted in an increased formation of lipid droplets to prevent endoplasmic reticulum (ER) stress. The reduction of lipid accumulation with genetic suppression and pharmacological inhibition of the fatty acid synthase (FASN), one of the main lipogenic enzymes, leads to mitochondrial dysfunction and increased apoptosis of irradiated GBM cells. Combination of FASN inhibition with focal RT improved the median survival of GBM-bearing mice. Supporting the translational value of these findings, retrospective analysis of the GLASS consortium dataset of matched GBM patients revealed an enrichment in lipid metabolism signature in recurrent GBM compared to primary. Overall, these results demonstrate that RT drives GBM resistance by generating a lipogenic environment permissive to GBM survival. Targeting lipid metabolism might be required to develop more effective anti-GBM strategies.
Collapse
Affiliation(s)
- Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Camille Daviaud
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Hanna E Minns
- Department of Pediatrics, Pediatrics Hematology/Oncology/Stem Cell Transplant, Columbia University Irving Medical Center, New York, NY, USA
| | - Artur Lazarian
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Anja Wacker
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Ana Paula Costa
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Seung-Won Choi
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Raùl Rabadàn
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Robyn D Gartrell
- Department of Pediatrics, Pediatrics Hematology/Oncology/Stem Cell Transplant, Columbia University Irving Medical Center, New York, NY, USA
| | - James M Kelly
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Evagelia C Laiakis
- Department of Oncology, Georgetown University, Washington, DC, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Peng Q, Hao LY, Guo YL, Zhang ZQ, Ji JM, Xue Y, Liu YW, Lu JL, Li CG, Shi XL. Solute carrier family 2 members 1 and 2 as prognostic biomarkers in hepatocellular carcinoma associated with immune infiltration. World J Clin Cases 2022; 10:3989-4019. [PMID: 35665115 PMCID: PMC9131213 DOI: 10.12998/wjcc.v10.i13.3989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/17/2021] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Metabolic reprogramming has been identified as a core hallmark of cancer. Solute carrier family 2 is a major glucose carrier family. It consists of 14 members, and we mainly study solute carrier family 2 member 1 (SLC2A1) and solute carrier family 2 member 2 (SLC2A2) here. SLC2A1, mainly existing in human erythrocytes, brain endothelial cells, and normal placenta, was found to be increased in hepatocellular carcinoma (HCC), while SLC2A2, the major transporter of the normal liver, was decreased in HCC.
AIM To identify if SLC2A1 and SLC2A2 were associated with immune infiltration in addition to participating in the metabolic reprogramming in HCC.
METHODS The expression levels of SLC2A1 and SLC2A2 were tested in HepG2 cells, HepG215 cells, and multiple databases. The clinical characteristics and survival data of SLC2A1 and SLC2A2 were examined by multiple databases. The correlation between SLC2A1 and SLC2A2 was analyzed by multiple databases. The functions and pathways in which SLC2A1, SLC2A2, and frequently altered neighbor genes were involved were discussed in String. Immune infiltration levels and immune marker genes associated with SLC2A1 and SLC2A2 were discussed from multiple databases.
RESULTS The expression level of SLC2A1 was up-regulated, but the expression level of SLC2A2 was down-regulated in HepG2 cells, HepG215 cells, and liver cancer patients. The expression levels of SLC2A1 and SLC2A2 were related to tumor volume, grade, and stage in HCC. Interestingly, the expression levels of SLC2A1 and SLC2A2 were negatively correlated. Further, high SLC2A1 expression and low SLC2A2 expression were linked to poor overall survival and relapse-free survival. SLC2A1, SLC2A2, and frequently altered neighbor genes played a major role in the occurrence and development of tumors. Notably, SLC2A1 was positively correlated with tumor immune infiltration, while SLC2A2 was negatively correlated with tumor immune infiltration. Particularly, SLC2A2 methylation was positively correlated with lymphocytes.
CONCLUSION SLC2A1 and SLC2A2 are independent therapeutic targets for HCC, and they are quintessential marker molecules for predicting and regulating the number and status of immune cells in HCC.
Collapse
Affiliation(s)
- Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Li-Yuan Hao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Ying-Lin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Zhi-Qin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Jing-Min Ji
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Yi-Wei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Jun-Lan Lu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Cai-Ge Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Xin-Li Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| |
Collapse
|
4
|
Kelly JM, Jeitner TM, Waterhouse NN, Qu W, Linstad EJ, Samani B, Williams C, Nikolopoulou A, Amor-Coarasa A, DiMagno SG, Babich JW. Synthesis and Evaluation of 11C-Labeled Triazolones as Probes for Imaging Fatty Acid Synthase Expression by Positron Emission Tomography. Molecules 2022; 27:1552. [PMID: 35268652 PMCID: PMC8911806 DOI: 10.3390/molecules27051552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
Cancer cells require lipids to fulfill energetic, proliferative, and signaling requirements. Even though these cells can take up exogenous fatty acids, the majority exhibit a dependency on de novo fatty acid synthesis. Fatty acid synthase (FASN) is the rate-limiting enzyme in this process. Expression and activity of FASN is elevated in multiple cancers, where it correlates with disease progression and poor prognosis. These observations have sparked interest in developing methods of detecting FASN expression in vivo. One promising approach is the imaging of radiolabeled molecular probes targeting FASN by positron emission tomography (PET). However, although [11C]acetate uptake by prostate cancer cells correlates with FASN expression, no FASN-specific PET probes currently exist. Our aim was to synthesize and evaluate a series of small molecule triazolones based on GSK2194069, an FASN inhibitor with IC50 = 7.7 ± 4.1 nM, for PET imaging of FASN expression. These triazolones were labeled with carbon-11 in good yield and excellent radiochemical purity, and binding to FASN-positive LNCaP cells was significantly higher than FASN-negative PC3 cells. Despite these promising characteristics, however, these molecules exhibited poor in vivo pharmacokinetics and were predominantly retained in lymph nodes and the hepatobiliary system. Future studies will seek to identify structural modifications that improve tumor targeting while maintaining the excretion profile of these first-generation 11C-methyltriazolones.
Collapse
Affiliation(s)
- James M. Kelly
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
| | - Thomas M. Jeitner
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
| | - Nicole N. Waterhouse
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
| | - Wenchao Qu
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
| | - Ethan J. Linstad
- Departments of Medicinal Chemistry & Pharmacognosy and Chemistry, University of Illinois-Chicago, Chicago, IL 60612, USA; (E.J.L.); (B.S.); (S.G.D.)
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Banafshe Samani
- Departments of Medicinal Chemistry & Pharmacognosy and Chemistry, University of Illinois-Chicago, Chicago, IL 60612, USA; (E.J.L.); (B.S.); (S.G.D.)
| | - Clarence Williams
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
| | - Anastasia Nikolopoulou
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
| | - Alejandro Amor-Coarasa
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
| | - Stephen G. DiMagno
- Departments of Medicinal Chemistry & Pharmacognosy and Chemistry, University of Illinois-Chicago, Chicago, IL 60612, USA; (E.J.L.); (B.S.); (S.G.D.)
| | - John W. Babich
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
5
|
Zhang Z, Liu S, Ma H, Xiang X, Nie D, Hu P, Tang G. Propionic Acid-Based PET Imaging of Prostate Cancer. Mol Imaging Biol 2021; 23:836-845. [PMID: 33876336 DOI: 10.1007/s11307-021-01608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE This study aimed to evaluate the potential value of 2-[18F]fluoropropionic acid ([18F]FPA) for PET imaging of prostate cancer (PCa) and to explore the relationship between [18F]FPA accumulation and fatty acid synthase (FASN) levels in PCa models. The results of the first [18F]FPA PET study of a PCa patient are reported. PROCEDURES The LNCaP, PC-3 cell lines with high FASN expression, and DU145 cell lines with low FASN expression were selected for cell culture. A PET imaging comparison of [18F]FDG and [18F]FPA was performed in LNCaP, PC-3, and DU145 tumors. Additionally, in vivo inhibition experiments in those models were conducted with orlistat. In a human PET study, a patient with PCa before surgery was examined with [18F]FPA PET and [18F]FDG PET. RESULTS The uptake of [18F]FPA in the LNCaP and PC-3 tumors was higher than that of [18F]FDG (P<0.05 and P<0.05), but was lower in DU145 tumors (P<0.05). The accumulation (% ID/g) of [18F]FPA in the LNCaP, PC-3, and DU145 tumors decreased by 27.6, 40.5, and 11.7 %, respectively, after treatment with orlistat. The [18F]FPA showed higher radioactive uptake than [18F]FDG in the first PCa patient. CONCLUSIONS The [18F]FPA uptake in PCa models may be varies with fatty acid synthase activity and could be reduced after administration of a single FASN inhibitor, albeit the activity that is not measured directly. The [18F]FPA seems to be a potential broad-spectrum PET imaging agent and may serve as a valuable tool in the diagnosis of PCa in humans.
Collapse
Affiliation(s)
- Zhanwen Zhang
- Department of Nuclear Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.,Department of Nuclear Medicine and Medical Imaging, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shaoyu Liu
- Department of Nuclear Medicine and Medical Imaging, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hui Ma
- Department of Nuclear Medicine and Medical Imaging, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xianhong Xiang
- Department of Nuclear Medicine and Medical Imaging, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dahong Nie
- Department of Nuclear Medicine and Medical Imaging, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ping Hu
- Department of Nuclear Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| | - Ganghua Tang
- Department of Nuclear Medicine and Medical Imaging, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,Nanfang PET Center and Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Zhao J, Chen S, Zhu L, Zhang L, Liu J, Xu D, Tian G, Jiang T. Antitumor Effect and Immune Response of Nanosecond Pulsed Electric Fields in Pancreatic Cancer. Front Oncol 2021; 10:621092. [PMID: 33634030 PMCID: PMC7900424 DOI: 10.3389/fonc.2020.621092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/21/2020] [Indexed: 01/05/2023] Open
Abstract
Nanosecond pulsed electric fields (nsPEFs) have emerged as a novel and effective strategy for the non-surgical and minimally invasive removal of tumors. However, the effects of nsPEFs treatment on the tumor immune microenvironment remain unknown. In this study, the changes in the morphology and function of pancreatic cancer cells after nsPEFs were assessed and the modifications in the immune profile in pancreatic cancer models were investigated. To this end, electrodes were inserted with different parameters applied to ablate the targeted tumor tissues. Tumor development was found to be inhibited, with decreased volumes post-nsPEFs treatment compared with control tumors (P < 0.05). Hematoxylin and eosin staining showed morphological changes in pancreatic cancer cells, Ki-67 staining confirmed the effects of nsPEFs on tumor growth, and caspase-3 staining indicated that nsPEFs caused apoptosis in the early stages after treatment. Three days after nsPEFs, positron emission tomography demonstrated little residual metabolic activity compared with the control group. Gene expression profiling identified significant changes in immune-related pathways. After treatment with nsPEFs, CD8+ T lymphocytes increased. We showed that nsPEFs led to a significant decrease in immune suppressive cells, including myeloid derived suppressor cells, T regulatory cells, and tumor-associated macrophages. In addition, the levels of TNF-α and IL-1β increased (P < 0.05), while the level of IL-6 was decreased (P < 0.05). NsPEFs alleviated the immunosuppressive components in pancreatic cancer stroma, including hyaluronic acid and fibroblast activation protein-α. Our data demonstrate that tumor growth can be effectively inhibited by nsPEFs in vivo. NsPEFs significantly altered the infiltration of immune cells and triggered immune response.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Shuochun Chen
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Zhu
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Zhang
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingqi Liu
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Danxia Xu
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guo Tian
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tian'an Jiang
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| |
Collapse
|
7
|
Wang W, Wei C. Advances in the early diagnosis of hepatocellular carcinoma. Genes Dis 2020; 7:308-319. [PMID: 32884985 PMCID: PMC7452544 DOI: 10.1016/j.gendis.2020.01.014] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/10/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers globally. In contrast to the declining death rates observed for all other common cancers such as breast, lung, and prostate cancers, the death rates for HCC continue to increase by ~2–3% per year because HCC is frequently diagnosed late and there is no curative therapy for an advanced HCC. The early diagnosis of HCC is truly a big challenge. Over the past years, the early diagnosis of HCC has relied on surveillance with ultrasonography (US) and serological assessments of alpha-fetoprotein (AFP). However, the specificity and sensitivity of US/AFP is not satisfactory enough to detect early onset HCC. Recent technological advancements offer hope for early HCC diagnosis. Herein, we review the progress made in HCC diagnostics, with a focus on emerging imaging techniques and biomarkers for early disease diagnosis.
Collapse
Affiliation(s)
- Weiyi Wang
- Xiamen Amplly Bio-engineering Co., Ltd, Xiamen, PR China
| | - Chao Wei
- Xiamen Amplly Bio-engineering Co., Ltd, Xiamen, PR China
| |
Collapse
|
8
|
Validation of R-2-[18F]Fluoropropionic Acid as a Potential Tracer for PET Imaging of Liver Cancer. Mol Imaging Biol 2019; 21:1127-1137. [DOI: 10.1007/s11307-019-01346-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|