Zhang GB, He T, Zhang N. Effects of DMTB1 over-expression on the biological behavior of esophagus carcinoma cell line EC9706.
Shijie Huaren Xiaohua Zazhi 2009;
17:1759-1763. [DOI:
10.11569/wcjd.v17.i17.1759]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish the cell line EC9706 of esophagus carcinoma with stable expression of a new candidate tumor suppressor gene DMBT1 and to analyze cell invasiveness and cell proliferation compared to the control group so as to provide any insights into the function of the newly-discovered tumor suppressor gene.
METHODS: The full-length DMBT1 expression plasmid pTRexDest30_DMBT18kb.2 was transfected into esophagus carcinoma cell line EC9706 with Lipofectamine 2000 which was subsequently screened with G418. DMBT1 transcript and protein were determined by semi-quantitative RT-PCR and Western blot; then cell growth and proliferation was evaluated with MTT; finally transwell assay was applied to evaluate the ability of its migration before and after the transfection.
RESULTS: After transfection, the levels of DMBT1 protein and mRNA were 3.2 times higher than control group. There was significant difference between transfection group and the control group. The growth curves mapped with MTT indicated that the group transfected with pTRexDest30_DMBT1 showed slower speed of proliferation versus the vector control and the untreated group. In addition, cell survival in serum-free medium was markedly inhibited compared to the vector control. Transwell assay further confirmed conspicuous discrepancy in migration (206 ± 25 vs 367 ± 42, P < 0.01), the experimental group versus the control group.
CONCLUSION: The biological model that stably expresses DMBT1 was successfully established; DMBT1 over-expression significantly inhibits the proliferation and invasive process of esophagus carcinoma cell line in vitro.
Collapse