1
|
Bacevich BM, Smith RDJ, Reihl AM, Mazzocca AD, Hutchinson ID. Advances with Platelet-Rich Plasma for Bone Healing. Biologics 2024; 18:29-59. [PMID: 38299120 PMCID: PMC10827634 DOI: 10.2147/btt.s290341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Despite significant advances in the understanding and delivery of osteosynthesis, fracture non-union remains a challenging clinical problem in orthopaedic surgery. To bridge the gap, basic science characterization of fracture healing provides a platform to identify and target biological strategies to enhance fracture healing. Of immense interest, Platelet-rich plasma (PRP) is a point of care orthobiologic that has been extensively studied in bone and soft tissue healing given its relative ease of translation from the benchtop to the clinic. The aim of this narrative review is to describe and relate pre-clinical in-vitro and in-vivo findings to clinical observations investigating the efficacy of PRP to enhance bone healing for primary fracture management and non-union treatment. A particular emphasis is placed on the heterogeneity of PRP preparation techniques, composition, activation strategies, and delivery. In the context of existing data, the routine use of PRP to enhance primary fracture healing and non-union management cannot be supported. However, it is acknowledged that extensive heterogeneity of PRP treatments in clinical studies adds obscurity; ultimately, refinement (and consensus) of PRP treatments for specific clinical indications, including repetition studies are warranted.
Collapse
Affiliation(s)
- Blake M Bacevich
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| | - Richard David James Smith
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| | - Alec M Reihl
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| | - Augustus D Mazzocca
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
- Medical Director, Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Brigham, Boston, MA, USA
| | - Ian D Hutchinson
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| |
Collapse
|
2
|
Lee JS, Chowdhury N, Roberts JS, Yilmaz Ö. Host surface ectonucleotidase-CD73 and the opportunistic pathogen, Porphyromonas gingivalis, cross-modulation underlies a new homeostatic mechanism for chronic bacterial survival in human epithelial cells. Virulence 2021; 11:414-429. [PMID: 32419582 PMCID: PMC7239027 DOI: 10.1080/21505594.2020.1763061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cell surface nucleotide-metabolizing enzyme, ectonucleotidase-CD73, has emerged as a central component of the cellular homeostatic-machinery that counterbalances the danger-molecule (extracellular-ATP)-driven proinflammatory response in immune cells. While the importance of CD73 in microbial host fitness and symbiosis is gradually being unraveled, there remains a significant gap in knowledge of CD73 and its putative role in epithelial cells. Here, we depict a novel host-pathogen adaptation mechanism where CD73 takes a center role in the intracellular persistence of Porphyromonas gingivalis, a major colonizer of oral mucosa, using human primary gingival epithelial cell (GEC) system. Temporal analyses revealed, upon invasion into the GECs, P. gingivalis can significantly elevate the host-surface CD73 activity and expression. The enhanced and active CD73 significantly increases P. gingivalis intracellular growth in the presence of substrate-AMP and simultaneously acts as a negative regulator of reactive oxygen species (ROS) generation upon eATP treatment. The inhibition of CD73 by siRNA or by a specific inhibitor markedly increases ROS production. Moreover, CD73 and P. gingivalis cross-signaling significantly modulates pro-inflammatory interleukin-6 (IL-6) in the GECs. Conversely, exogenous treatment of the infected GECs with IL-6 suppresses the intracellular bacteria via amplified ROS generation. However, the decreased bacterial levels can be restored by overexpressing functionally active CD73. Together, these findings illuminate how the local extracellular-purine-metabolism, in which CD73 serves as a core molecular switch, can alter intracellular microbial colonization resistance. Further, host-adaptive pathogens such as P. gingivalis can target host ectonucleotidases to disarm specific innate defenses for successful intracellular persistence in mucosal epithelia.
Collapse
Affiliation(s)
- Jaden S Lee
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Nityananda Chowdhury
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - JoAnn S Roberts
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Özlem Yilmaz
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA.,Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
3
|
Ramos-Junior ES, Pedram M, Lee RE, Exstrom D, Yilmaz Ö, Coutinho-Silva R, Ojcius DM, Morandini AC. CD73-dependent adenosine dampens interleukin-1β-induced CXCL8 production in gingival fibroblasts: Association with heme oxygenase-1 and adenosine monophosphate-activated protein kinase. J Periodontol 2019; 91:253-262. [PMID: 31347162 DOI: 10.1002/jper.19-0137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/30/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND During inflammation, stressed or infected cells can release adenosine triphosphate (ATP) to the extracellular medium, which can be hydrolyzed to adenosine by ectonucleotidases such as ectonucleoside triphosphate diphosphohydrolase 1 (CD39) and 5'-nucleotidase (CD73). The role of CD73 in the modulation of cytokine release by human gingival fibroblasts (HGFs) remains underexplored. Here, we investigated whether CD73-mediated hydrolysis of extracellular ATP (eATP) could affect interleukin (IL)-1β-induced CXCL8 secretion. METHODS The levels of mRNA expression of adenosine receptors, CD39 and CD73 of periodontitis samples were retrieved from a public database. Moreover, HGF mRNA levels were measured by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) after 3, 6, or 24 hours of IL-1β stimulation. IL-1β-induced CXCL8 protein levels were measured after pretreatment with 100-µM eATP in the presence or absence of CD73 inhibitor. The effect of eATP degradation to adenosine on CXCL8 levels was investigated using agonist and antagonist of adenosine receptors. RESULTS Levels of CD39, CD73, and adenosine receptor mRNA were differentially modulated by IL-1β. ATP pretreatment impaired IL-1β-induced CXCL8 secretion and required activation of heme oxygenase-1 (HO-1) and phosphorylated adenosine monophosphate-activated protein kinase (pAMPK). The inhibition of CD73 or the inhibition of adenosine receptors abrogated the ATP effect on CXCL8 secretion. CONCLUSIONS CD73-generated adenosine dampens IL-1β-induced CXCL8 in HGFs and involves HO-1 and pAMPK signaling. These results imply that CD73 is a negative regulator of the inflammatory microenvironment, suggesting that this ectoenzyme could be involved in the generation of deficient CXCL8 gradient in chronic inflammation.
Collapse
Affiliation(s)
- Erivan Schnaider Ramos-Junior
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| | - Michael Pedram
- Doctor of Dental Surgery Program, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| | - Renee E Lee
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA.,College of Letters & Sciences, University of California, Berkeley, CA, USA
| | - Drake Exstrom
- Doctor of Dental Surgery Program, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| | - Özlem Yilmaz
- Department of Oral Health Sciences and Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Robson Coutinho-Silva
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - David M Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| | - Ana Carolina Morandini
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| |
Collapse
|
4
|
Patel S, Rauf A, Meher BR. In silico analysis of ChtBD3 domain to find its role in bacterial pathogenesis and beyond. Microb Pathog 2017; 110:519-526. [PMID: 28760454 DOI: 10.1016/j.micpath.2017.07.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022]
Abstract
Chitin binding domain 3, known by the acronym ChtBD3, is a domain in the enzymes and proteins of several pathogenic virus, bacteria and fungi. As this domain is evolutionarily-conserved in virulence factors of these infectious agents, its detailed investigation is of clinical interest. In this regard, the current in silico study analyzed ChtBD3 domain distribution in bacterial proteins present in publicly-available SMART (simple modular architecture research tool) database. Also, the co-occurring domains of ChtBD3 in the studied proteins were mapped to understand positional rearrangement of the domain and consequent functional diversity. Custom-made scripts were used to interpret the data and to derive patterns. As expected, interesting results were obtained. ChtBD3 domain co-occurred with other critical domains like peptidase, glycol_hydrolase, kinase, hemagglutinin-acting, collagen-binding, among others. The findings are expected to be of clinical relevance.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, 92182, USA.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Biswa Ranjan Meher
- Centre for Life Sciences, Central University of Jharkhand, Brambe, Ranchi, 835205, Jharkhand, India
| |
Collapse
|
5
|
CD73 on B16F10 melanoma cells in CD73-deficient mice promotes tumor growth, angiogenesis, neovascularization, macrophage infiltration and metastasis. Int J Biochem Cell Biol 2015; 69:1-10. [DOI: 10.1016/j.biocel.2015.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/20/2015] [Accepted: 10/07/2015] [Indexed: 11/21/2022]
|
6
|
Lin CS, Xin ZC, Dai J, Lue TF. Commonly used mesenchymal stem cell markers and tracking labels: Limitations and challenges. Histol Histopathol 2013; 28:1109-16. [PMID: 23588700 DOI: 10.14670/hh-28.1109] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early observations that cultured mesenchymal stem cells (MSCs) could be induced to exhibit certain characteristics of osteocytes and chondrocytes led to the proposal that they could be transplanted for tissue repair through cellular differentiation. Therefore, many subsequent preclinical studies with transplanted MSCs have strived to demonstrate that cellular differentiation was the underlying mechanism for the therapeutic effect. These studies generally followed the minimal criteria set by The International Society for Cellular Therapy in assuring MSC identity by using CD70, CD90, and CD105 as positive markers and CD34 as a negative marker. However, the three positive markers are co-expressed in a wide variety of cells, and therefore, even when used in combination, they are certainly incapable of identifying MSCs in vivo. Another frequently used MSC marker, Stro-1, has been shown to be an endothelial antigen and whether it can identify MSCs in vivo remains unknown. On the other hand, the proposed negative marker CD34 has increasingly been shown to be expressed in native MSCs, such as in the adipose tissue. It has also helped establish that MSCs are likely vascular stem cells (VSCs) that reside in the capillaries and in the adventitia of larger blood vessels. These cells do not express CD31, CD104b, or α-SMA, and therefore are designated as CD34+CD31-CD140b-SMA-. Many preclinical MSC transplantation studies have also attempted to demonstrate cellular differentiation by using labeled MSCs. However, all commonly used labels have shortcomings that often complicate data interpretation. The β-gal (LacZ) gene as a label is problematic because many mammalian tissues have endogenous β-gal activities. The GFP gene is similarly problematic because many mammalian tissues are endogenously fluorescent. The cell membrane label DiI can be adsorbed by host cells, and nuclear stains Hoechst dyes and DAPI can be transferred to host cells. Thymidine analog BrdU is associated with loss of cellular protein antigenicity due to harsh histological conditions. Newer thymidine analog EdU is easier to detect by chemical reaction to azide-conjugated Alexa fluors, but certain bone marrow cells are reactive to these fluors in the absence of EdU. These caveats need to be taken into consideration when designing or interpreting MSC transplantation experiments.
Collapse
Affiliation(s)
- Ching-Shwun Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California 94143-0738, USA.
| | | | | | | |
Collapse
|
7
|
Research progress in the mechanism of effect of PRP in bone deficiency healing. ScientificWorldJournal 2013; 2013:134582. [PMID: 23710132 PMCID: PMC3654280 DOI: 10.1155/2013/134582] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/27/2013] [Indexed: 12/19/2022] Open
Abstract
Platelet-rich plasma (PRP) therapy is a recently developed technique that uses a concentrated portion of autologous blood to try to improve and accelerate the healing of various tissues. There is a considerable interest in using these PRP products for the treatment used in bone deficiency healing. Because PRP products are safe and easy to prepare and administer, there has been increased attention toward using PRP in numerous clinical settings. The benefits of PRP therapy appear to be promising, and many investigators are exploring the ways in which this therapy can be used in the clinical setting. At present, the molecular mechanisms of bone defect repair studies have focused on three aspects of the inflammatory cytokines, growth factors and angiogenic factors. The role of PRP works mainly through these three aspects of bone repair. The purpose of this paper is to review the current evidence on the mechanism of the effect of PRP in bone deficiency healing.
Collapse
|
8
|
Bitto A, Oteri G, Pisano M, Polito F, Irrera N, Minutoli L, Squadrito F, Altavilla D. Adenosine receptor stimulation by polynucleotides (PDRN) reduces inflammation in experimental periodontitis. J Clin Periodontol 2012; 40:26-32. [PMID: 23033941 DOI: 10.1111/jcpe.12010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2012] [Indexed: 11/29/2022]
Abstract
AIM Adenosine receptors modulate inflammation in periodontal tissues. No data are available regarding the effects of adenosine A(2A) receptor stimulation in experimental periodontitis (EPD). The aim of this study was to investigate the effects of polynucleotides (also known as polydeoxyribonucleotide, PDRN), a ligand of A(2A) receptor, in EPD in rats. MATERIALS AND METHODS EPD was induced ligating the cervix of the lower left first molar. Sham-EPD had no ligature. After 7 days, EPD animals were randomized to a daily treatment with vehicle gel or 0.75% PDRN gel or PDRN gel with a specific A(2A) antagonist (DMPX). Treatments lasted 7 days. Animals were then euthanized and the periodontium and surrounding gingival tissue were excised for histological evaluation and bio-molecular analysis of inflammatory (p-JNK, p-ERK, TNF-α, IL-6, HMGB-1) and apoptotic proteins (BAX and Bcl-2). RESULTS Vehicle-treated EPD rats showed severe inflammatory infiltrate in both gingival and periodontal ligament, as well as an enhanced expression of p-JNK, p-ERK, TNF-α, IL-6, HMGB-1 and BAX and a reduction in Bcl-2. PDRN gel restored the histological features, blunted inflammatory and apoptotic proteins expression and preserved Bcl-2 expression. DMPX abrogated PDRN positive effects. CONCLUSION Our data suggest that adenosine receptor stimulation by PDRN might represent a new therapeutic strategy for periodontitis.
Collapse
Affiliation(s)
- Alessandra Bitto
- Department of Experimental and Clinical Medicine and Pharmacology, Section of Pharmacology, University of Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Hara Y, Kuroda N, Inoue K, Sato T. Up-regulation of vascular endothelial growth factor expression by adenosine through adenosine A2 receptors in the rat tongue treated with endotoxin. Arch Oral Biol 2009; 54:932-42. [PMID: 19712927 DOI: 10.1016/j.archoralbio.2009.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 05/12/2009] [Accepted: 07/27/2009] [Indexed: 11/16/2022]
Abstract
The main focus of the present investigation is to evaluate a differential effect of adenosine on the up-regulation of vascular endothelial growth factor (VEGF) expression through adenosine A(2) receptors in the rat tongue treated with endotoxin (lipopolysaccharide: LPS). Angiogenesis in the rat tongue treated with LPS/incomplete Freund's adjuvant (IFA) or endotoxin/IFA/adenosine A(2) receptor (A(2)R) antagonists was examined using immunohistochemistry for LYVE-1, ED1, ED2, OX6, langerin and VEGF, and real-time polymerase chain reaction (PCR) for VEGF. The distributional density of both blood vessels and OX6(+) cells was significantly increased at day 8 after injection of LPS/IFA. The immunoreactive products of VEGF were intensely labelled in the cytoplasm of various antigen presenting cells (APCs) including dendritic cells (DCs) with double-immunofluorescence technique. Increase in VEGF mRNA expression level, the occupancy ratio of blood vessels, and the number of ED1(+), ED2(+), OX6(+), and langerin(+) cells was inhibited in the injured tongue of rats as a consequence of the treatment with A(2)R antagonists. The present results indicate that the LPS-induced adenosine might promote angiogenesis by the up-regulation of VEGF expression in macrophages/DCs through A(2) receptors. This suggests that the synergistic interaction between toll-like receptor (TLR) and A(2) receptor signalling observed in vivo plays an important role in oral mucosal wound healing.
Collapse
Affiliation(s)
- Yaiko Hara
- Department of Anatomy II, Tsurumi University School of Dental Medicine, Tsurumi-ku, Yokohama 230-8501, Japan
| | | | | | | |
Collapse
|
10
|
Guo Y, Ramachandran C, Satpathy M, Srinivas SP. Histamine-induced myosin light chain phosphorylation breaks down the barrier integrity of cultured corneal epithelial cells. Pharm Res 2007; 24:1824-33. [PMID: 17479229 DOI: 10.1007/s11095-007-9309-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 04/02/2007] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate changes in the phosphorylation of myosin light chain (MLC) in response to histamine and its effect on the barrier integrity of corneal epithelial cells. MATERIALS AND METHODS Experiments were performed in bovine corneal epithelial cells (BCEC). RT-PCR and Western blotting were employed to characterize expression of H1 receptors and MLC kinase (MLCK). Phosphorylation of MLC was assessed by urea-glycerol gel electrophoresis and Western blotting. Barrier integrity was determined as permeability to horseradish peroxidase (HRP; 44 kDa) across monolayers grown on porous filters. RESULTS Expression of both H1 receptors and MLCK was found in BCEC. Exposure to histamine induced significant MLC phosphorylation concomitant with an increase in HRP permeability. In addition, organization of the cortical actin found in resting cells was disrupted. In contrast to histamine, ATP (a P2Y receptor agonist) induced dephosphorylation of MLC. Pre-exposure to ATP reduced the effect of histamine on HRP permeability and disruption of cortical actin. CONCLUSION MLC phosphorylation, a biochemical pre-requisite for increased contractility of the actin cytoskeleton, led to histamine-induced breakdown of the barrier integrity in the corneal epithelial cells. This is attributed to weakening of the tethering forces at the tight junctions by the centripetal forces produced by increased actin contractility.
Collapse
Affiliation(s)
- Ying Guo
- School of Optometry, Indiana University, 800 East Atwater Avenue, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
11
|
Hashikawa T, Takedachi M, Terakura M, Yamada S, Thompson L, Shimabukuro Y, Murakami S. Activation of adenosine receptor on gingival fibroblasts. J Dent Res 2006; 85:739-44. [PMID: 16861292 PMCID: PMC2225592 DOI: 10.1177/154405910608500810] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
CD73 (ecto-5'-nucleotidase) on human gingival fibroblasts plays a role in the regulation of intracellular cAMP levels through the generation of adenosine, which subsequently activates adenosine receptors. In this study, we examined the involvement of ecto-adenosine deaminase, which can be anchored to CD26 on human gingival fibroblasts, in metabolizing adenosine generated by CD73, and thus attenuating adenosine receptor activation. Ecto-adenosine deaminase expression on fibroblasts could be increased by pre-treatment with a lysate of Jurkat cells, a cell line rich in cytoplasmic adenosine deaminase. Interestingly, the cAMP response to adenosine generated from 5'-AMP via CD73 and the ability of 5'-AMP to induce hyaluronan synthase 1 mRNA were significantly decreased by the pre-treatment of fibroblasts with Jurkat cell lysate. This inhibitory effect was reversed by the specific adenosine deaminase inhibitor. These results suggest that ecto-adenosine deaminase metabolizes CD73-generated adenosine and regulates adenosine receptor activation.
Collapse
Affiliation(s)
- T. Hashikawa
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - M. Takedachi
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - M. Terakura
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - S. Yamada
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - L.F. Thompson
- Oklahoma Medical Research Foundation, Immunobiology and Cancer Program, Oklahoma City, OK 73104, USA
| | - Y. Shimabukuro
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - S. Murakami
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- corresponding author,
| |
Collapse
|
12
|
Brouwer C, Vogels-Mentink TM, Keizer-Garritsen JJ, Trijbels FJM, Bökkerink JPM, Hoogerbrugge PM, van Wering ER, Veerman AJP, De Abreu RA. Role of 5'-nucleotidase in thiopurine metabolism: enzyme kinetic profile and association with thio-GMP levels in patients with acute lymphoblastic leukemia during 6-mercaptopurine treatment. Clin Chim Acta 2005; 361:95-103. [PMID: 15990089 DOI: 10.1016/j.cccn.2005.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 04/29/2005] [Accepted: 05/02/2005] [Indexed: 11/17/2022]
Abstract
Thiopurines are used for treatment of several diseases. Cytotoxicity is caused by the derived compounds 6-thioguanine nucleotides (TGNs) and methyl-6-thioinosine monophosphate (methylthio-IMP). The 6-thiopurine mononucleotides 6-thio-IMP (thio-IMP), 6-thio-GMP (thio-GMP) and methylthio-IMP can be catabolized by purine 5'-nucleotidase. It has been shown that the various 5'-nucleotidases are key enzymes for (6-thio)-purine metabolism. We aimed to investigate whether the overall 5'-nucleotidase (5'NT) activity is correlated with the efficacy and toxicity of 6-thiopurine nucleotides. Substrate affinity of 5'NT for IMP, GMP, AMP, thio-IMP, thio-GMP and methylthio-IMP was studied in human lymphocytes. For each of the substrates, the pH for optimal overall enzyme activity has been determined at a pH range between 6 and 10. At the optimal pH, assays were performed to establish Km and Vmax values. Optimal pH values for the various substrates were between 7 and 8.5. Km values ranged from 33 to 109 microM, Vmax ranged from 3.99 to 19.5 nmol/10(6) peripheral mononuclear cells (pMNC) h, and Vmax/Km ratios ranged from 105 to 250. The results did not show a distinct preference of 5'NT activity for any of the tested thiopurine nucleotides. The enzyme kinetic studies furthermore revealed substrate inhibition by thio-IMP and thio-GMP as a substrate. Inhibition by thio-GMP also seems to occur in patients treated with 6-mercaptopurine (6 MP); subsequently, this may lead to toxicity in these patients.
Collapse
Affiliation(s)
- Connie Brouwer
- Department of Pediatrics, Division of Hemato-Oncology, University Medical Center St Radboud, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kunii R, Nemoto E, Kanaya S, Tsubahara T, Shimauchi H. Expression of CD13/aminopeptidase N on human gingival fibroblasts and up-regulation upon stimulation with interleukin-4 and interleukin-13. J Periodontal Res 2005; 40:138-46. [PMID: 15733148 DOI: 10.1111/j.1600-0765.2004.00778.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Aminopeptidase N (APN)/CD13 is a multifunctional ectoenzyme that is involved in anti-inflammatory reactions, control of immune reactions and differentiation of many cellular systems. Here, we hypothesized that CD13/APN would be expressed on human gingival fibroblasts (hGF) and would contribute to the regulation of immune responses in periodontal tissue. METHODS AND RESULTS CD13/APN was expressed on hGF at the mRNA and protein levels as determined by reverse transcriptase-polymerase chain reaction (RT-PCR) and flow cytometry, respectively. Enzymatic activities accompanying the expression were assessed by colorimetrical analysis using the synthetic substrate Leu-p-nitroanilide. We examined the possible regulation of CD13/APN expression on hGF in response to T cell-derived cytokines. T helper (Th) 2 cell type cytokines such as interleukin-4 and interleukin-13, but not interleukin-2 or interleukin-15, preferentially increased the expression of proteins as well as the enzymatic activities of CD13/APN in a dose-dependent manner. Receptors for these cytokines, the interleukin-4 receptor alpha chain, interleukin-13 receptor alpha1 chain, and interleukin-2R common gamma chain, were expressed on hGF assessed by RT-PCR or flow cytometry. hGF exhibited inhibitory effects for formyl-methionyl-leucyl-phenylalanine (FMLP)-induced polymorphonuclear leukocyte-activation that was evaluated by Mac-1 expression, and this inhibitory effect was partially recovered by pre-treatment with the APN-specific inhibitor bestatin. CONCLUSIONS These findings suggested that CD13/APN expressed by hGF could contribute to the anti-inflammatory response in periodontal tissue, and may be involved in disease processes mediated by Th2 cells.
Collapse
Affiliation(s)
- Ryotaro Kunii
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | | | | | | | | |
Collapse
|