1
|
Bhadule SN, Kalaskar RR, Doiphode A. Stress Distribution in Proclined Anterior Teeth of Pediatric Patients With and Without Mouthguard Use: A 3D Finite Element Analysis. Dent Traumatol 2024. [PMID: 39417350 DOI: 10.1111/edt.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Traumatic dental injuries related to sports are a significant concern, as they can have severe physical and psychological impacts on children. Using mouthguards is essential, particularly in sports like skating, where high-impact forces are common. AIM The study aimed to evaluate how stress is distributed on the teeth and surrounding bone in children with proclined anterior teeth when a force of 614.12 N was applied to two different regions of the jaws. The evaluation was conducted using finite element analysis (FEA), both with and without the use of a mouthguard. METHODS AND METHODOLOGY A 3-dimensional finite element analysis (FEA) model was constructed using a cone beam computed tomography (CBCT) scan of a 12-year-old male patient. An average standardized force of 614.12 N was calculated, based on the average weight of children aged 11 to 13 years and the average speed of 13.4 m/s with which the children skate. The force was applied in two different directions and areas of the jaws: a lateral blow, perpendicular to the crown and root with the maxillary and mandibular teeth in occlusion (between the first molar and second premolar), and a blow obliquely at the pogonion point on the chin. Static simulations were then performed for four realistic scenarios-two with mouthguards and two without mouthguards. RESULT The Von Mises stresses were evaluated under all conditions. When the applied force was directed laterally, the stress values observed were 126.76 MPa with a mouthguard and 140 MPa without a mouthguard. When the force was applied to the chin region, the stress values were 37.997 MPa with a mouthguard and 40.67 MPa without a mouthguard. CONCLUSION The use of a mouthguard in children is beneficial for protecting teeth and surrounding structures, especially in cases of proclined anterior teeth, as it helps dampen the generated stresses.
Collapse
Affiliation(s)
- Shivani Nagnath Bhadule
- Department of Pediatric and Preventive Dentistry, Government Dental College and Hospital, Nagpur, India
| | - Ritesh R Kalaskar
- Department of Pediatric and Preventive Dentistry, Government Dental College and Hospital, Nagpur, India
| | - Avani Doiphode
- Department of Pediatric and Preventive Dentistry, Government Dental College and Hospital, Nagpur, India
| |
Collapse
|
2
|
Barbaro F, Conza GD, Quartulli FP, Quarantini E, Quarantini M, Zini N, Fabbri C, Mosca S, Caravelli S, Mosca M, Vescovi P, Sprio S, Tampieri A, Toni R. Correlation between tooth decay and insulin resistance in normal weight males prompts a role for myo-inositol as a regenerative factor in dentistry and oral surgery: a feasibility study. Front Bioeng Biotechnol 2024; 12:1374135. [PMID: 39144484 PMCID: PMC11321979 DOI: 10.3389/fbioe.2024.1374135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Background In an era of precision and stratified medicine, homogeneity in population-based cohorts, stringent causative entry, and pattern analysis of datasets are key elements to investigate medical treatments. Adhering to these principles, we collected in vivo and in vitro data pointing to an insulin-sensitizing/insulin-mimetic effect of myo-inositol (MYO) relevant to cell regeneration in dentistry and oral surgery. Confirmation of this possibility was obtained by in silico analysis of the relation between in vivo and in vitro results (the so-called bed-to-benchside reverse translational approach). Results Fourteen subjects over the 266 screened were young adult, normal weight, euglycemic, sedentary males having normal appetite, free diet, with a regular three-times-a-day eating schedule, standard dental hygiene, and negligible malocclusion/enamel defects. Occlusal caries were detected by fluorescence videoscanning, whereas body composition and energy balance were estimated with plicometry, predictive equations, and handgrip. Statistically significant correlations (Pearson r coefficient) were found between the number of occlusal caries and anthropometric indexes predicting insulin resistance (IR) in relation to the abdominal/visceral fat mass, fat-free mass, muscular strength, and energy expenditure adjusted to the fat and muscle stores. This indicated a role for IR in affecting dentin reparative processes. Consistently, in vitro administration of MYO to HUVEC and Swiss NIH3T3 cells in concentrations corresponding to those administered in vivo to reduce IR resulted in statistically significant cell replication (ANOVA/Turkey tests), suggesting that MYO has the potential to counteract inhibitory effects of IR on dental vascular and stromal cells turnover. Finally, in in silico experiments, quantitative evaluation (WOE and information value) of a bioinformatic Clinical Outcome Pathway confirmed that in vitro trophic effects of MYO could be transferred in vivo with high predictability, providing robust credence of its efficacy for oral health. Conclusion Our reverse bed-to-benchside data indicate that MYO might antagonize the detrimental effects of IR on tooth decay. This provides feasibility for clinical studies on MYO as a regenerative factor in dentistry and oral surgery, including dysmetabolic/aging conditions, bone reconstruction in oral destructive/necrotic disorders, dental implants, and for empowering the efficacy of a number of tissue engineering methodologies in dentistry and oral surgery.
Collapse
Affiliation(s)
- Fulvio Barbaro
- Department of Medicine and Surgery - DIMEC, Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Giusy Di Conza
- Department of Medicine and Surgery - DIMEC, Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Francesca Pia Quartulli
- Department of Medicine and Surgery - DIMEC, Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Enrico Quarantini
- Odontostomatology Unit, and R&D Center for Artificial Intelligence in Biomedicine and Odontostomatology (A.I.B.O), Galliera Medical Center, San Venanzio di Galliera, Italy
| | - Marco Quarantini
- Odontostomatology Unit, and R&D Center for Artificial Intelligence in Biomedicine and Odontostomatology (A.I.B.O), Galliera Medical Center, San Venanzio di Galliera, Italy
| | - Nicoletta Zini
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
| | - Celine Fabbri
- Course on Odontostomatology, University Vita-Salute San Raffaele, Milan, Italy
| | - Salvatore Mosca
- Course on Disorders of the Locomotor System, Fellow Program in Orthopaedics and Traumatology, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvio Caravelli
- O.U. Orthopedics Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Massimiliano Mosca
- O.U. Orthopedics Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paolo Vescovi
- Department of Medicine and Surgery - DIMEC, Odontostomatology Section, University of Parma, Parma, Italy
| | | | | | - Roberto Toni
- CNR - ISSMC, Faenza, Italy
- Academy of Sciences of the Institute of Bologna, Section IV - Medical Sciences, Bologna, Italy
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic - OSTEONET (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) and R&D Center A.I.B.O, Centro Medico Galliera, San Venanzio di Galliera, Italy
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Tufts Medical Center - Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
3
|
Svandova E, Vesela B, Kratochvilova A, Holomkova K, Oralova V, Dadakova K, Burger T, Sharpe P, Lesot H, Matalova E. Markers of dental pulp stem cells in in vivo developmental context. Ann Anat 2023; 250:152149. [PMID: 37574172 DOI: 10.1016/j.aanat.2023.152149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Teeth and their associated tissues contain several populations of mesenchymal stem cells, one of which is represented by dental pulp stem cells (DPSCs). These cells have mainly been characterised in vitro and numerous positive and negati ve markers for these cells have been suggested. To investigate the presence and localization of these molecules during development, forming dental pulp was examined using the mouse first mandibular molar as a model. The stages corresponding to postnatal (P) days 0, 7, 14, and 21 were investigated. The expression was monitored using customised PCR Arrays. Additionally, in situ localization of the key trio of markers (Cd73, Cd90, Cd105 coded by genes Nt5e, Thy1, Eng) was performed at prenatal and postnatal stages using immunohistochemistry. The expression panel of 24 genes assigned as in vitro markers of DPSCs or mesenchymal stem cells (MSCs) revealed their developmental dynamics during formation of dental pulp mesenchyme. Among the positive markers, Vcam1, Fgf2, Nes were identified as increasing and Cd44, Cd59b, Mcam, Alcam as decreasing between perinatal vs. postnatal stages towards adulthood. Within the panel of negative DPSC markers, Cd14, Itgb2, Ptprc displayed increased and Cd24a decreased levels at later stages of pulp formation. Within the key trio of markers, Nt5e did not show any significant expression difference within the investigated period. Thy1 displayed a strong decrease between P0 and P7 while Eng increased between these stages. In situ localization of Cd73, Cd90 and Cd105 showed them overlap in differentiated odontoblasts and in the sub-odontoblastic layer that is speculated to host odontoblast progenitors. The highly prevalent expression of particularly Cd73 and Cd90 opens the question of potential multiple functions of these molecules. The results from this study add to the in vitro based knowledge by showing dynamics in the expression of DPSC/MSC markers during dental pulp formation in an in vivo context and thus with respect to the natural environment important for commitment of stem cells.
Collapse
Affiliation(s)
- Eva Svandova
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; Masaryk University, Brno, Czech Republic
| | - Barbora Vesela
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; Veterinary University, Brno, Czech Republic
| | | | | | - Veronika Oralova
- Institute of Animal Physiology and Genetics, Brno, Czech Republic
| | | | - Tom Burger
- Veterinary University, Brno, Czech Republic
| | - Paul Sharpe
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; King's College London, London, United Kingdom.
| | - Herve Lesot
- Institute of Animal Physiology and Genetics, Brno, Czech Republic
| | - Eva Matalova
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; Veterinary University, Brno, Czech Republic
| |
Collapse
|
4
|
Pan Y, Liu Y, Cui D, Yu S, Zhou Y, Zhou X, Du W, Zheng L, Wan M. METTL3 enhances dentinogenesis differentiation of dental pulp stem cells via increasing GDF6 and STC1 mRNA stability. BMC Oral Health 2023; 23:209. [PMID: 37041485 PMCID: PMC10088233 DOI: 10.1186/s12903-023-02836-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/23/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND The dentinogenesis differentiation of dental pulp stem cells (DPSCs) is controlled by the spatio-temporal expression of differentiation related genes. RNA N6-methyladenosine (m6A) methylation, one of the most abundant internal epigenetic modification in mRNA, influences various events in RNA processing, stem cell pluripotency and differentiation. Methyltransferase like 3 (METTL3), one of the essential regulators, involves in the process of dentin formation and root development, while mechanism of METTL3-mediated RNA m6A methylation in DPSC dentinogenesis differentiation is still unclear. METHODS Immunofluorescence staining and MeRIP-seq were performed to establish m6A modification profile in dentinogenesis differentiation. Lentivirus were used to knockdown or overexpression of METTL3. The dentinogenesis differentiation was analyzed by alkaline phosphatase, alizarin red staining and real time RT-PCR. RNA stability assay was determined by actinomycin D. A direct pulp capping model was established with rat molars to reveal the role of METTL3 in tertiary dentin formation. RESULTS Dynamic characteristics of RNA m6A methylation in dentinogenesis differentiation were demonstrated by MeRIP-seq. Methyltransferases (METTL3 and METTL14) and demethylases (FTO and ALKBH5) were gradually up-regulated during dentinogenesis process. Methyltransferase METTL3 was selected for further study. Knockdown of METTL3 impaired the DPSCs dentinogenesis differentiation, and overexpression of METTL3 promoted the differentiation. METTL3-mediated m6A regulated the mRNA stabiliy of GDF6 and STC1. Furthermore, overexpression of METTL3 promoted tertiary dentin formation in direct pulp capping model. CONCLUSION The modification of m6A showed dynamic characteristics during DPSCs dentinogenesis differentiation. METTL3-mediated m6A regulated in dentinogenesis differentiation through affecting the mRNA stability of GDF6 and STC1. METTL3 overexpression promoted tertiary dentin formation in vitro, suggesting its promising application in vital pulp therapy (VPT).
Collapse
Affiliation(s)
- Yue Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ying Liu
- Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
| | - Dixin Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Sihan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yachuan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wei Du
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Mian Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Effects of Aspirin on Odontogenesis of Human Dental Pulp Cells and TGF-β1 Liberation from Dentin In Vitro. Int J Dent 2022; 2022:3246811. [PMID: 36034475 PMCID: PMC9411001 DOI: 10.1155/2022/3246811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Aim. This in vitro study aimed to investigate the roles of aspirin (ASA) and its concentrations on the odontogenesis of human dental pulp cells (HDPCs) and to investigate the influence of ASA on TGF-β1 liberation from dentin. Methodology. HDPCs were cultured in a culture medium with 25, 50, 75, 100, and 200 μ·g/mL ASA and 0 μ·g/mL ASA as a control. The mitochondrial activity of HDPCs was assessed using an MTT assay. Crystal violet staining and triton were used to evaluate cell proliferation rates. ALP activity was measured with a fluorometric assay. Expressions of DSP and RUNX2 were determined with the ELISA. DSP and RUNX2 mRNA levels were measured with RT-qPCR. Alizarin red staining was conducted to evaluate the mineralized nodule formation. Dentin slices were submerged in PBS (negative control), 17% EDTA (positive control), and ASA before collecting the solution for TGF-β1 quantification by the ELISA. The data were analyzed by the t-tests and ANOVA, followed by the Tukey post hoc tests.
values < 0.05 were considered statistically significant. Results. The results showed that 25–50 μ·g/mL ASA promoted mitochondrial activity of HDPCs at 72 h (
) and yielded significantly higher proliferation rates of HDPCs than the control at 14d and 21d (
). All concentrations of ASA promoted odontogenic differentiation of HDPCs by enhancing the levels of DSP and RUNX2, their mRNA expression, and mineralization in a dose-dependent manner. Also, ASA yielded significantly higher TGF-β1 liberation after conditioning dentin for 5 min (25, 200 μ·g/mL;
) and 10 min (200 μ·g/mL;
). Conclusions. This in vitro study demonstrated that ASA, especially in high concentrations, promoted the odontogenesis of HDPCs and TGF-β1 liberation from dentin, showing the potential of being incorporated into the novel pulp capping materials for dental tissue regeneration.
Collapse
|
6
|
Liao C, Liang S, Wang Y, Zhong T, Liu X. Sclerostin is a promising therapeutic target for oral inflammation and regenerative dentistry. J Transl Med 2022; 20:221. [PMID: 35562828 PMCID: PMC9102262 DOI: 10.1186/s12967-022-03417-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
Sclerostin is the protein product of the SOST gene and is known for its inhibitory effects on bone formation. The monoclonal antibody against sclerostin has been approved as a novel treatment method for osteoporosis. Oral health is one of the essential aspects of general human health. Hereditary bone dysplasia syndrome caused by sclerostin deficiency is often accompanied by some dental malformations, inspiring the therapeutic exploration of sclerostin in the oral and dental fields. Recent studies have found that sclerostin is expressed in several functional cell types in oral tissues, and the expression level of sclerostin is altered in pathological conditions. Sclerostin not only exerts similar negative outcomes on the formation of alveolar bone and bone-like tissues, including dentin and cementum, but also participates in the development of oral inflammatory diseases such as periodontitis, pulpitis, and peri-implantitis. This review aims to highlight related research progress of sclerostin in oral cavity, propose necessary further research in this field, and discuss its potential as a therapeutic target for dental indications and regenerative dentistry.
Collapse
Affiliation(s)
- Chufang Liao
- School of Stomatology, Jinan University, Guangzhou, China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China.,Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shanshan Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ting Zhong
- School of Stomatology, Jinan University, Guangzhou, China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China.,Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou, China. .,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China. .,Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
7
|
The Versatile Roles of Nerve Growth Factor in Neuronal Attraction, Odontoblast Differentiation, and Mineral Deposition in Human Teeth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34453293 DOI: 10.1007/978-3-030-74046-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Nerve growth factor (NGF) is an important molecule for the development and differentiation of neuronal and non-neuronal cells. Here we analyze by immunohistochemistry the distribution of NGF in the dental pulp mesenchyme of embryonic and functional human teeth. In the dental pulp of both embryonic and healthy functional teeth, NGF is mainly expressed in the odontoblasts that are responsible for dentine formation, while in functional teeth NGF is also expressed in nerve fibers innervating the dental pulp. In injured teeth, NGF is expressed in the newly formed odontoblastic-like cells, which replace the dying odontoblasts. In these teeth, NGF expression is also upregulated in the intact odontoblasts, suggesting a role for this molecule in dental tissue repair. Similarly, in cultures of human dental pulp cells, NGF expression is strongly upregulated during their differentiation into odontoblasts as well as during the mineralization process. In microfluidic devices, release of NGF from cultured human dental pulp cells induced neuronal growth from trigeminal ganglia toward the NGF secreting cells. These results show that NGF is closely linked to the various functions of odontoblasts, including secretory and neuronal attraction processes.
Collapse
|
8
|
Andrei M, Vacaru RP, Coricovac A, Ilinca R, Didilescu AC, Demetrescu I. The Effect of Calcium-Silicate Cements on Reparative Dentinogenesis Following Direct Pulp Capping on Animal Models. Molecules 2021; 26:molecules26092725. [PMID: 34066444 PMCID: PMC8125639 DOI: 10.3390/molecules26092725] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022] Open
Abstract
Dental pulp vitality is a desideratum for preserving the health and functionality of the tooth. In certain clinical situations that lead to pulp exposure, bioactive agents are used in direct pulp-capping procedures to stimulate the dentin-pulp complex and activate reparative dentinogenesis. Hydraulic calcium-silicate cements, derived from Portland cement, can induce the formation of a new dentin bridge at the interface between the biomaterial and the dental pulp. Odontoblasts are molecularly activated, and, if necessary, undifferentiated stem cells in the dental pulp can differentiate into odontoblasts. An extensive review of literature was conducted on MedLine/PubMed database to evaluate the histological outcomes of direct pulp capping with hydraulic calcium-silicate cements performed on animal models. Overall, irrespective of their physico-chemical properties and the molecular mechanisms involved in pulp healing, the effects of cements on tertiary dentin formation and pulp vitality preservation were positive. Histological examinations showed different degrees of dental pulp inflammatory response and complete/incomplete dentin bridge formation during the pulp healing process at different follow-up periods. Calcium silicate materials have the ability to induce reparative dentinogenesis when applied over exposed pulps, with different behaviors, as related to the animal model used, pulpal inflammatory responses, and quality of dentin bridges.
Collapse
Affiliation(s)
- Mihai Andrei
- Division of Embryology, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania; (M.A.); (R.P.V.); (A.C.)
| | - Raluca Paula Vacaru
- Division of Embryology, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania; (M.A.); (R.P.V.); (A.C.)
| | - Anca Coricovac
- Division of Embryology, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania; (M.A.); (R.P.V.); (A.C.)
| | - Radu Ilinca
- Division of Biophysics, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania;
| | - Andreea Cristiana Didilescu
- Division of Embryology, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania; (M.A.); (R.P.V.); (A.C.)
- Correspondence: ; Tel.: +40-722536798
| | - Ioana Demetrescu
- Department of General Chemistry, University Politehnica Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
| |
Collapse
|
9
|
Pagella P, de Vargas Roditi L, Stadlinger B, Moor AE, Mitsiadis TA. A single-cell atlas of human teeth. iScience 2021; 24:102405. [PMID: 33997688 PMCID: PMC8099559 DOI: 10.1016/j.isci.2021.102405] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
Teeth exert fundamental functions related to mastication and speech. Despite their great biomedical importance, an overall picture of their cellular and molecular composition is still missing. In this study, we have mapped the transcriptional landscape of the various cell populations that compose human teeth at single-cell resolution, and we analyzed in deeper detail their stem cell populations and their microenvironment. Our study identified great cellular heterogeneity in the dental pulp and the periodontium. Unexpectedly, we found that the molecular signatures of the stem cell populations were very similar, while their respective microenvironments strongly diverged. Our findings suggest that the microenvironmental specificity is a potential source for functional differences between highly similar stem cells located in the various tooth compartments and open new perspectives toward cell-based dental therapeutic approaches. Dental atlas of the pulp and periodontal tissues of human teeth Identification of three common MSC subclusters between dental pulp and periodontium Dental pulp and periodontal MSCs are similar, and their niches diverge
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Orofacial Development and Regeneration, Faculty of Medicine, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | | | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, University of Zurich, Zurich, Switzerland
| | - Andreas E. Moor
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
- Corresponding author
| | - Thimios A. Mitsiadis
- Orofacial Development and Regeneration, Faculty of Medicine, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
- Corresponding author
| |
Collapse
|
10
|
Distinct Expression Patterns of Cxcl12 in Mesenchymal Stem Cell Niches of Intact and Injured Rodent Teeth. Int J Mol Sci 2021; 22:ijms22063024. [PMID: 33809663 PMCID: PMC8002260 DOI: 10.3390/ijms22063024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Specific stem cell populations within dental mesenchymal tissues guarantee tooth homeostasis and regeneration throughout life. The decision between renewal and differentiation of stem cells is greatly influenced by interactions with stromal cells and extracellular matrix molecules that form the tissue specific stem cell niches. The Cxcl12 chemokine is a general marker of stromal cells and plays fundamental roles in the maintenance, mobilization and migration of stem cells. The aim of this study was to exploit Cxcl12-GFP transgenic mice to study the expression patterns of Cxcl12 in putative dental niches of intact and injured teeth. We showed that endothelial and stromal cells expressed Cxcl12 in the dental pulp tissue of both intact molars and incisors. Isolated non-endothelial Cxcl12+ dental pulp cells cultured in different conditions in vitro exhibited expression of both adipogenic and osteogenic markers, thus suggesting that these cells possess multipotent fates. Taken together, our results show that Cxcl12 is widely expressed in intact and injured teeth and highlight its importance as a key component of the various dental mesenchymal stem cell niches.
Collapse
|
11
|
EDTA Promotes the Mineralization of Dental Pulp In Vitro and In Vivo. J Endod 2020; 47:458-465. [PMID: 33352150 DOI: 10.1016/j.joen.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Dentin regeneration is one of the main goals of vital pulp treatment in which the biological properties of dental pulp cells (DPCs) need to be considered. In our previous study, we showed that EDTA could enhance the stromal cell-derived factor 1 alpha-induced migration of DPCs. The purpose of this study was to explore the effects of EDTA on the mineralization of dental pulp in vitro and in vivo. METHODS DPCs were obtained from human premolars or third molars. Alkaline phosphatase assays and alizarin red S staining were used to examine the degree of differentiation and mineralized nodule formation of DPCs. Real-time polymerase chain reaction and Western blot analysis were performed to detect the messenger RNA and protein expressions of mineralization-related markers in DPCs. Extracellular-regulated protein kinase and Smad inhibitors were used to study the roles of these 2 signaling pathways in this process. In addition, pulp exposures were created on 18 premolars of 2 beagle dogs (>12 months) using a high-speed dental handpiece. The experimental group (n = 9) was treated with 12% EDTA for 5 minutes, and the control group (n = 9) was treated with sterile saline for the same duration. Mineral trioxide aggregate was used for direct pulp capping followed by glass ionomer cement sealing. Samples were collected 3 months later, and the regenerated dentin was assessed by micro-computed tomographic and histologic analyses. RESULTS Exposure to 12% EDTA promoted the activity of alkaline phosphatase, the formation of mineralized nodules, and the messenger RNA and protein expressions of mineralization-related markers in DPCs. Furthermore, the process of 12% EDTA enhancing the differentiation of DPCs was mediated by the extracellular-regulated protein kinase 1/2 signaling pathway and inhibited by the Smad2/3 signaling pathway. In vivo, compared with the control group, more regenerated dentin that had fewer tunnel defects was formed in the 12% EDTA-treated group. CONCLUSIONS Our results showed that 12% EDTA could promote the mineralization of dental pulp in vitro and in vivo.
Collapse
|
12
|
Autophagy-Related Protein MAP1LC3C Plays a Crucial Role in Odontogenic Differentiation of Human Dental Pulp Cells. Tissue Eng Regen Med 2020; 18:265-277. [PMID: 33230801 DOI: 10.1007/s13770-020-00310-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/27/2020] [Accepted: 10/13/2020] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Autophagy plays important roles in odontogenic differentiation of dental pulp cells (DPCs) in the developmental stage of tooth bud. Few studies have reported the role of autophagy during reparative dentin formation process. The objective of this study was to discover gene expression pattern correlated to autophagy and their role during odontogenic differentiation process in DPCs. METHODS After tooth cavities were prepared on the mesial surface of lower first molar crown of rats. Odontogenic differentiation and reparative dentin formation were assessed based on detection of morphology change with hematoxylin and eosin staining. RESULTS After tooth cavities were prepared on the mesial surface of lower first molar crown of rats, odontogenic differentiation and reparative dentin formation were assessed based on detection of morphology change with hematoxylin and eosin staining and dentin sialophosphoprotein (DSPP), whereas autophagy inhibitor 3-methyladenine (3MA) reversed. Results of quantitative polymerized chain reaction array of autophagosome formation related genes revealed that GABARAPL2 was prominently upregulated while expression of other ATG8 family members were moderately increased after tooth cavity preparation. In addition, human DPCs incubated in differentiation medium predominantly upregulated MAP1LC3C, which selectively decreased by 3MA but not by autophagy enhancer trehalose. Knock-down of MAP1LC3C using shRNA resulted in strong downregulation of dentin matrix protein 1 and DSPP as well-known odontogenic marker compared to knock-down of MAP1LC3B during odontogenic differentiation process of human DPCs. CONCLUSION Our results suggest that MAP1LC3C plays a crucial role in odontogenic differentiation of human DPCs via regulating autophagic flux.
Collapse
|
13
|
Molecular Mechanisms of Dentine-Pulp Complex Response Induced by Microbiome of Deep Caries. ARS MEDICA TOMITANA 2019. [DOI: 10.2478/arsm-2019-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Deep caries progress is associated with tertiary dentin formation and additional reversible or irreversible dental pulp inflammation. It seems that some particular signs of pain in irreversible pulpitis are associated to a particular caries microflora. Streptococcus species, Parvimonas micra and Dialister invisus are prevailing in cases of throbbing pain while Streptococcus mutans is incriminated in sensitivity to vertical percussion of tooth. Continuous pain is thought to be the clinical outcome of Lactobacillus implication. A better understanding of molecular signals and mechanisms induced by microbiome of deep caries that orchestrate the modulation of dental pulp complex response toward tertiary dentinogenesis or pulp inflammation it is supposed to improve diagnosis and conservative therapies of vital pulp.
Collapse
|
14
|
Schuh CMAP, Benso B, Aguayo S. Potential Novel Strategies for the Treatment of Dental Pulp-Derived Pain: Pharmacological Approaches and Beyond. Front Pharmacol 2019; 10:1068. [PMID: 31620000 PMCID: PMC6759635 DOI: 10.3389/fphar.2019.01068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
The diagnosis and management of pain is an everyday occurrence in dentistry, and its effective control is essential to ensure the wellbeing of patients. Most tooth-associated pain originates from the dental pulp, a highly vascularized and innervated tissue, which is encased within mineralized dentin. It plays a crucial role in the sensing of stimuli from the local environment, such as infections (i.e. dental caries) and traumatic injury, leading to a local inflammatory response and subsequently to an increase in intra-pulp pressure, activating nerve endings. However, thermal, chemical, and mechanical stimuli also have the ability to generate dental pulp pain, which presents mechanisms highly specific to this tissue and which have to be considered in pain management. Traditionally, the management of dental pulp pain has mostly been pharmacological, using non-steroidal anti-inflammatory drugs (NSAIDs) and opioids, or restorative (i.e. removal of dental caries), or a combination of both. Both research areas continuously present novel and creative approaches. This includes the modulation of thermo-sensitive transient receptor potential cation channels (TRP) by newly designed drugs in pharmacological research, as well as the use of novel biomaterials, stem cells, exosomes and physical stimulation to obtain pulp regeneration in regenerative medicine. Therefore, the aim of this review is to present an up-to-date account of causes underlying dental pain, novel treatments involving the control of pain and inflammation and the induction of pulp regeneration, as well as insights in pain in dentistry from the physiological, pharmacological, regenerative and clinical perspectives.
Collapse
Affiliation(s)
- Christina M. A. P. Schuh
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Bruna Benso
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Millennium Nucleus of Ion Channels Associated Diseases (MiNICAD), Valdivia, Chile
| | - Sebastian Aguayo
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Sun Z, Yu S, Chen S, Liu H, Chen Z. SP1 regulates KLF4 via SP1 binding motif governed by DNA methylation during odontoblastic differentiation of human dental pulp cells. J Cell Biochem 2019; 120:14688-14699. [PMID: 31009133 PMCID: PMC8895433 DOI: 10.1002/jcb.28730] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/14/2019] [Accepted: 04/01/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE DNA methylation is a critical epigenetic modulation in regulating gene expression in cell differentiation process, however, its detailed molecular mechanism during odontoblastic differentiation remains elusive. We aimed to study the global effect of DNA methylation on odontoblastic differentiation and how DNA methylation affects the transactivation of transcription factor (TF) on its target gene. METHODS DNA methyltransferase (DNMTs) inhibition assay and following odontoblastic differentiation assay were performed to evaluate the effect of DNA methylation inhibition on odontoblastic differentiation. Promoter DNA methylation microarray and motif enrichment assay were performed to predict the most DNA-methylation-affected TF motifs during odontoblastic differentiation. The enriched target sites and motifs were further analyzed by methylation-specific polymerase chain reaction (MS-PCR) and sequencing. The functional target sites were validated in vitro with Luciferase assay. The regulatory effect of DNA methylation on the enriched target sites in primary human dental pulp cells and motifs were confirmed by in vitro methylation assay. RESULTS Inhibition of DNMTs in preodontoblast cells increased the expression level of Klf4 as well as marker genes of odontoblastic differentiation including Dmp1 and Dspp, and enhanced the efficiency of odontoblastic differentiation. SP1/KLF4 binding motifs were found to be highly enriched in the promoter regions and showed demethylation during odontoblastic differentiation. Mutation of SP1 binding site at -75 within KLF4's promoter region significantly decreased the luciferase activity. The in vitro methylation of KLF4's promoter decreased the transactivation of SP1 on KLF4. CONCLUSION We confirmed that SP1 regulates KLF4 through binding site lying in a CpG island in KLF4's promoter region which demethylated during odontoblastic differentiation thus enhancing the efficiency of SP1's binding and transcriptional regulation on KLF4.
Collapse
Affiliation(s)
- Zheyi Sun
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuaitong Yu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Chen
- Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, Texas
| | - Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Cui D, Xiao J, Zhou Y, Zhou X, Liu Y, Peng Y, Yu Y, Li H, Zhou X, Yuan Q, Wan M, Zheng L. Epiregulin enhances odontoblastic differentiation of dental pulp stem cells via activating MAPK signalling pathway. Cell Prolif 2019; 52:e12680. [PMID: 31454111 PMCID: PMC6869433 DOI: 10.1111/cpr.12680] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023] Open
Abstract
Objectives The odontoblastic differentiation of dental pulp stem cells (DPSCs) contributes to tertiary dentin formation. Our previous study indicated that epiregulin (EREG) enhanced odontogenesis potential of dental pulp. Here, we explored the effects of EREG during DPSC odontoblastic differentiation. Methods The changes in EREG were detected during tertiary dentin formation. DPSCs were treated with recombinant human EREG (rhEREG), EREG receptor inhibitor gefitinib and short hairpin RNAs. The odontoblastic differentiation was assessed with ALP staining, ALP activity assay, alizarin red S staining and real‐time RT‐PCR of DSPP, OCN, RUNX2 and OSX. Western blot was conducted to examine the levels of p38 mitogen‐activated protein kinase (p38 MAPK), c‐Jun N‐terminal kinase (JNK) and extracellular signal‐regulated kinase 1/2 (Erk1/2). The expression of EREG and odontoblastic differentiation‐related markers was investigated in human dental pulp from teeth with deep caries and healthy teeth. Results Epiregulin was upregulated during tertiary dentin formation. rhEREG enhanced the odontoblastic differentiation of DPSCs following upregulated p38 MAPK and Erk1/2 phosphorylation, but not JNK, whereas depletion of EREG suppressed DPSC differentiation. Gefitinib decreased odontoblastic differentiation with decreased phosphorylation of p38 MAPK and Erk1/2. And suppression of p38 MAPK and Erk1/2 pathways attenuated DPSC differentiation. In human dental pulp tissue, EREG upregulation in deep caries correlates with odontoblastic differentiation enhancement. Conclusion Epiregulin is released during tertiary dentin formation. And EREG enhanced DPSC odontoblastic differentiation via MAPK pathways.
Collapse
Affiliation(s)
- Dixin Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiani Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yachuan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ying Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yiran Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yi Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hongyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Rafatjou R, Amiri I, Janeshin A. Effect of Calcium-enriched Mixture (CEM) cement on increasing mineralization in stem cells from the dental pulps of human exfoliated deciduous teeth. J Dent Res Dent Clin Dent Prospects 2018. [DOI: 10.15171/joddd.2018.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background.Stem cells isolated from human exfoliated deciduous teeth (SHED) are highly capable of proliferation and differentiation into odontogenic, osteogenic, adipose tissue and neural cells. The aim of this study was to investigate the effect of CEM cement on increasing mineralization in stem cells of exfoliated deciduous teeth. Methods.Dental pulps were isolated from extracted exfoliating primary teeth and immersed in a digestive solution. The dental pulp cells were immersed in α-MEM (modified culture medium) and 10% fetal bovine serum (FBS) was added. The culture cells were used for mineral deposit formation after the third passage. The cells were cultured in osteogenic cell culture medium in the control group and in osteogenic culture medium supplemented with CEM cement in the case group. Alizarin red staining was used to evaluate the mineral deposit formation on day 21. Statistical significance was determined with t-test. Results.Quantification of alizarin red staining showed that cells exposed to CEM cement induced more mineralized nodules (P=0.03). Conclusion.Mineral deposit formation in SHEDs was stimulated by CEM cement. Based on these data it might be suggested that CEM could improve osteoblastic differentiation.
Collapse
Affiliation(s)
- Rezvan Rafatjou
- Department of Pediatric Dentistry, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- Department of Anatomy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Atousa Janeshin
- Dental Sciences Research Center, Department of Pediatric Dentistry, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
18
|
Rafatjou R, Amiri I, Janeshin A. Effect of Calcium-enriched Mixture (CEM) cement on increasing mineralization in stem cells from the dental pulps of human exfoliated deciduous teeth. J Dent Res Dent Clin Dent Prospects 2018; 12:233-237. [PMID: 30774787 PMCID: PMC6368943 DOI: 10.15171/jpid.2018.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 12/14/2018] [Indexed: 01/09/2023] Open
Abstract
Background. Stem cells isolated from human exfoliated deciduous teeth (SHED) are highly capable of proliferation and differentiation into odontogenic, osteogenic, adipose tissue and neural cells. The aim of this study was to investigate the effect of CEM cement on increasing mineralization in stem cells of exfoliated deciduous teeth.
Methods. Dental pulps were isolated from extracted exfoliating primary teeth and immersed in a digestive solution. The dental pulp cells were immersed in α-MEM (modified culture medium) and 10% fetal bovine serum (FBS) was added. The culture cells were used for mineral deposit formation after the third passage. The cells were cultured in osteogenic cell culture medium in the control group and in osteogenic culture medium supplemented with CEM cement in the case group. Alizarin red staining was used to evaluate the mineral deposit formation on day 21. Statistical significance was determined with t-test.
Results. Quantification of alizarin red staining showed that cells exposed to CEM cement induced more mineralized nodules (P=0.03).
Conclusion. Mineral deposit formation in SHEDs was stimulated by CEM cement. Based on these data it might be suggested that CEM could improve osteoblastic differentiation.
Collapse
Affiliation(s)
- Rezvan Rafatjou
- Department of Pediatric Dentistry, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- Department of Anatomy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Atousa Janeshin
- Dental Sciences Research Center, Department of Pediatric Dentistry, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
19
|
Tigani EK, Skrtic D, Valerio MS, Kaufman G. Assessing the effect of triethyleneglycol dimethacrylate on tissue repair in 3D organotypic cultures. J Appl Toxicol 2018; 39:247-259. [PMID: 30229966 DOI: 10.1002/jat.3714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/14/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
Leachables from dental restoratives induce toxicity in gingival and pulp tissues and affect tissue regeneration/healing. Appropriate testing of these materials requires a platform that mimics the in vivo environment and allows the architectural self-assembly of cells into tissue constructs. In this study, we employ a new 3D model to assess the impact of triethyleneglycol dimethacrylate (TEGDMA) on early organization and advanced recruitment/accumulation of immortalized mouse gingival fibroblasts (GFs) and dental papilla mesenchymal cells (DPMCs) in extracellular matrix. We hypothesize that TEGDMA (1) interferes with the developmental architecture of GFs and DPMCs, and (2) inhibits the deposition of mineral. To test these hypotheses, GFs and DPMCs were incubated with the soluble TEGDMA at concentrations (0-2.5) mmol/L. Diameter and thickness of the constructs were determined by microscopic analysis. Cell differentiation was assessed by immunocytochemistry and the secreted mineral detected by alizarin-red staining. TEGDMA interfered with the development of GFs and/or DPMCs microtissues in a dose-dependent manner by inhibiting growth of inter-spherical cell layers and decreasing spheroid size (four to six times). At low/moderate TEGDMA levels, GFs organoids retained their structures while reducing thickness up to 21%. In contrast, at low TEGDMA doses, architecture of DPMC organoids was altered and thickness decreased almost twofold. Overall, developmental ability of TEGDMA-exposed GFs and DPMCs depended on TEGDMA level. GFs constructs were more resistant to structural modifications. The employed 3D platform was proven as an efficient tool for quantifying the effects of leachables on tissue repair capacities of gingiva and dental pulp.
Collapse
Affiliation(s)
- Elise K Tigani
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD, 20899, USA
| | - Drago Skrtic
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD, 20899, USA
| | - Michael S Valerio
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD, 20899, USA
| | - Gili Kaufman
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD, 20899, USA
| |
Collapse
|
20
|
Kim SG, Malek M, Sigurdsson A, Lin LM, Kahler B. Regenerative endodontics: a comprehensive review. Int Endod J 2018; 51:1367-1388. [PMID: 29777616 DOI: 10.1111/iej.12954] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
The European Society of Endodontology and the American Association for Endodontists have released position statements and clinical considerations for regenerative endodontics. There is increasing literature on this field since the initial reports of Iwaya et al. (Dental Traumatology, 17, 2001, 185) and Banchs & Trope (Journal of Endodontics, 30, 2004, 196). Endogenous stem cells from an induced periapical bleeding and scaffolds using blood clot, platelet rich plasma or platelet-rich fibrin have been utilized in regenerative endodontics. This approach has been described as a 'paradigm shift' and considered the first treatment option for immature teeth with pulp necrosis. There are three treatment outcomes of regenerative endodontics; (i) resolution of clinical signs and symptoms; (ii) further root maturation; and (iii) return of neurogenesis. It is known that results are variable for these objectives, and true regeneration of the pulp/dentine complex is not achieved. Repair derived primarily from the periodontal and osseous tissues has been shown histologically. It is hoped that with the concept of tissue engineering, namely stem cells, scaffolds and signalling molecules, that true pulp regeneration is an achievable goal. This review discusses current knowledge as well as future directions for regenerative endodontics. Patient-centred outcomes such as tooth discolouration and possibly more appointments with the potential for adverse effects needs to be discussed with patients and parents. Based on the classification of Cvek (Endodontics and Dental Traumatology, 8, 1992, 45), it is proposed that regenerative endodontics should be considered for teeth with incomplete root formation although teeth with near or complete root formation may be more suited for conventional endodontic therapy or MTA barrier techniques. However, much is still not known about clinical and biological aspects of regenerative endodontics.
Collapse
Affiliation(s)
- S G Kim
- Division of Endodontics, Columbia University College of Dental Medicine, New York, NY, USA
| | - M Malek
- Department of Endodontics, New York University College of Dentistry, New York, NY, USA
| | - A Sigurdsson
- Department of Endodontics, New York University College of Dentistry, New York, NY, USA
| | - L M Lin
- Department of Endodontics, New York University College of Dentistry, New York, NY, USA
| | - B Kahler
- The University of Queensland School of Dentistry, Brisbane, Australia
| |
Collapse
|
21
|
Ricucci D, Loghin S, Niu LN, Tay FR. Changes in the radicular pulp-dentine complex in healthy intact teeth and in response to deep caries or restorations: A histological and histobacteriological study. J Dent 2018; 73:76-90. [DOI: 10.1016/j.jdent.2018.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 12/18/2022] Open
|
22
|
Hydrogen peroxide induces cell proliferation and apoptosis in pulp of rats after dental bleaching in vivo. Arch Oral Biol 2017; 81:103-109. [DOI: 10.1016/j.archoralbio.2017.04.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 03/08/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
|
23
|
Mitsiadis TA, Catón J, Pagella P, Orsini G, Jimenez-Rojo L. Monitoring Notch Signaling-Associated Activation of Stem Cell Niches within Injured Dental Pulp. Front Physiol 2017; 8:372. [PMID: 28611689 PMCID: PMC5447770 DOI: 10.3389/fphys.2017.00372] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/18/2017] [Indexed: 12/31/2022] Open
Abstract
Dental pulp stem/progenitor cells guarantee tooth homeostasis, repair and regeneration throughout life. The decision between renewal and differentiation of these cells is influenced by physical and molecular interactions with stromal cells and extracellular matrix molecules forming the specialized microenvironment of dental pulp stem cell niches. Here we study the activation of putative pulp niches after tooth injury through the upregulation of Notch signaling pathway. Notch1, Notch2, and Notch3 molecules were used as markers of dental pulp stem/progenitor cells. Upon dental injury, Notch1 and Notch3 are detected in cells related to vascular structures suggesting a role of these proteins in the activation of specific pulpal perivascular niches. In contrast, a population of Notch2-positive cells that are actively proliferative is observed in the apical part of the pulp. Kinetics of these cells is followed up with a lipophilic DiI labeling, showing that apical pulp cells migrate toward the injury site where dynamic regenerative/repair events occur. The knowledge of the activation and regulation of dental pulp stem/progenitor cells within their niches in pathologic conditions may be helpful for the realization of innovative dental treatments in the near future.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Orofacial Development and Regeneration, Faculty of Medicine, Institute of Oral Biology, ZZM, University of ZurichZurich, Switzerland
| | - Javier Catón
- Department of Medical Basic Sciences, Faculty of Medicine, University CEU-San PabloMadrid, Spain
| | - Pierfrancesco Pagella
- Orofacial Development and Regeneration, Faculty of Medicine, Institute of Oral Biology, ZZM, University of ZurichZurich, Switzerland
| | - Giovanna Orsini
- Department of Clinical Sciences and Stomatology, Polytechnic University of MarcheAncona, Italy
| | - Lucia Jimenez-Rojo
- Orofacial Development and Regeneration, Faculty of Medicine, Institute of Oral Biology, ZZM, University of ZurichZurich, Switzerland
| |
Collapse
|
24
|
Mitsiadis TA, Magloire H, Pagella P. Nerve growth factor signalling in pathology and regeneration of human teeth. Sci Rep 2017; 7:1327. [PMID: 28465581 PMCID: PMC5431060 DOI: 10.1038/s41598-017-01455-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 03/30/2017] [Indexed: 12/25/2022] Open
Abstract
Nerve growth factor (NGF) is a key regulator of the development and differentiation of neuronal and non-neuronal cells. In the present study we examined the distribution of NGF and its low and high-affinity receptors, p75NTR and TrkA respectively, in permanent human teeth under normal and pathological conditions. In intact functional teeth, NGF, p75NTR and TrkA are weakly expressed in dental pulp fibroblasts and odontoblasts that are responsible for dentine formation, while the NGF and p75NTR molecules are strongly expressed in nerve fibres innervating the dental pulp. In carious and injured teeth NGF and TrkA expression is upregulated in a selective manner in odontoblasts surrounding the injury sites, indicating a link between NGF signalling and dental tissue repair events. Accordingly, NGF and TrkA expression is strongly upregulated in cultured primary human dental mesenchymal cells during their differentiation into odontoblasts. Targeted release of NGF in cultured human tooth slices induced extensive axonal growth and migration of Schwann cells towards the NGF administration site. These results show that NGF signalling is strongly linked to pathological and regenerative processes in human teeth and suggest a potential role for this neurotrophic molecule in pulp regeneration.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, Medical Faculty, University of Zurich, Zurich, Switzerland.
| | - Henry Magloire
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure (ENS), Lyon, France
| | - Pierfrancesco Pagella
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Han N, Chen Z, Zhang Q. Expression of KLF5 in odontoblastic differentiation of dental pulp cells during in vitro odontoblastic induction and in vivo dental repair. Int Endod J 2016; 50:676-684. [PMID: 27334851 DOI: 10.1111/iej.12672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/21/2016] [Indexed: 02/04/2023]
Abstract
AIM To identify whether Krüppel-like factor 5 (KLF5) was involved in odontoblastic differentiation during reparative dentine formation. METHODOLOGY Human Dental pulp cells (DPCs) were isolated from healthy human dental pulp tissue and induced for odontoblastic differentiation. Alizarin Red staining, alkaline phosphatase (ALPase) activity, quantitative real-time PCR and Western Blot were performed to evaluate in vitro odontoblastic differentiation. The expression profile of KLF5 during the in vitro odontoblastic differentiation was determined by quantitative real-time PCR and Western Blot. Knock-down of KLF5 by lentivirus-mediated shRNA was performed to determine the function of KLF5 in odontoblastic differentiation. After direct pulp capping with MTA, the maxillary first molar segments dissected from male Wistar rats were prepared for histology analysis and immunohistochemistry staining. RESULTS Odontoblastic differentiation was confirmed by significantly increased alkaline phosphatase (ALP; P = 0.004) activity and upregulated odontoblastic differentiation-related genes including dentine sialophosphoprotein (DSPP; P = 0.004) and dentine matrix protein-1 (DMP-1; P = <0.001). The expression of KLF5 was significantly upregulated during odontoblastic differentiation of in vitro cultured DPCs (P = 0.0002). KLF5 knock-down impaired odontoblastic differentiation. After direct pulp capping, dentine bridge-like calcified tissues were formed under the perforation sites. KLF5 was expressed in odontoblast-like cells and DPCs beneath the perforation sites during reparative dentine formation. CONCLUSIONS KLF5 might be involved in the process of odontoblastic differentiation during reparative dentine formation.
Collapse
Affiliation(s)
- N Han
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Z Chen
- Department of Conservative Dentistry, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Q Zhang
- Department of Endodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
26
|
Ma L, Wang SC, Tong J, Hu Y, Zhang YQ, Yu Q. Activation and dynamic expression of Notch signalling in dental pulp cells after injury in vitro and in vivo. Int Endod J 2015; 49:1165-1174. [PMID: 26572232 DOI: 10.1111/iej.12580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/06/2015] [Indexed: 01/03/2023]
Abstract
AIM To investigate the expression pattern of Notch signalling in odontoblast-like cells stimulated by lipopolysaccharide (LPS) in vitro, and in injured rat dental pulp in vivo. METHODOLOGY Mouse odontoblast-like cells (MDPC-23) were exposed to LPS. Expression of Notch-related genes was detected by real-time PCR. A rat pulpitis model was established by mechanical injury and LPS plus mechanical injury was followed by the analysis of expression of Notch2 by immunohistochemical staining. One-way analysis of variance (anova) was performed to examine the effect of differing concentrations of LPS on cell proliferation, and least significant difference test was used for paired comparisons. For independent sample, t-test was performed to compare the expression of Notch signalling genes between LPS group and control group in vitro. RESULTS The in vitro study revealed the proliferation of MDPC-23 cells on exposure to 10 ng mL-1 to 1 μg mL-1 LPS. Expression of Notch1 and Notch2 was significantly higher in the LPS group than that in the control group on day 1 and day 3 (P ˂ 0.05). The levels of both Delta1 and Jagged1 were higher in the study group than in the control group on day 3 (P = 0.019 and P = 0.034) and day 5 (P ˂ 0.001 and P = 0.046), respectively. In addition, Hes1 levels were significantly higher in the study group than in the control group on day 5 (P = 0.005). The in vivo study demonstrated positive staining for Notch2, both in the mechanical injury (MI) group and in the LPS plus mechanical injury (LMI) group from day 3 to day 7, which showed very weak or absent staining on day 14, thereby demonstrating the dynamic nature of the change. CONCLUSIONS Both in vitro and in vivo activation and dynamic expression of Notch signalling in dental pulp cells after injury were found. Notch signalling activation by LPS stimulation or mechanical injury showed a similar pattern in vivo.
Collapse
Affiliation(s)
- L Ma
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry & Endodontics, The Fourth Military Medical University, Xi'an, China
| | - S C Wang
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - J Tong
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Y Hu
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Y Q Zhang
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry & Endodontics, The Fourth Military Medical University, Xi'an, China
| | - Q Yu
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry & Endodontics, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
27
|
Zhang J, Liu X, Yu W, Zhang Y, Shi C, Ni S, Liu Q, Li X, Sun Y, Zheng C, Sun H. Effects of human vascular endothelial growth factor on reparative dentin formation. Mol Med Rep 2015; 13:705-12. [PMID: 26647730 PMCID: PMC4686068 DOI: 10.3892/mmr.2015.4608] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 11/05/2015] [Indexed: 12/28/2022] Open
Abstract
It is a challenge for dentists to save dental pulp in patients with pulp disease without resorting to root canal therapy. Formation of tertiary dentin to maintain pulp vitality is a key odontoblast response to dental pulp injury. Vascular endothelial growth factor (VEGF) is the most potent angiogenic and vasculogenic factor involved in tertiary dentin formation. It was hypothesized that VEGF may be used to treat pulp diseases such as pulpitis. To explore this hypothesis, the first step was to assess whether VEGF affects dental pulp cells to promote reparative dentin formation. In the current study, an AdCMV-hVEGF vector was constructed to deliver hVEGF into dental pulp cells of exfoliated deciduous teeth (hDPCs) in vitro and dental pulp cells in a rat model in vivo. The collected data clearly demonstrated that hVEGF increased alkaline phosphatase and mineralization by enzymatic activity. RT-qPCR data demonstrated that hVEGF significantly increased the expression levels of genes commonly involved in osteogenesis/odontogenesis. Data from the in vivo assays indicated that hVEGF enhanced pulp cell proliferation and neovascularization, and markedly increased formation of reparative dentin in dental pulp. The in vitro and in vivo data suggest that hVEGF may have potential clinical applications, thus may aid in the development of novel treatment strategies for dental pulpitis.
Collapse
Affiliation(s)
- Juan Zhang
- The Key Laboratory of Tooth Development and Bone Remodeling, Jilin Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xia Liu
- The Key Laboratory of Tooth Development and Bone Remodeling, Jilin Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weixian Yu
- The Key Laboratory of Tooth Development and Bone Remodeling, Jilin Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yingli Zhang
- The Key Laboratory of Tooth Development and Bone Remodeling, Jilin Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ce Shi
- The Key Laboratory of Tooth Development and Bone Remodeling, Jilin Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shilei Ni
- The Key Laboratory of Tooth Development and Bone Remodeling, Jilin Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Qilin Liu
- The Key Laboratory of Tooth Development and Bone Remodeling, Jilin Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiangwei Li
- The Key Laboratory of Tooth Development and Bone Remodeling, Jilin Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yingjian Sun
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Changyu Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongchen Sun
- The Key Laboratory of Tooth Development and Bone Remodeling, Jilin Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
28
|
Klf10 regulates odontoblast differentiation and mineralization via promoting expression of dentin matrix protein 1 and dentin sialophosphoprotein genes. Cell Tissue Res 2015; 363:385-98. [PMID: 26310138 DOI: 10.1007/s00441-015-2260-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 07/28/2015] [Indexed: 01/31/2023]
Abstract
Klf10, a member of the Krüppel-like family of transcription factors, is critical for osteoblast differentiation, bone formation and mineralization. However, whether Klf10 is involved in odontoblastic differentiation and tooth development has not been determined. In this study, we investigate the expression patterns of Klf10 during murine tooth development in vivo and its role in odontoblastic differentiation in vitro. Klf10 protein was expressed in the enamel organ and the underlying mesenchyme, ameloblasts and odontoblasts at early and later stages of murine molar formation. Furthermore, the expression of Klf10, Dmp1, Dspp and Runx2 was significantly elevated during the process of mouse dental papilla mesenchymal differentiation and mineralization. The overexpression of Klf10 induced dental papilla mesenchymal cell differentiation and mineralization as detected by alkaline phosphatase staining and alizarin red S assay. Klf10 additionally up-regulated the expression of odontoblastic differentiation marker genes Dmp1, Dspp and Runx2 in mouse dental papilla mesenchymal cells. The molecular mechanism of Klf10 in controlling Dmp1 and Dspp expression is thus to activate their regulatory regions in a dosage-dependent manner. Our results suggest that Klf10 is involved in tooth development and promotes odontoblastic differentiation via the up-regulation of Dmp1 and Dspp transcription.
Collapse
|
29
|
Hydrogen peroxide induces apoptosis in human dental pulp cells via caspase-9 dependent pathway. J Endod 2015; 39:1151-5. [PMID: 23953289 DOI: 10.1016/j.joen.2013.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 05/22/2013] [Accepted: 06/29/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Reactive oxygen species are a group of metabolic intermediates produced during oxidative metabolism in eukaryotic cells. They include superoxide anion (O2(-)), hydrogen peroxide (H2O2), hydroxyl radical (·OH), and (1)O2. Of these intermediates, H2O2 is the most stable. Dental pulp cells can be invaded by tooth bleaching, laser radiation, and dental materials. This can influence the intracellular level of reactive oxygen species. Apoptosis, which is the best-known form of programmed cell death, is pivotal to tissue development and regeneration. Little information is available regarding the relationship between H2O2 and apoptosis of human dental pulp cells (hDPCs). The purpose of this study was to investigate whether H2O2 can induce apoptosis in hDPCs and its signaling way. METHODS HDPCs were obtained by using a modified tissue explant technique in vitro and cultured at 37°C, 20% O2 (5% CO2, 95% air) in Dulbecco modified Eagle medium. Cell viability was investigated by methyl-thiazol-tetrazolium assay. Cell apoptosis was detected by using the annexin V-fluorescein isothiocyanate/propidium iodide apoptosis assay and flow cytometry. Expression of activated caspase-3, cleaved caspase-9, and β-actin was analyzed by using Western blot. RESULTS Cell viability of hDPCs decreased more in treated groups than in the control group from days 1 to 7. The relative number of apoptotic cells and the expression of activated caspase-3 and cleaved caspase-9 were much higher in groups exposed to 20 and 50 μmol/L H2O2. CONCLUSIONS These results imply that low concentrations of H2O2 are cytotoxic to hDPCs and induce apoptosis in hDPCs in a caspase-9-dependent way.
Collapse
|
30
|
Zhang J, Zhu LX, Cheng X, Lin Y, Yan P, Peng B. Promotion of Dental Pulp Cell Migration and Pulp Repair by a Bioceramic Putty Involving FGFR-mediated Signaling Pathways. J Dent Res 2015; 94:853-62. [PMID: 25724555 DOI: 10.1177/0022034515572020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mineral trioxide aggregate is the currently recommended material of choice for clinical pulp repair despite several disadvantages, including handling inconvenience. Little is known about the signaling mechanisms involved in bioceramic-mediated dental pulp repair-particularly, dental pulp cell (DPC) migration. This study evaluated the effects of iRoot BP Plus, a novel ready-to-use nanoparticulate bioceramic putty, on DPC migration in vitro and pulp repair in vivo, focusing on possible involvement of fibroblast growth factor receptor (FGFR)-related signaling, including mitogen-activated protein kinase and Akt pathways. Treatment with iRoot BP Plus extracts enhanced horizontal and vertical migration of DPCs, which was comparable with the effects induced by mineral trioxide aggregate extracts. The DPCs exposed to iRoot BP Plus extracts demonstrated no evident apoptosis. Importantly, treatment with iRoot BP Plus extracts resulted in rapid activation of FGFR, p38 mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK) 1/2, c-Jun-N-terminal kinase (JNK), and Akt signaling in DPCs. Confocal immunofluorescence staining revealed that iRoot BP Plus stimulated focal adhesion formation and stress fiber assembly in DPCs, in addition to upregulating the expression of focal adhesion molecules, including p-focal adhesion kinase, p-paxillin, and vinculin. Moreover, activation of FGFR, ERK, JNK, and Akt were found to mediate the upregulated expression of focal adhesion molecules, stress fiber assembly, and enhanced DPC migration induced by iRoot BP Plus. Consistent with the in vitro results, we observed induction of homogeneous dentin bridge formation and expression of p-focal adhesion kinase, p-FGFR, p-ERK 1/2, p-JNK, and p-Akt near injury sites by iRoot BP Plus in an in vivo pulp repair model. These data demonstrate that iRoot BP Plus can promote DPC migration and pulp repair involving the FGFR-mediated ERK 1/2, JNK, and Akt pathways. These findings provide valuable insights into the signaling mechanisms underlying nanoparticulate bioceramic-mediated pulp repair.
Collapse
Affiliation(s)
- J Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - L X Zhu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - X Cheng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - P Yan
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - B Peng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Filatova A, Pagella P, Mitsiadis TA. Distribution of syndecan-1 protein in developing mouse teeth. Front Physiol 2015; 5:518. [PMID: 25642191 PMCID: PMC4295547 DOI: 10.3389/fphys.2014.00518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 12/18/2014] [Indexed: 12/16/2022] Open
Abstract
Syndecan-1 is a cell surface proteoglycan involved in the regulation of various biological processes such as proliferation, migration, condensation and differentiation of cells, intercellular communication, and morphogenesis. The extracellular domain of syndecan-1 can bind to extracellular matrix components and signaling molecules, while its intracellular domain interacts with cytoskeletal proteins, thus allowing the transfer of information about extracellular environment changes into the cell that consequently affect cellular behavior. Although previous studies have shown syndecan-1 expression during precise stages of tooth development, there is no equivalent study regrouping the expression patterns of syndecan-1 during all stages of odontogenesis. Here we examined the distribution of syndecan-1 protein in embryonic and post-natal developing mouse molars and incisors. Syndecan-1 distribution in mesenchymal tissues such as dental papilla and dental follicle was correlated with proliferating events and its expression was often linked to stem cell niche territories. Syndecan-1 was also expressed in mesenchymal cells that will differentiate into the dentin producing odontoblasts, but not in differentiated functional odontoblasts. In the epithelium, syndecan-1 was detected in all cell layers, by the exception of differentiated ameloblasts that form the enamel. Furthermore, syndecan-1 was expressed in osteoblast precursors and osteoclasts of the alveolar bone that surrounds the developing tooth germs. Taken together these results show the dynamic nature of syndecan-1 expression during odontogenesis and suggest its implication in various processes of tooth development and homeostasis.
Collapse
Affiliation(s)
- Anna Filatova
- Division of Orofacial Development and Regeneration, Faculty of Medicine, Institute of Oral Biology, ZZM, University of Zurich Zurich, Switzerland
| | - Pierfrancesco Pagella
- Division of Orofacial Development and Regeneration, Faculty of Medicine, Institute of Oral Biology, ZZM, University of Zurich Zurich, Switzerland
| | - Thimios A Mitsiadis
- Division of Orofacial Development and Regeneration, Faculty of Medicine, Institute of Oral Biology, ZZM, University of Zurich Zurich, Switzerland
| |
Collapse
|
32
|
Mitsiadis TA, Filatova A, Papaccio G, Goldberg M, About I, Papagerakis P. Distribution of the amelogenin protein in developing, injured and carious human teeth. Front Physiol 2014; 5:477. [PMID: 25540624 PMCID: PMC4261713 DOI: 10.3389/fphys.2014.00477] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/22/2014] [Indexed: 12/02/2022] Open
Abstract
Amelogenin is the major enamel matrix protein with key roles in amelogenesis. Although for many decades amelogenin was considered to be exclusively expressed by ameloblasts, more recent studies have shown that amelogenin is also expressed in other dental and no-dental cells. However, amelogenin expression in human tissues remains unclear. Here, we show that amelogenin protein is not only expressed during human embryonic development but also in pathological conditions such as carious lesions and injuries after dental cavity preparation. In developing embryonic teeth, amelogenin stage-specific expression is found in all dental epithelia cell populations but with different intensities. In the different layers of enamel matrix, waves of positive vs. negative immunostaining for amelogenin are detected suggesting that the secretion of amelogenin protein is orchestrated by a biological clock. Amelogenin is also expressed transiently in differentiating odontoblasts during predentin formation, but was absent in mature functional odontoblasts. In intact adult teeth, amelogenin was not present in dental pulp, odontoblasts, and dentin. However, in injured and carious adult human teeth amelogenin is strongly re-expressed in newly differentiated odontoblasts and is distributed in the dentinal tubuli under the lesion site. In an in vitro culture system, amelogenin is expressed preferentially in human dental pulp cells that start differentiating into odontoblast-like cells and form mineralization nodules. These data suggest that amelogenin plays important roles not only during cytodifferentiation, but also during tooth repair processes in humans.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Orofacial Development and Regeneration Unit, Faculty of Medicine, Institute of Oral Biology, ZZM, University of Zurich Zurich, Switzerland
| | - Anna Filatova
- Orofacial Development and Regeneration Unit, Faculty of Medicine, Institute of Oral Biology, ZZM, University of Zurich Zurich, Switzerland
| | - Gianpaolo Papaccio
- Dipartimento di Medicina Sperimentale, Sezione di Biotecnologie, Istologia Medica e Biologia Molecolare, Seconda Università Degli Studi di Napoli Napoli, Italy
| | - Michel Goldberg
- INSERM UMR-S 1124, Biomédicale des Saints Pères, University Paris Descartes Paris, France
| | - Imad About
- CNRS, Institut des Sciences du Mouvement UMR 7287, Aix-Marseille Université Marseille, France
| | - Petros Papagerakis
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan Ann Arbor, USA ; Center for Organogenesis, School of Medicine, University of Michigan Ann Arbor, USA ; Center for Computational Medicine and Bioinformatics, School of Medicine, University of Michigan Ann Arbor, USA
| |
Collapse
|
33
|
Biggs LC, Goudy SL, Dunnwald M. Palatogenesis and cutaneous repair: A two-headed coin. Dev Dyn 2014; 244:289-310. [PMID: 25370680 DOI: 10.1002/dvdy.24224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The reparative mechanism that operates following post-natal cutaneous injury is a fundamental survival function that requires a well-orchestrated series of molecular and cellular events. At the end, the body will have closed the hole using processes like cellular proliferation, migration, differentiation and fusion. RESULTS These processes are similar to those occurring during embryogenesis and tissue morphogenesis. Palatogenesis, the formation of the palate from two independent palatal shelves growing towards each other and fusing, intuitively, shares many similarities with the closure of a cutaneous wound from the two migrating epithelial fronts. CONCLUSIONS In this review, we summarize the current information on cutaneous development, wound healing, palatogenesis and orofacial clefting and propose that orofacial clefting and wound healing are conserved processes that share common pathways and gene regulatory networks.
Collapse
Affiliation(s)
- Leah C Biggs
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
34
|
Woloszyk A, Holsten Dircksen S, Bostanci N, Müller R, Hofmann S, Mitsiadis TA. Influence of the mechanical environment on the engineering of mineralised tissues using human dental pulp stem cells and silk fibroin scaffolds. PLoS One 2014; 9:e111010. [PMID: 25354351 PMCID: PMC4213001 DOI: 10.1371/journal.pone.0111010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022] Open
Abstract
Teeth constitute a promising source of stem cells that can be used for tissue engineering and regenerative medicine purposes. Bone loss in the craniofacial complex due to pathological conditions and severe injuries could be treated with new materials combined with human dental pulp stem cells (hDPSCs) that have the same embryonic origin as craniofacial bones. Optimising combinations of scaffolds, cells, growth factors and culture conditions still remains a great challenge. In the present study, we evaluate the mineralisation potential of hDPSCs seeded on porous silk fibroin scaffolds in a mechanically dynamic environment provided by spinner flask bioreactors. Cell-seeded scaffolds were cultured in either standard or osteogenic media in both static and dynamic conditions for 47 days. Histological analysis and micro-computed tomography of the samples showed low levels of mineralisation when samples were cultured in static conditions (0.16±0.1 BV/TV%), while their culture in a dynamic environment with osteogenic medium and weekly µCT scans (4.9±1.6 BV/TV%) significantly increased the formation of homogeneously mineralised structures, which was also confirmed by the elevated calcium levels (4.5±1.0 vs. 8.8±1.7 mg/mL). Molecular analysis of the samples showed that the expression of tooth correlated genes such as Dentin Sialophosphoprotein and Nestin were downregulated by a factor of 6.7 and 7.4, respectively, in hDPSCs when cultured in presence of osteogenic medium. This finding indicates that hDPSCs are able to adopt a non-dental identity by changing the culture conditions only. Also an increased expression of Osteocalcin (1.4x) and Collagen type I (1.7x) was found after culture under mechanically dynamic conditions in control medium. In conclusion, the combination of hDPSCs and silk scaffolds cultured under mechanical loading in spinner flask bioreactors could offer a novel and promising approach for bone tissue engineering where appropriate and rapid bone regeneration in mechanically loaded tissues is required.
Collapse
Affiliation(s)
- Anna Woloszyk
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre of Dental Medicine, University of Zurich, Zurich, Switzerland
| | | | - Nagihan Bostanci
- Oral Translational Research, Institute of Oral Biology, Centre of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Sandra Hofmann
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Thimios A. Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre of Dental Medicine, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
35
|
Daud S, Nambiar P, Hossain MZ, Rahman MRA, Bakri MM. Changes in cell density and morphology of selected cells of the ageing human dental pulp. Gerodontology 2014; 33:315-21. [PMID: 25266855 DOI: 10.1111/ger.12154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2014] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The aim of this study was to determine the changes in cell density and morphology of selected cells of the ageing human dental pulp. BACKGROUND Changes in cell density and morphology of dental pulp cells over time may affect their capability to respond to tooth injury. MATERIALS AND METHODS One hundred thirty-one extracted teeth were obtained from individuals between the ages of 6 and 80 years. The apical 1/3 of the root region was removed from all teeth prior to routine processing for producing histological slides. The histology slides were used to study the changes in cell density and morphology of selected pulp cells; odontoblasts, subodontoblasts and fibroblasts in the crown and root regions of the dental pulp. Student's t-test and one-way anova were used for statistical analyses. RESULTS In all age groups, the cell density for all types of cells was found to be higher in the crown than in the root (p < 0.05). In general, the pulp cell density was found to decrease with age in both the crown and root regions. However, it was noted that the reduction of coronal odontoblasts occurred later in life (40-49 years) when compared to that of subodontoblasts or fibroblasts (30-39 years). CONCLUSIONS The density of the coronal pulp cells reduces and these cells undergo morphological changes with ageing of individuals and this may affect the pulp's ability to resist tooth injury.
Collapse
Affiliation(s)
- Sulinda Daud
- Dental Faculty, Segi University College, Petaling Jaya, Malaysia
| | - Prabhakaran Nambiar
- Department of Diagnostic Dental Practice, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - M Zakir Hossain
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Mas Rizal Ab Rahman
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Marina M Bakri
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Ricucci D, Loghin S, Lin LM, Spångberg LSW, Tay FR. Is hard tissue formation in the dental pulp after the death of the primary odontoblasts a regenerative or a reparative process? J Dent 2014; 42:1156-70. [PMID: 25008021 DOI: 10.1016/j.jdent.2014.06.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/19/2014] [Accepted: 06/30/2014] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Conceptually, two types of tertiary dentine may be produced in response to caries and environmental irritations: "reactionary dentine" that is secreted by existing primary odontoblasts and "reparative dentine", formed after the death of the odontoblasts by proliferation and differentiation of progenitor cells into odontoblast-like cells. Because histologic evidence for tubular dentine generated by newly differentiated odontoblast-like cells is lacking in human teeth, the present study examined pulpal cellular changes associated with caries/restorations, in the presence or absence of pulpal exposures. METHODS Ninety-six extracted human teeth were histologically processed and serial sectioned for light microscopy: 65 contained untreated enamel/dentine caries; 20 were heavily restored and 11 had carious exposures managed by direct pulp-capping. RESULTS Sparsely distributed, irregularly arranged dentinal tubules were identified from the tertiary dentine formed in teeth with unexposed medium/deep caries and in restored teeth; those tubules were continuous with the tubules of secondary dentine; in some cases, tubules were absent. The palisade odontoblast layer was reduced to a single layer of flattened cells. In direct pulp-capping of pulp exposures, the defects were repaired by the deposition of an amorphous dystrophic calcified tissue that resembled pulp stones more than dentine, sometimes entrapping pulpal remnants. This atubular hard tissue was lined by fibroblasts and collagen fibrils. CONCLUSIONS Histological evidence from the present study indicates that reparative dentinogenesis cannot be considered as a regenerative process since the so-formed hard tissue lacks tubular features characteristic of genuine dentine. Rather, this process represents a repair response that produces calcified scar tissues by pulpal fibroblasts. CLINICAL SIGNIFICANCE Formation of hard tissue in the dental pulp after the death of the primary odontoblasts has often been regarded by clinicians as regeneration of dentine. If the objective of the clinical procedures involved is to induce healing, reduce dentine hypersensitivity, or minimise future bacteria exposure, such procedures may be regarded as clinical success. However, current clinical treatment procedures are not adept at regenerating physiological dentne because the tissues formed in the dental pulp are more likely the result of repair responses via the formation of calcified scar tissues.
Collapse
Affiliation(s)
| | | | - Louis M Lin
- Department of Endodontics, New York University, New York, USA
| | - Larz S W Spångberg
- Division of Endodontology, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Franklin R Tay
- Department of Endodontics, College of Dental Medicine, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|
37
|
Li R, Wang C, Tong J, Su Y, Lin Y, Zhou X, Ye L. WNT6 promotes the migration and differentiation of human dental pulp cells partly through c-Jun N-terminal kinase signaling pathway. J Endod 2014; 40:943-8. [PMID: 24935540 DOI: 10.1016/j.joen.2013.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 12/03/2013] [Accepted: 12/17/2013] [Indexed: 01/09/2023]
Abstract
INTRODUCTION During the dental pulp repair process, human dental pulp cells (HDPCs) migrate to injury sites where they may differentiate into odontoblastlike cells. WNT6 plays a role in dental development and can activate a noncanonical pathway including the c-Jun N-terminal kinase (JNK) pathway. The mechanism of WNT6 in dental pulp repair is still unknown. The purpose of this study was to explore the potential role of the WNT6/JNK signaling pathway in the promotion of cell migration and the differentiation of HDPCs. METHODS The third passage of HDPCs were cultured in vitro and treated with WNT6 conditioned medium with or without the pretreatment of JNK inhibitor SP600125. The activation of JNK was detected by Western blot, the expression of c-Jun was quantified by reverse-transcription polymerase chain reaction, the migration of HDPCs was determined by wound healing and transwell migration assays, and the differentiation of HDPCs was investigated using alkaline phosphatase staining and alizarin red staining. The expression of odontogenesis-related genes such as Runt-related transcription factor 2, dentin sialophosphoprotein, and dentin matrix protein 1 was quantified. RESULTS WNT6 activates the JNK pathway in HDPCs and enhances cell migration, mineralization nodule formation, and alkaline phosphatase activation. WNT6 also increases the expression of Runt-related transcription factor 2, dentin sialophosphoprotein, and dentin matrix protein messenger RNA in HDPCs. Blockage of the JNK pathway in HDPCs decreases but does not completely abolish the cell migration and differentiation capacity induced by WNT6. CONCLUSIONS WNT6 activates the JNK signaling pathway in HDPCs, leading to migration and differentiation.
Collapse
Affiliation(s)
- Ruimin Li
- State Key Laboratory of Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Juan Tong
- State Key Laboratory of Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yingying Su
- State Key Laboratory of Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
38
|
Han N, Zheng Y, Li R, Li X, Zhou M, Niu Y, Zhang Q. β-catenin enhances odontoblastic differentiation of dental pulp cells through activation of Runx2. PLoS One 2014; 9:e88890. [PMID: 24520423 PMCID: PMC3919828 DOI: 10.1371/journal.pone.0088890] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/13/2014] [Indexed: 01/01/2023] Open
Abstract
An intense stimulus can cause death of odontoblasts and initiate odontoblastic differentiation of stem/progenitor cell populations of dental pulp cells (DPCs), which is followed by reparative dentin formation. However, the mechanism of odontoblastic differentiation during reparative dentin formation remains unclear. This study was to determine the role of β-catenin, a key player in tooth development, in reparative dentin formation, especially in odontoblastic differentiation. We found that β-catenin was expressed in odontoblast-like cells and DPCs beneath the perforation site during reparative dentin formation after direct pulp capping. The expression of β-catenin was also significantly upregulated during odontoblastic differentiation of in vitro cultured DPCs. The expression pattern of runt-related transcription factor 2 (Runx2) was similar to that of β-catenin. Immunofluorescence staining indicated that Runx2 was also expressed in β-catenin–positive odontoblast-like cells and DPCs during reparative dentin formation. Knockdown of β-catenin disrupted odontoblastic differentiation, which was accompanied by a reduction in β-catenin binding to the Runx2 promoter and diminished expression of Runx2. In contrast, lithium chloride (LiCl) induced accumulation of β-catenin produced the opposite effect to that caused by β-catenin knockdown. In conclusion, it was reported in this study for the first time that β-catenin can enhance the odontoblastic differentiation of DPCs through activation of Runx2, which might be the mechanism involved in odontoblastic differentiation during reparative dentin formation.
Collapse
Affiliation(s)
- Nana Han
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Lab of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yong Zheng
- Department of Anatomy and Embryology, School of Medicine, Wuhan University, Wuhan, Hubei, China
| | - Ran Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Lab of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xianyu Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Lab of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Mi Zhou
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Lab of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yun Niu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Lab of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Qi Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Lab of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Laboratory of Oral Biomedical Science and Translational Medicine, Department of Endodontics, School of Stomatology, Tongji University, Shanghai, China
- * E-mail:
| |
Collapse
|
39
|
Osman A, Gnanasegaran N, Govindasamy V, Kathivaloo P, Wen AS, Musa S, Abu Kasim NH. Basal expression of growth-factor-associated genes in periodontal ligament stem cells reveals multiple distinctive pathways. Int Endod J 2013; 47:639-51. [DOI: 10.1111/iej.12200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/01/2013] [Indexed: 01/08/2023]
Affiliation(s)
- A. Osman
- Department of Children's Dentistry and Orthodontics; Faculty of Dentistry; University of Malaya; Kuala Lumpur Malaysia
| | - N. Gnanasegaran
- Department of Conservative Dentistry; Faculty of Dentistry; University of Malaya; Kuala Lumpur Malaysia
| | - V. Govindasamy
- Hygieia Innovation Sdn. Bhd; Lot 1G-2G, Lanai Complex No.2; Persiaran Seri Perdana, Precinct 10; Federal Territory of Putrajaya; Putrajaya Malaysia
| | - P. Kathivaloo
- Hygieia Innovation Sdn. Bhd; Lot 1G-2G, Lanai Complex No.2; Persiaran Seri Perdana, Precinct 10; Federal Territory of Putrajaya; Putrajaya Malaysia
| | - A. S. Wen
- Department of Conservative Dentistry; Faculty of Dentistry; University of Malaya; Kuala Lumpur Malaysia
| | - S. Musa
- Department of Children's Dentistry and Orthodontics; Faculty of Dentistry; University of Malaya; Kuala Lumpur Malaysia
| | - N. H. Abu Kasim
- Department of Conservative Dentistry; Faculty of Dentistry; University of Malaya; Kuala Lumpur Malaysia
| |
Collapse
|
40
|
Gunter HM, Fan S, Xiong F, Franchini P, Fruciano C, Meyer A. Shaping development through mechanical strain: the transcriptional basis of diet-induced phenotypic plasticity in a cichlid fish. Mol Ecol 2013; 22:4516-31. [PMID: 23952004 DOI: 10.1111/mec.12417] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/25/2013] [Accepted: 05/28/2013] [Indexed: 11/29/2022]
Abstract
Adaptive phenotypic plasticity, the ability of an organism to change its phenotype to match local environments, is increasingly recognized for its contribution to evolution. However, few empirical studies have explored the molecular basis of plastic traits. The East African cichlid fish Astatoreochromis alluaudi displays adaptive phenotypic plasticity in its pharyngeal jaw apparatus, a structure that is widely seen as an evolutionary key innovation that has contributed to the remarkable diversity of cichlid fishes. It has previously been shown that in response to different diets, the pharyngeal jaws change their size, shape and dentition: hard diets induce an adaptive robust molariform tooth phenotype with short jaws and strong internal bone structures, while soft diets induce a gracile papilliform tooth phenotype with elongated jaws and slender internal bone structures. To gain insight into the molecular underpinnings of these adaptations and enable future investigations of the role that phenotypic plasticity plays during the formation of adaptive radiations, the transcriptomes of the two divergent jaw phenotypes were examined. Our study identified a total of 187 genes whose expression differs in response to hard and soft diets, including immediate early genes, extracellular matrix genes and inflammatory factors. Transcriptome results are interpreted in light of expression of candidate genes-markers for tooth size and shape, bone cells and mechanically sensitive pathways. This study opens up new avenues of research at new levels of biological organization into the roles of phenotypic plasticity during speciation and radiation of cichlid fishes.
Collapse
Affiliation(s)
- Helen M Gunter
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätstrasse 10, 78457, Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Teti G, Salvatore V, Ruggeri A, Manzoli L, Gesi M, Orsini G, Falconi M. In vitro reparative dentin: a biochemical and morphological study. Eur J Histochem 2013; 57:e23. [PMID: 24085272 PMCID: PMC3794354 DOI: 10.4081/ejh.2013.e23] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/24/2013] [Accepted: 06/27/2013] [Indexed: 01/28/2023] Open
Abstract
In this study, starting from human dental pulp cells cultured in vitro, we simulated reparative dentinogenesis using a medium supplemented with different odontogenic inductors. The differentiation of dental pulp cells in odontoblast-like cells was evaluated by means of staining, and ultramorphological, biochemical and biomolecular methods. Alizarin red staining showed mineral deposition while transmission electron microscopy revealed a synthesis of extracellular matrix fibers during the differentiation process. Biochemical assays demonstrated that the differentiated phenotype expressed odontoblast markers, such as Dentin Matrix Protein 1 (DMP1) and Dentin Sialoprotein (DSP), as well as type I collagen. Quantitative data regarding the mRNA expression of DMP1, DSP and type I collagen were obtained by Real Time PCR. Immunofluorescence data demonstrated the various localizations of DSP and DMP1 during odontoblast differentiation. Based on our results, we obtained odontoblast-like cells which simulated the reparative dentin processes in order to better investigate the mechanism of odontoblast differentiation, and dentin extracellular matrix deposition and mineralization.
Collapse
|
42
|
Simon S, Smith AJ, Lumley PJ, Cooper PR, Berdal A. The pulp healing process: from generation to regeneration. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/etp.12019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
MicroRNA-338-3p promotes differentiation of mDPC6T into odontoblast-like cells by targeting Runx2. Mol Cell Biochem 2013; 377:143-9. [PMID: 23380982 DOI: 10.1007/s11010-013-1580-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/30/2013] [Indexed: 12/15/2022]
Abstract
Odontoblasts are terminally differentiated cells that play a vital role in dentinogenesis. The differentiation of odontoblasts is regulated by a variety of genetic and epigenetic mechanisms. Our previous microRNA microarray studies verified that miR-338-3p was up-regulated during odontoblast differentiation. The purpose of this study was to determine the function of miR-338-3p during odontoblast differentiation. The upregulation of miR-338-3p expression during odontoblast differentiation was validated by qRT-PCR. Odontoblast differentiation was enhanced after over-expression of miR-338-3p, while a loss of function approach using a miR-338-3p inhibitor impaired odontoblast differentiation. Bioinformatic analysis identified Runx2 as a potential target of miR-338-3p. Overexpression of miR-338-3p caused a decreased in the expression of Runx2 at both mRNA and protein levels, while Runx2 expression increased after treatment with miR-338-3p inhibitors. Furthermore, the activity of a luciferase reporter plasmid containing the 3'-UTR of Runx2 was significantly suppressed by ectopic expression of miR-338-3p. These results suggested that miR-338-3p promotes odontoblast differentiation through targeting Runx2.
Collapse
|
44
|
Mitsiadis TA, Woloszyk A, Jiménez-Rojo L. Nanodentistry: combining nanostructured materials and stem cells for dental tissue regeneration. Nanomedicine (Lond) 2012; 7:1743-53. [DOI: 10.2217/nnm.12.146] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Regenerative dentistry represents an attractive multidisciplinary therapeutic approach that complements traditional restorative/surgery techniques and benefits from recent advances in stem cell biology, molecular biology, genomics and proteomics. Materials science is important in such advances to move regenerative dentistry from the laboratory to the clinic. The design of novel nanostructured materials, such as biomimetic matrices and scaffolds for controlling cell fate and differentiation, and nanoparticles for diagnostics, imaging and targeted treatment, is needed. The combination of nanotechnology, which allows the creation of sophisticated materials with exquisite fine structural detail, and stem cell biology turns out to be increasingly useful in regenerative medicine. The administration to patients of dynamic biological agents comprising stem cells, bioactive scaffolds and/or nanoparticles will certainly increase the regenerative impact of dental pathological tissues. This overview briefly describes some of the actual benefits and future possibilities of nanomaterials in the emerging field of stem cell-based regenerative dentistry.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Institute of Oral Biology, Department of Orofacial Development & Regeneration, ZZM, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Anna Woloszyk
- Institute of Oral Biology, Department of Orofacial Development & Regeneration, ZZM, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Lucia Jiménez-Rojo
- Institute of Oral Biology, Department of Orofacial Development & Regeneration, ZZM, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Frozoni M, Zaia AA, Line SRP, Mina M. Analysis of the contribution of nonresident progenitor cells and hematopoietic cells to reparative dentinogenesis using parabiosis model in mice. J Endod 2012; 38:1214-9. [PMID: 22892738 PMCID: PMC3745019 DOI: 10.1016/j.joen.2012.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 05/12/2012] [Accepted: 05/17/2012] [Indexed: 11/20/2022]
Abstract
INTRODUCTION The aim of this study was to analyze the contribution of nonresident progenitor/stem cells and hematopoietic cells to reparative dentinogenesis. METHODS Parabiosis was established between C57BL/6-TgN(ACTbEGFP)10sb/J transgenic mice (GFP+) and C57BL/6 wild-type mice (GFP-) to ensure blood cross-circulation between animals. Reparative dentinogenesis was stimulated by pulp exposures and capping on the first maxillary molar in the GFP- mice. Histologic sections of injured molars from GFP- mice were analyzed by epifluorescence microscopy to examine the contributions of GFP+ cells (nonresident progenitor cells and hematopoietic cells originating from GFP+ mice) to reparative dentinogenesis. RESULTS GFP+ cells were detected in close association with reparative dentin formed at the site of pulp exposure in the maxillary first molars of the GFP- mice. CONCLUSIONS The present study suggests the participation of the nonresident progenitor cells and hematopoietic cells in reparative dentinogenesis.
Collapse
Affiliation(s)
- Marcos Frozoni
- Department of Restorative Dentistry, Division of Endodontics, Dental School of Piracicaba, State University of Campinas, São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
46
|
Biodentine Induces Immortalized Murine Pulp Cell Differentiation into Odontoblast-like Cells and Stimulates Biomineralization. J Endod 2012; 38:1220-6. [DOI: 10.1016/j.joen.2012.04.018] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/12/2012] [Accepted: 04/24/2012] [Indexed: 11/22/2022]
|
47
|
Sangwan P, Sangwan A, Duhan J, Rohilla A. Tertiary dentinogenesis with calcium hydroxide: a review of proposed mechanisms. Int Endod J 2012; 46:3-19. [PMID: 22889347 DOI: 10.1111/j.1365-2591.2012.02101.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 06/25/2012] [Indexed: 11/30/2022]
Abstract
Calcium hydroxide has been used extensively in dentistry for a century. Despite its widespread use as a pulp-capping agent, its mechanisms of action still remain ambiguous. Understanding its modes of action will lead to a broader understanding of the mechanisms associated with induced dentinogenesis and help in optimizing the currently available agents to target specific regenerative processes to obtain the best possible clinical outcomes. A literature search relating to mechanisms of dentinogenesis of calcium hydroxide up to December 2011 was carried out using pubmed and MEDLINE database searches as well as manual searching of cross-references from identified studies. Resulting suggestions regarding dentinogenic mechanisms of calcium hydroxide range from direct irritating action of the material to induction of release of biologically active molecules. The purpose of this article is to discuss various mechanisms through which calcium hydroxide may induce tertiary dentinogenesis in the light of observations made in included studies.
Collapse
Affiliation(s)
- P Sangwan
- Department of Conservative Dentistry, Government Dental College, Pt. B.D. Sharma University of Health Sciences, Rohtak, Haryana, India.
| | | | | | | |
Collapse
|
48
|
Mazzoni A, Breschi L, Carrilho M, Nascimento FD, Orsini G, Ruggeri A, Gobbi P, Manzoli L, Tay FR, Pashley DH, Tjäderhane L. A review of the nature, role, and function of dentin non-collagenous proteins. Part II: enzymes, serum proteins, and growth factors. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1601-1546.2012.00268.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Tjäderhane L, Haapasalo M. The dentin-pulp border: a dynamic interface between hard and soft tissues. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1601-1546.2012.00266.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Matsuoka K, Matsuzaka K, Yoshinari M, Inoue T. Tenascin-C promotes differentiation of rat dental pulp cellsin vitro. Int Endod J 2012; 46:30-9. [DOI: 10.1111/j.1365-2591.2012.02089.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/27/2012] [Indexed: 01/09/2023]
Affiliation(s)
| | | | - M. Yoshinari
- Oral Health Science Center HRC7; Tokyo Dental College; Chiba, Tokyo; and; Japan
| | | |
Collapse
|