1
|
Zuo L, Yang Y, Zhang H, Ma Z, Xin Q, Ding C, Li J. Bioinspired Multiscale Mineralization: From Fundamentals to Potential Applications. Macromol Biosci 2024; 24:e2300348. [PMID: 37689995 DOI: 10.1002/mabi.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The wondrous and imaginative designs of nature have always been an inexhaustible treasure trove for material scientists. Throughout the long evolutionary process, biominerals with hierarchical structures possess some specific advantages such as outstanding mechanical properties, biological functions, and sensing performances, the formation of which (biomineralization) is delicately regulated by organic component. Provoked by the subtle structures and profound principles of nature, bioinspired functional minerals can be designed with the participation of organic molecules. Because of the designable morphology and functions, multiscale mineralization has attracted more and more attention in the areas of medicine, chemistry, biology, and material science. This review provides a summary of current advancements in this extending topic. The mechanisms underlying mineralization is first concisely elucidated. Next, several types of minerals are categorized according to their structural characteristic, as well as the different potential applications of these materials. At last, a comprehensive overview of future developments for bioinspired multiscale mineralization is given. Concentrating on the mechanism of fabrication and broad application prospects of multiscale mineralization, the hope is to provide inspirations for the design of other functional materials.
Collapse
Affiliation(s)
- Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yifei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhengxin Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Med-X Center for Materials, Sichuan University, Sichuan, 610041, China
| |
Collapse
|
2
|
Tang K, Wang F, Dai SQ, Yang ZY, Duan LY, Luo ML, Tay FR, Niu LN, Zhou W, Chen JH. Enhanced Bonding to Caries-Affected Dentin Using an Isocyanate-Based Primer. J Dent Res 2023; 102:1444-1451. [PMID: 37950512 DOI: 10.1177/00220345231199416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Dental caries is the most common oral disease and the most common cause of resin restorations. In minimally invasive dentistry, the principle behind cavity preparation is to remove external caries-infected dentin (CID) and preserve internal caries-affected dentin (CAD) and sound dentin (SD). The cavity floor is mainly composed of CAD, but the poor bonding performance of CAD has become a widespread concern. This study evaluated the performance of a new collagen-reactive monomer (ITCM) used as a primer to improve the bonding performance of CAD. The experimental specimens were grouped as follows: SD, CAD, and ITCM-pretreated CAD (CAD-ITCM). Dentin slices were obtained for attenuated total reflectance-Fourier transform infrared (ATR-FTIR) analysis. The bonded samples were subjected to microtensile bond strength analysis after 24 h of water storage or aging by thermocycling, and the bonding interface quality was evaluated by nanoleakage assessment, interfacial nanoindentation testing, and in situ zymography. Cytotoxicity experiments with ITCM were performed. ATR-FTIR showed that the isocyanate groups in ITCM can covalently bind and form hydrogen bonds with the collagen in CAD to mediate chemical bonding. ITCM pretreatment significantly improved the bond strength of CAD (P < 0.05), reduced interfacial nanoleakage, improved the sealing of the bonding interface, enhanced the homogeneity of the hybrid layer, and inhibited matrix metalloproteinase activity. In addition, ITCM presented acceptable biocompatibility for dental restorative application. Taken together, this study reported the application of ITCM to induce collagen-based chemical bonding in the CAD bonding system, which fills the gap in strategies to improve the bonding performance of CAD immediately and after aging and has important clinical application prospects.
Collapse
Affiliation(s)
- K Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - F Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - S Q Dai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Z Y Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - L Y Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - M L Luo
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, The First Medical Center, Chinese PLA General Hospital & Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Xi'an, Beijing, China
| | - F R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - L N Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - W Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - J H Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Ünsal A, Durmuş E, Çelik İ. Osteoproductivity in Experimentally Induced Cranial Bone Defects in Rabbits. IRANIAN BIOMEDICAL JOURNAL 2023; 26:366-74. [PMID: 38142310 PMCID: PMC10826913 DOI: 10.61186/ibj.3940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/07/2023] [Indexed: 12/25/2023]
Abstract
Background Autogenous bone grafts are the gold standard for being used as graft materials in maxillofacial surgery. However, a limited amount of these materials is available from the donor site, and there is also more need for a larger operating area and a second surgery, which frequently leads to unreliable graft incorporation, tooth ankylosis, and root resorption. Therefore, newer bone graft substitutes have been developed as alternatives, among which eggshell powder has been introduced as a bone substitute. This study aimed to evaluate the biocompatibility, resorption kinetics, and osteoproductivity of the unprocessed, CMC-coated, and gelatin-coated ostrich eggshell particles. Methods Four half-thickness calvarial defects were created in each animal. At the end of the 1st and 3rd months, the defected sites were investigated by clinical, histological, radiological and histomorphometrical methods. Results Coating the eggshell particles with CMC and gelatin facilitated their surgical application and contributed to new bone formation. However, their newly formed bone rate at the 3rd month was lower than those of the unprocessed eggshell particles. The CMC coating was more effective than gelatin coating in the bone modeling process. Conclusion Ostrich eggshell particles either in native form or coated with CMC could be used as a bone filler for supporting new bone formation and healing in treatment of osseous defects.
Collapse
Affiliation(s)
| | | | - İlhami Çelik
- Selçuk University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Kampüs 42080, Konya, Türkiye
| |
Collapse
|
4
|
Vidal CMP, Carrilho MR. Dentin Degradation: From Tissue Breakdown to Possibilities for Therapeutic Intervention. CURRENT ORAL HEALTH REPORTS 2023; 10:99-110. [PMID: 37928132 PMCID: PMC10624336 DOI: 10.1007/s40496-023-00341-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 11/07/2023]
Abstract
Purpose of the Review Presently, dental materials science is driven by the search for new and improved materials that can trigger specific reactions from the affected tissue to stimulate repair or regeneration while interacting with the oral environment to promote or maintain oral health. In parallel, evidence from the past decades has challenged the exclusive role of bacteria in dentin tissue degradation in caries, questioning our understanding of caries etiopathogenesis. The goal of this review is to recapitulate the current evidence on the host and bacterial contributions to degradation, inflammation, and repair of the dentin-pulp complex in caries. Recent Findings Contrasting findings attribute dentin breakdown to the activity of endogenous enzymes, such as matrix metalloproteinases (MMPs) and cathepsins, while the role of bacteria and their by-products in the destruction of dentin organic matrix and pulp inflammation has been for decades supported as an incontestable paradigm. Aiming to better understand the mechanisms involved in collagen degradation by host enzymes in caries, studies have showed that these proteinases are expressed in the mature dentin (i.e., after dentin formation) and become activated by the low pH in the acidic environment resulted by bacterial metabolism in caries. However, different host sources other than dentin-bound proteinases seem to also contribute to caries progression, such as saliva and pulp. Interestingly, studies evaluating pulp responses to bacteria invasion and inflammation in caries report higher levels of MMPs and cathepsins in inflamed tissue, but also showed MMP potential to resolve inflammation and stimulate wound healing. Notably, as reported for other tissues, MMPs exert dual roles in the dentin-pulp complex in caries, participating or regulating both degradative and reparative mechanisms. Summary The specific roles of host and bacteria and their by-products in caries progression have yet to be clarified. The complex interactions between inflammation and repair in caries pose challenges to a clear understanding of the dentin-pulp complex responses and changes to bacteria invasion. However, it opens new venues for the development of novel therapies and dental biomaterials based on the modulation of specific mechanisms to favor tissue repair and healing.
Collapse
Affiliation(s)
- Cristina M. P. Vidal
- Department of Operative Dentistry, College of Dentistry, The University of Iowa, 801 Newton Road, DSB S245, Iowa City, IA 52242, USA
| | | |
Collapse
|
5
|
Zhang M, Guo J, Chen X, Gao M. Effect of photodynamic therapy on resin-dentin bonding interface using different illumination time. Photodiagnosis Photodyn Ther 2022; 38:102747. [PMID: 35123014 DOI: 10.1016/j.pdpdt.2022.102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of the present study was to evaluate the effect of photodynamic therapy(PDT) on the resin-dentin bonding interface using different illumination time. METHODS Seventy completed, isolated molar teeth were collected for this study, sixty of them were used in microtensile bond strength tests. These teeth were initially divided randomly in two main groups(n=30) by the random number table method upon the type of using illumination or not respectively. Then these groups followed by dividing each category in five subgroups(n=6): group A, group B1,group B2, group B3, group B4, group a, group b1, group b2, group b3, group b4. After different treatment, the remaining teeth were made specimens which were observed the fracture modes and interfaces under a stereomicroscope and a scanning electron microscope(SEM). The dentin permeability of the specimens were evaluated by a laser scanning confocal microscope(LSCM). To detect significance difference between means of different groups analysis of variance(ANOVA) was performed followed by LSD-t tests. RESULTS There was a significant statistical difference in the microtensile bond strength of the different illumination time of PDT between four experimental groups and the control (P<0.05). CONCLUSION With the increase of the illumination time in PDT, the bonding strength between resin and dentin decreased gradually.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Stomotology,First Hospital Affiliated to Zhengzhou University,Zhengzhou University,Zhengzhou,450052,China
| | - Jia Guo
- Department of Stomotology,First Hospital Affiliated to Zhengzhou University,Zhengzhou University,Zhengzhou,450052,China.
| | - Xi Chen
- Department of Stomotology,First Hospital Affiliated to Zhengzhou University,Zhengzhou University,Zhengzhou,450052,China
| | - Mengjie Gao
- Department of Stomotology,First Hospital Affiliated to Zhengzhou University,Zhengzhou University,Zhengzhou,450052,China
| |
Collapse
|
6
|
Influence of protease inhibitors on the degradation of sound, sclerotic and caries-affected demineralized dentin. J Mech Behav Biomed Mater 2019; 97:1-6. [DOI: 10.1016/j.jmbbm.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 01/23/2023]
|
7
|
Giacomini MC, Scaffa PMC, Chaves LP, Vidal CMP, Machado TN, Honório HM, Tjäderhane L, Wang L. Role of Proteolytic Enzyme Inhibitors on Carious and Eroded Dentin Associated With a Universal Bonding System. Oper Dent 2017; 42:E188-E196. [DOI: 10.2341/16-178-l] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARY
Objectives: The aim of this study was to evaluate the effect of proteolytic inhibitors on the bond strength of a universal adhesive system (etch-and-rinse mode) applied to artificial carious and eroded dentin. Methods: Ninety molars were prepared and randomly divided into three groups according to the substrate: N, no challenges; ACD, artificial carious dentin simulation and ERO, artificial erosion simulation with orange juice. All groups were redivided into three subgroups according to the dentin pretreatment: W, water; CHX, 2% digluconate chlorhexidine; and E-64 (trans-epoxysuccinyl-L-leucylamido-[4-guanidino] butane), 5 μM E-64 inhibitor. They constituted a total of nine groups (n=10): N-W, N-CHX, N-E64, ACD-W, ACD-CHX, ACD-E64, ERO-W, ERO-CHX, and ERO-E64. All specimens were restored with Adper Single Bond Universal/Filtek Z250. Beams (0.64 mm2) were obtained and subjected to the microtensile test (μTBS) in a universal testing machine at 0.5 mm/min. The failure mode of the interfaces was determined by optical microscopy (40× magnification). Data were statistically analyzed by three-way analysis of variance and Tukey tests (p<0.05). Results: All individual factors (p<0.0001) and the interaction between substrate and treatment (p=0.0011) and between substrate and time (p=0.0003) were statistically significant. The caries substrate contributed negatively to bond strength. Chlorhexidine reduced bond strength for normal and eroded conditions. Only the normal substrate was negatively affected by time despite the pretreatment. Conclusions: The universal bonding system appears to be a promising bonding strategy for the maintenance of bond strength to affected dentin. E-64 did not affect bonding to the dentin in contrast to the use of chlorhexidine, which, when associated with the universal system, did affect the microtensile bond strength for artificial carious dentin.
Collapse
Affiliation(s)
- MC Giacomini
- Marina Ciccone Giacomini, DDS, MS, PhD student, Department of Operative Dentistry, Endodontics, and Dental Materials, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - PMC Scaffa
- Polliana Mendes Candia Scaffa, DDS, MS, PhD, postdoctoral student, Department of Biological Science, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - LP Chaves
- Larissa Pinceli Chaves, DDS, MS, PhD, Department of Operative Dentistry, Endodontics, and Dental Materials, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - CMP Vidal
- Cristina de Mattos Pimenta Vidal, DDS, MS, PhD, assistant professor, Department of Operative Dentistry, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - TN Machado
- Thaís Nayara Machado, DDS, Department of Operative Dentistry, Endodontics, and Dental Materials, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - HM Honório
- Heitor Marques Honório, DDS, MS, PhD, associate professor, Department of Pediatric Dentistry, Orthodontics, and Collective Health, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | - L Wang
- Linda Wang, DDS, MS, PhD, associate professor, Department of Operative Dentistry, Endodontics, and Dental Materials, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Bertassoni LE. Dentin on the nanoscale: Hierarchical organization, mechanical behavior and bioinspired engineering. Dent Mater 2017; 33:637-649. [PMID: 28416222 PMCID: PMC5481168 DOI: 10.1016/j.dental.2017.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/09/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Knowledge of the structural organization and mechanical properties of dentin has expanded considerably during the past two decades, especially on a nanometer scale. In this paper, we review the recent literature on the nanostructural and nanomechanical properties of dentin, with special emphasis in its hierarchical organization. METHODS We give particular attention to the recent literature concerning the structural and mechanical influence of collagen intrafibrillar and extrafibrillar mineral in healthy and remineralized tissues. The multilevel hierarchical structure of collagen, and the participation of non-collagenous proteins and proteoglycans in healthy and diseased dentin are also discussed. Furthermore, we provide a forward-looking perspective of emerging topics in biomaterials sciences, such as bioinspired materials design and fabrication, 3D bioprinting and microfabrication, and briefly discuss recent developments on the emerging field of organs-on-a-chip. RESULTS The existing literature suggests that both the inorganic and organic nanostructural components of the dentin matrix play a critical role in various mechanisms that influence tissue properties. SIGNIFICANCE An in-depth understanding of such nanostructural and nanomechanical mechanisms can have a direct impact in our ability to evaluate and predict the efficacy of dental materials. This knowledge will pave the way for the development of improved dental materials and treatment strategies. CONCLUSIONS Development of future dental materials should take into consideration the intricate hierarchical organization of dentin, and pay particular attention to their complex interaction with the dentin matrix on a nanometer scale.
Collapse
Affiliation(s)
- Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA; Center for Regenerative Medicine, Oregon Health and Science University, School of Medicine, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, Portland, OR, USA.
| |
Collapse
|
9
|
Toledano M, Osorio R, Osorio E, García-Godoy F, Toledano-Osorio M, Aguilera FS. Advanced zinc-doped adhesives for high performance at the resin-carious dentin interface. J Mech Behav Biomed Mater 2016; 62:247-267. [DOI: 10.1016/j.jmbbm.2016.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 01/22/2023]
|
10
|
Vieira GM. Protein biomarkers of external root resorption: a new protein extraction protocol. Are we going in the right direction? Dental Press J Orthod 2016; 19:62-9. [PMID: 25628081 PMCID: PMC4347412 DOI: 10.1590/2176-9451.19.6.062-069.oar] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 04/15/2014] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE The aim of this study is to determine a protocol of gingival crevicular fluid protein extraction used for the first dimension of 2-DE gels. It also aims at conducting a review on the current candidates for protein markers of this pathology, all of which may be used to prevent the disease. METHODS Gingival crevicular fluid was collected from two groups of 60 patients each, with and without external root resorption. Samples were extracted by means of various methods of protein extraction. SDS-PAGE gels were used to assess the quality of the method which was subsequently tested during isoelectric focusing of 2-DE gels taken from samples of patients with and without the disease. RESULTS Milli-Q ultrapure ice cold water, without precipitation for gingival crevicular fluid protein extraction, proved the method with greatest sharpness to detect protein bands. Additionally, it allowed two-dimensional electrophoresis to be performed. CONCLUSION The new protein extraction protocol does not interfere in isoeletric focusing of 2-DE gels. Furthermore, it provides the greatest sharpness in detecting protein bands of SDS-PAGE gels. This will allow mapping and searching of new external root resorption markers, particularly due to the difficulty in carrying out molecular tests with the current candidates for protein markers.
Collapse
|
11
|
Tjäderhane L, Buzalaf MAR, Carrilho M, Chaussain C. Matrix metalloproteinases and other matrix proteinases in relation to cariology: the era of 'dentin degradomics'. Caries Res 2015; 49:193-208. [PMID: 25661522 DOI: 10.1159/000363582] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
Dentin organic matrix, with type I collagen as the main component, is exposed after demineralization in dentinal caries, erosion or acidic conditioning during adhesive composite restorative treatment. This exposed matrix is prone to slow hydrolytic degradation by host collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins. Here we review the recent findings demonstrating that inhibition of salivary or dentin endogenous collagenolytic enzymes may provide preventive means against progression of caries or erosion, just as they have been shown to retain the integrity and improve the longevity of resin composite filling bonding to dentin. This paper also presents the case that the organic matrix in caries-affected dentin may not be preserved as intact as previously considered. In partially demineralized dentin, MMPs and cysteine cathepsins with the ability to cleave off the terminal non-helical ends of collagen molecules (telopeptides) may lead to the gradual loss of intramolecular gap areas. This would seriously compromise the matrix ability for intrafibrillar remineralization, which is considered essential in restoring the dentin's mechanical properties. More detailed data of the enzymes responsible and their detailed function in dentin-destructive conditions may not only help to find new and better preventive means, but better preservation of demineralized dentin collagenous matrix may also facilitate true biological remineralization for the better restoration of tooth structural and mechanical integrity and mechanical properties.
Collapse
Affiliation(s)
- Leo Tjäderhane
- Institute of Dentistry, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
12
|
Mazzoni A, Tjäderhane L, Checchi V, Di Lenarda R, Salo T, Tay FR, Pashley DH, Breschi L. Role of dentin MMPs in caries progression and bond stability. J Dent Res 2014; 94:241-51. [PMID: 25535202 DOI: 10.1177/0022034514562833] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Dentin can be described as a biological composite with collagen matrix embedded with nanosized hydroxyapatite mineral crystallites. Matrix metalloproteinases (MMPs) and cysteine cathepsins are families of endopeptidases. Enzymes of both families are present in dentin and collectively capable of degrading virtually all extracellular matrix components. This review describes these enzymes and their presence in dentin, mainly focusing on their role in dentin caries pathogenesis and loss of collagen in the adhesive hybrid layer under composite restorations. MMPs and cysteine cathepsins present in saliva, mineralized dentin, and/or dentinal fluid may affect the dentin caries process at the early phases of demineralization. Changes in collagen and noncollagenous protein structure may participate in observed decreases in mechanical properties of caries-affected dentin and reduce the ability of caries-affected dentin to remineralize. These endogenous enzymes also remain entrapped within the hybrid layer during the resin infiltration process, and the acidic bonding agents themselves (irrespective of whether they are etch-and-rinse or self-etch) can activate these endogenous protease proforms. Since resin impregnation is frequently incomplete, denuded collagen matrices associated with free water (which serves as a collagen cleavage reagent for these endogenous hydrolase enzymes) can be enzymatically disrupted, finally contributing to the degradation of the hybrid layer. There are multiple in vitro and in vivo reports showing that the longevity of the adhesive interface is increased when nonspecific enzyme-inhibiting strategies are used. Different chemicals (i.e., chlorhexidine, galardin, and benzalkonium chloride) or collagen cross-linker agents have been successfully employed as therapeutic primers in the bonding procedure. In addition, the incorporation of enzyme inhibitors (i.e., quaternary ammonium methacrylates) into the resin blends has been recently promoted. This review will describe MMP functions in caries and hybrid layer degradation and explore the potential therapeutic role of MMP inhibitors for the development of improved intervention strategies for MMP-related oral diseases.
Collapse
Affiliation(s)
- A Mazzoni
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - L Tjäderhane
- Institute of Dentistry, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - V Checchi
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - R Di Lenarda
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - T Salo
- Institute of Dentistry, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - F R Tay
- Department of Oral Biology, College of Dental Medicine, Georgia Regents University, Augusta, GA, USA
| | - D H Pashley
- Department of Oral Biology, College of Dental Medicine, Georgia Regents University, Augusta, GA, USA
| | - L Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Italy
| |
Collapse
|
13
|
Orsini G, Majorana A, Mazzoni A, Putignano A, Falconi M, Polimeni A, Breschi L. Immunocytochemical detection of dentin matrix proteins in primary teeth from patients with dentinogenesis imperfecta associated with osteogenesis imperfecta. Eur J Histochem 2014; 58:2405. [PMID: 25578972 PMCID: PMC4289844 DOI: 10.4081/ejh.2014.2405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 10/30/2014] [Accepted: 11/10/2014] [Indexed: 12/28/2022] Open
Abstract
Dentinogenesis imperfecta determines structural alterations of the collagen structure still not completely elucidated. Immunohisto-chemical analysis was used to assay type I and VI collagen, various non-collagenous proteins distribution in human primary teeth from healthy patients or from patients affected by type I dentinogenesis imperfecta (DGI-I) associated with osteogenesis imperfecta (OI). In sound primary teeth, an organized well-known ordered pattern of the type I collagen fibrils was found, whereas atypical and disorganized fibrillar structures were observed in dentin of DGI-I affected patients. Expression of type I collagen was observed in both normal and affected primary teeth, although normal dentin stained more uniformly than DGI-I affected dentin. Reactivity of type VI collagen was significantly lower in normal teeth than in dentin from DGI-I affected patients (P<0.05). Expressions of dentin matrix protein-1 (DMP1) and osteopontin (OPN) were observed in both normal dentin and dentin from DGI-I affected patients, without significant differences, being DMP1 generally more abundantly expressed. Immuno labeling for chondroitin sulfate (CS) and biglycan (BGN) was weaker in dentin from DGI-I-affected patients compared to normal dentin, this decrease being significant only for CS. This study shows ultra-structural alterations in dentin obtained from patients affected by DGI-I, supported by immunocytochemical assays of different collagenous and non-collagenous proteins.
Collapse
Affiliation(s)
- G Orsini
- Polytechnic University of Marche.
| | | | | | | | | | | | | |
Collapse
|
14
|
Aggarwal V, Singla M, Yadav S, Yadav H. The effect of caries excavation methods on the bond strength of etch-and-rinse and self-etch adhesives to caries affected dentine. Aust Dent J 2013; 58:454-60. [DOI: 10.1111/adj.12121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 11/30/2022]
Affiliation(s)
- V Aggarwal
- Department of Conservative Dentistry and Endodontics; Faculty of Dentistry; Jamia Millia Islamia; New Delhi India
| | - M Singla
- Department of Conservative Dentistry and Endodontics; SGT Dental College; Gurgaon India
| | - S Yadav
- Department of Conservative Dentistry and Endodontics; SGT Dental College; Gurgaon India
| | - H Yadav
- Department of Prosthodontics; SGT Dental College; Gurgaon India
| |
Collapse
|
15
|
Bedran-Russo AK, Pauli GF, Chen SN, McAlpine J, Castellan CS, Phansalkar RS, Aguiar TR, Vidal CMP, Napotilano JG, Nam JW, Leme AA. Dentin biomodification: strategies, renewable resources and clinical applications. Dent Mater 2013; 30:62-76. [PMID: 24309436 DOI: 10.1016/j.dental.2013.10.012] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/20/2013] [Accepted: 10/30/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The biomodification of dentin is a biomimetic approach, mediated by bioactive agents, to enhance and reinforce the dentin by locally altering the biochemistry and biomechanical properties. This review provides an overview of key dentin matrix components, targeting effects of biomodification strategies, the chemistry of renewable natural sources, and current research on their potential clinical applications. METHODS The PubMed database and collected literature were used as a resource for peer-reviewed articles to highlight the topics of dentin hierarchical structure, biomodification agents, and laboratorial investigations of their clinical applications. In addition, new data is presented on laboratorial methods for the standardization of proanthocyanidin-rich preparations as a renewable source of plant-derived biomodification agents. RESULTS Biomodification agents can be categorized as physical methods and chemical agents. Synthetic and naturally occurring chemical strategies present distinctive mechanism of interaction with the tissue. Initially thought to be driven only by inter- or intra-molecular collagen induced non-enzymatic cross-linking, multiple interactions with other dentin components are fundamental for the long-term biomechanics and biostability of the tissue. Oligomeric proanthocyanidins show promising bioactivity, and their chemical complexity requires systematic evaluation of the active compounds to produce a fully standardized intervention material from renewable resource, prior to their detailed clinical evaluation. SIGNIFICANCE Understanding the hierarchical structure of dentin and the targeting effect of the bioactive compounds will establish their use in both dentin-biomaterials interface and caries management.
Collapse
Affiliation(s)
- Ana K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.
| | - Guido F Pauli
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Shao-Nong Chen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - James McAlpine
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Carina S Castellan
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA; Department of Biochemistry and Dental Biomaterials, School of Dentistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Rasika S Phansalkar
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Thaiane R Aguiar
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Cristina M P Vidal
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - José G Napotilano
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Joo-Won Nam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ariene A Leme
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Mei ML, Chu CH, Low KH, Che CM, Lo ECM. Caries arresting effect of silver diamine fluoride on dentine carious lesion with S. mutans and L. acidophilus dual-species cariogenic biofilm. Med Oral Patol Oral Cir Bucal 2013; 18:e824-31. [PMID: 23722131 PMCID: PMC3854072 DOI: 10.4317/medoral.18831] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/09/2013] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES This in vitro study investigated the effects of silver diamine fluoride (SDF) on dentine carious lesion with cariogenic biofilm. STUDY DESIGN Thirty human dentine blocks were inoculated with Streptococcus mutans and Lactobacillus acidophilus dual-species biofilm to create carious lesion. They were equally divided into test and control group to receive topical application of SDF and water. After incubation anaerobically using micro-well plate at 37oC for 7 days, the biofilms were evaluated for kinetics, morphology and viability by colony forming units (CFU), scanning electron microscopy (SEM), and confocal microscopy (CLSM), respectively. The carious lesion underwent crystal characteristics analysis, evaluation of the changes in chemical structure and density of collagen fibrils using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and immune-labeling. RESULTS The log CFU of S. mutans and L. acidophilus in the test group was significantly lower than control group. SEM and CLSM showed confluent biofilm in control group, but not in test group. XRD showed the loss of crystallinity of dentine due to the dissolution of hydroxyapatite crystal structure in test group was less than control group. FTIR showed that log [Amide I: HPO42-] for test vs. control group was 0.31±0.10 vs. 0.57±0.13 (p<0.05). The gold-labeling density in test vs. control group was 8.54±2.44/µm2 vs. 12.91±4.24/µm2 (p=0.04). CONCLUSIONS SDF had antimicrobial activity against the cariogenic biofilms and reduced demineralization of dentine.
Collapse
Affiliation(s)
- May-Lei Mei
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR, China,
| | | | | | | | | |
Collapse
|
17
|
Chaussain C, Boukpessi T, Khaddam M, Tjaderhane L, George A, Menashi S. Dentin matrix degradation by host matrix metalloproteinases: inhibition and clinical perspectives toward regeneration. Front Physiol 2013; 4:308. [PMID: 24198787 PMCID: PMC3814849 DOI: 10.3389/fphys.2013.00308] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/08/2013] [Indexed: 01/13/2023] Open
Abstract
Bacterial enzymes have long been considered solely accountable for the degradation of the dentin matrix during the carious process. However, the emerging literature suggests that host-derived enzymes, and in particular the matrix metalloproteinases (MMPs) contained in dentin and saliva can play a major role in this process by their ability to degrade the dentin matrix from within. These findings are important since they open new therapeutic options for caries prevention and treatment. The possibility of using MMP inhibitors to interfere with dentin caries progression is discussed. Furthermore, the potential release of bioactive peptides by the enzymatic cleavage of dentin matrix proteins by MMPs during the carious process is discussed. These peptides, once identified, may constitute promising therapeutical tools for tooth and bone regeneration.
Collapse
Affiliation(s)
- Catherine Chaussain
- EA 2496 Dental School University Paris Descartes Montrouge, France ; Odontology Departments (Bretonneau and Charles Foix), AP-HP Paris, France
| | | | | | | | | | | |
Collapse
|
18
|
Bedran-Russo AK, Karol S, Pashley DH, Viana G. Site specific properties of carious dentin matrices biomodified with collagen cross-linkers. AMERICAN JOURNAL OF DENTISTRY 2013. [PMID: 24479274 DOI: 10.1007/s11103-011-9767-z.plastid] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
PURPOSE To assess in non-cavitated carious teeth the mechanical properties of dentin matrix by measuring its reduced modulus of elasticity and the effect of dentin biomodification strategies on three dentin matrix zones: caries-affected, apparently normal dentin below caries-affected zone and sound dentin far from carious site. METHODS Nano-indentations were performed on dentin matrices of carious molars before and after surface modification using known cross-linking agents (glutaraldehyde, proanthocyanidins from grape seed extract and carbodiimide). RESULTS Statistically significant differences were observed between dentin zones of demineralized dentin prior to surface biomodification (P < 0.05). Following surface modification, there were no statistically significant differences between dentin zones (P < 0.05). An average increase of 30-fold, 2-fold and 2.2-fold of the reduced modulus of elasticity was observed following treatments of the three dentin zones with proanthocyanidin, carbodiimide and glutaraldehyde, respectively.
Collapse
Affiliation(s)
- Ana K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Room #551, 801 South Paulina Street, Chicago, IL 60612, USA.
| | - Sachin Karol
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Room #551, 801 South Paulina Street, Chicago, IL 60612, USA
| | - David H Pashley
- Department of Oral Biology, School of Dental Medicine, Georgia Health Sciences University, Augusta, Georgia, USA
| | - Grace Viana
- Department of Orthodontics, College of Dentistry, Chicago, Illinois 60612, USA
| |
Collapse
|
19
|
Mei ML, Chu CH, Lo ECM, Samaranayake LP. Preventing root caries development under oral biofilm challenge in an artificial mouth. Med Oral Patol Oral Cir Bucal 2013; 18:e557-63. [PMID: 23524434 PMCID: PMC3731081 DOI: 10.4317/medoral.18768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/05/2012] [Indexed: 01/18/2023] Open
Abstract
Objectives: To study the preventive effects of chlorhexidine against root caries under oral biofilm in an artificial mouth.
Study Design: Sixteen human tooth-root disks were inoculated with a salivary sample that was produced by mixing the unstimulated saliva of three adults who had no untreated caries. The disks were incubated in an artificial mouth fed with a 5% sucrose solution three times daily for one week. Eight disks received a twice daily rinse of 0.12% chlorhexidine (test group). The other eight disks were rinsed in distilled water (control). The biofilm was then studied with three techniques: colony forming unit (CFU) counting, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The changes in the chemical structure of the root surface were studied using Fourier transform infra-Red spectroscopy. Type-I collagen and proteoglycans on the root surface were quantified using immunocytochemical staining.
Results: The log CFU for the test and control groups were 4.21 and 8.27, respectively (p<0.001). The CFU count of Streptococci and Lactobacilli were negligible. Both the SEM and the CLSM showed suppressed bacteria growth in the test group. The log [amide-I: HPO42-] of the test and control groups were 1.11 and 1.93, respectively (p=0.02). The mean counts of sound type-I collagen in the test and control groups were 16.8/?m2 and 13.0/?m2, respectively (p<0.001), whereas the mean counts of intact proteoglycans were 5.6/?m2 and 3.5/?m2, respectively (P<0.001).
Conclusions: Chlorhexidine suppressed the growth of selected cariogenic bacteria in oral biofilm on the root surface and thus protected tooth-root from cariogenic challenge.
Key words:Chlorhexidine, biofilm, caries risk, root, caries, artificial mouth, demineralization, streptococci, lactobacilli, proteoglycans, collagen I.
Collapse
Affiliation(s)
- May-Lei Mei
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR, China.
| | | | | | | |
Collapse
|
20
|
Srinivasulu S, Vidhya S, Sujatha M, Mahalaxmi S. Shear Bond Strength of Composite to Deep Dentin After Treatment With Two Different Collagen Cross-linking Agents at Varying Time Intervals. Oper Dent 2012; 37:485-91. [DOI: 10.2341/11-232-l] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARY
Objective
This in vitro study evaluated the shear bond strength of composite resin to deep dentin using a total etch adhesive after treatment with two collagen cross-linking agents at varying time intervals.
Materials and Methods
Thirty freshly extracted human maxillary central incisors were sectioned longitudinally into equal mesial and distal halves (n=60). The proximal deep dentin was exposed, maintaining a remaining dentin thickness (RDT) of approximately 1 mm. The specimens were randomly divided into three groups based on the surface treatment of dentin prior to bonding as follows: group I (n=12, control): no prior dentin surface treatment; group II (n=24): dentin surface pretreated with 10% sodium ascorbate; and group III (n=24): dentin surface pretreated with 6.5% proanthocyanidin. Groups II and III were further subdivided into two subgroups of 12 specimens each, based on the pretreatment time of five minutes (subgroup A) and 10 minutes (subgroup B). Shear bond strength of the specimens was tested with a universal testing machine, and the data were statistically analyzed.
Results
Significantly higher shear bond strength to deep dentin was observed in teeth treated with 10% sodium ascorbate (group II) and 6.5% proanthocyanidin (group III) compared to the control group (group I). Among the collagen cross-linkers used, specimens treated with proanthocyanidin showed significantly higher shear bond strength values than those treated with sodium ascorbate. No significant difference was observed between the five-minute and 10-minute pretreatment times in groups II and III.
Conclusion
It can be concluded that dentin surface pretreatment with both 10% sodium ascorbate and 6.5% proanthocyanidin resulted in significant improvement in bond strength of resin composite to deep dentin.
Collapse
|
21
|
Carvalho RM, Tjäderhane L, Manso AP, Carrilho MR, Carvalho CAR. Dentin as a bonding substrate. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1601-1546.2012.00274.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Nanoscale characterization of cell receptors and binding sites on cell-derived extracellular matrices. Ultramicroscopy 2012; 118:44-52. [DOI: 10.1016/j.ultramic.2012.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/20/2012] [Accepted: 04/20/2012] [Indexed: 01/16/2023]
|
23
|
Van Landuyt KL, Peumans M, De Munck J, Cardoso MV, Ermis B, Van Meerbeek B. Three-year clinical performance of a HEMA-free one-step self-etch adhesive in non-carious cervical lesions. Eur J Oral Sci 2011; 119:511-6. [DOI: 10.1111/j.1600-0722.2011.00855.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Boushell LW, Nagaoka H, Nagaoka H, Yamauchi M. Increased matrix metalloproteinase-2 and bone sialoprotein response to human coronal caries. Caries Res 2011; 45:453-9. [PMID: 21876355 DOI: 10.1159/000330601] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 06/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND It has been suggested that host matrix metalloproteinase-2 (MMP-2) present in dentin may be involved in caries progression, however, its response to caries is not known. Bone sialoprotein (BSP) has been implicated in dentin mineralization and MMP-2 modulation. OBJECTIVE To identify and compare the distribution of MMP-2 and BSP in healthy human coronal dentin and those with early caries. METHODS Freshly extracted 3rd molars and premolars with and without early caries were fixed, demineralized and subjected to immunohistochemistry using a monoclonal anti-MMP-2 antibody and monoclonal anti-BSP antibody with an avidin-biotin complex method. Immunoreactivity was visualized with 3,3'-diaminobenzidine substrate and observed under light microscopy. RESULTS Immunohistochemical analysis revealed that MMP-2 and BSP are not detected in the tubule lumens of healthy dentin. However, intense immunoreactivity for MMP-2 and BSP was detected in association with the full length of the caries-affected dentinal tubules. The MMP-2 and BSP at the dentino-enamel junction appeared unaltered. CONCLUSION The results indicate that MMP-2 and BSP may be actively secreted by odontoblasts in response to carious insult. MMP-2 and BSP accumulation in the caries-affected dentinal tubules may indicate their potential involvement in the host defense mechanism which results in calcification of regions affected by the carious process.
Collapse
Affiliation(s)
- L W Boushell
- Department of Operative Dentistry, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
25
|
|
26
|
Differential expression of matrix metalloproteinase-2 in human coronal and radicular sound and carious dentine. J Dent 2010; 38:635-40. [PMID: 20452393 DOI: 10.1016/j.jdent.2010.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/28/2010] [Accepted: 05/03/2010] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To examine the differential expression of matrix metalloproteinase-2 (MMP-2) in human coronal and radicular sound and carious dentine using combined trichrome staining technique and immunofluorescence approach. METHODS Freshly extracted human premolars were fixed with formaldehyde, demineralised with 10% EDTA (pH 7.4), dehydrated and sectioned for light and immunofluorescence microscopy. Half of the sections were stained with Masson's trichrome and examined with light microscopy to identify regions in the coronal and radicular parts of the teeth that contained sound, caries-affected and caries-infected dentine. The rest of the sections were hybridized with anti-mouse MMP-2 primary antibody and FITC-conjugated secondary antibody. Immunofluorescence of the FITC that was indicative of the distribution of the MMP-2 in coronal and radicular dentine was analysed by fluorescence light microscopy. RESULTS Trichrome staining revealed a green zone of unaffected sound dentin, red irregular regions of caries-infected dentine and pink regions of caries-affected dentine. Immunofluorescence signals that were indicative of MMP expression were the lowest in sound dentine and most intense in the caries-infected dentine. Caries-affected dentine showed intermediate immunoreactivity. The variations in the intensities of immunofluorescence corresponded well with the distribution of caries-infected and caries-affected dentine in the trichrome-stained sections, for both coronal and radicular dentine. CONCLUSION Caries stimulates MMP-2 expression, resulting in the differential expression of this protease in sound, caries-affected and caries-infected dentine. The more intense MMP-2 expression in caries-affected dentine compared with sound dentine may imply more rapid hybrid layer degradation when caries-affected dentine is employed as the substrate for bonded restorations.
Collapse
|
27
|
Perdigão J. Dentin bonding—Variables related to the clinical situation and the substrate treatment. Dent Mater 2010; 26:e24-37. [DOI: 10.1016/j.dental.2009.11.149] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
|
28
|
Ruggeri A, Orsini G, Mazzoni A, Nato F, Papa V, Piccirilli M, Putignano A, Mazzotti G, De Stefano Dorigo E, Breschi L. Immunohistochemical and biochemical assay of versican in human sound predentine/dentine matrix. Eur J Histochem 2009; 53:e15. [PMID: 19864206 PMCID: PMC3168232 DOI: 10.4081/ejh.2009.e15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 06/05/2009] [Indexed: 11/22/2022] Open
Abstract
Aim of this study was to investigate the distribution of versican proteoglycan within the human dentine organic matrix by means of a correlative immunohistochemical analysis with field emission in-lens scanning electron microscope (FEI-SEM), transmission electron microscope (TEM), fluorescence microscope (FM) and biochemical assay. Specimens containing dentine and predentine were obtained from non carious human teeth and divided in three groups: 1) FEI-SEM group: sections were exposed to a pre-embedding immunohistochemical procedure; 2) TEM group: specimens were fixed, demineralised, embedded and submitted to a post-embedding immunohistochemical procedure; 3) FM group: sections mineralised and submitted to a pre-embedding immunohistochemical procedure with fluorescence labelling. Specimens were exposed to two different antibodies to assay distribution of versican fragments and whole versican molecule.Western Blotting analysis of dentine and pulp extracts was also performed. The correlative FEI-SEM,TEM and FM analysis revealed positive immunoreaction for versican fragments both in predentine and dentine, while few gold particles identifying the whole versican molecule were found in predentine only under TEM. No labelling of versican whole molecule was detected by FEI-SEM and FM analysis. The immunoblotting analysis confirmed the morphological findings. This study suggests that in fully developed human teeth versican fragments are significant constituents of the human dentine and predentine organic matrix, while versican whole molecule can be visualised in scarce amount within predentine only. The role of versican fragments within human dentine organic matrix should be further elucidated.
Collapse
Affiliation(s)
- A Ruggeri
- Department of SAU&FAL, University of Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mai S, Kim YK, Toledano M, Breschi L, Ling JQ, Pashley DH, Tay FR. Phosphoric acid esters cannot replace polyvinylphosphonic acid as phosphoprotein analogs in biomimetic remineralization of resin-bonded dentin. Dent Mater 2009; 25:1230-9. [PMID: 19481792 DOI: 10.1016/j.dental.2009.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/27/2009] [Accepted: 05/04/2009] [Indexed: 12/25/2022]
Abstract
Polyvinylphosphonic acid (PVPA), a biomimetic analog of phosphoproteins, is crucial for recruiting polyacrylic acid (PAA)-stabilized amorphous calcium phosphate nanoprecursors during biomimetic remineralization of dentin collagen matrices. This study tested the null hypothesis that phosphoric acid esters of methacrylates in dentin adhesives cannot replace PVPA during bimimetic remineralization of resin-dentin interfaces. Human dentin specimens were bonded with: (I) XP Bond, an etch-and-rinse adhesive using moist bonding; (II) XP Bond using dry bonding; (III) Adper Prompt L-Pop, a self-etching adhesive. The control medium contained only set Portland cement and a simulated body fluid (SBF) without any biomimetic analog. Two experimental Portland cement/SBF remineralization media were evaluated: the first contained PAA as the sole biomimetic analog, the second contained PAA and PVPA as dual biomimetic analogs. No remineralization of the resin-dentin interfaces could be identified from specimens immersed in the control medium. After 2-4 months in the first experimental medium, specimens exhibited either no remineralization or large crystal formation within hybrid layers. Only specimens immersed in the second remineralization medium produced nanocrystals that accounted for intrafibrillar remineralization within hybrid layers. The null hypothesis could not be rejected; phosphoric acid esters in dentin adhesives cannot replace PVPA during biomimetic remineralization of adhesive-bonded dentin.
Collapse
Affiliation(s)
- Sui Mai
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Bertassoni LE, Habelitz S, Kinney JH, Marshall SJ, Marshall GW. Biomechanical perspective on the remineralization of dentin. Caries Res 2009; 43:70-7. [PMID: 19208991 DOI: 10.1159/000201593] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 12/03/2008] [Indexed: 11/19/2022] Open
Abstract
The objective of this article is to critically evaluate the methods that are used to assess outcomes of remineralization of dentin. Currently, the most used assessment methods fall either into quantitative analysis of the mineral content of the remineralized structures or dry measurements of their mechanical properties. Properties obtained from the dehydrated organic dentin matrix may not reflect the true mechanical behavior of the remineralized tissue under physiological and hydrated conditions. Here we seek to clarify the biomechanical aspects of remineralization of dentin, pointing out the effects of hydration and dehydration on the mechanical properties of treated tissues. We also emphasize that a more appropriate endpoint to evaluate the effectiveness of remineralization in dentin should be associated with the recovery of the mechanical properties of the hydrated tissue, which is presumed to correlate well with its overall functionality.
Collapse
Affiliation(s)
- L E Bertassoni
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, CA 94143-0758, USA
| | | | | | | | | |
Collapse
|
31
|
Dimitriu B, Vârlan C, Suciu I, Vârlan V, Bodnar D. Current considerations concerning endodontically treated teeth: alteration of hard dental tissues and biomechanical properties following endodontic therapy. J Med Life 2009; 2:60-5. [PMID: 20108492 PMCID: PMC5051483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The aim of this general article is to present an overview of the current knowledge about composition and structural changes and also about specific biomechanical alterations related to vitality loss or endodontic therapy. For a long time, these issues have been controversially approached from a clinical standpoint and are therefore still confusing for many practitioners. Vitality loss or endodontic procedures seem to induce only negligible changes in hard dental tissue moisture. Physico-chemical properties of dentin can be modified by some of the endodontic chemical products used for chemo-mechanical debridement. On the other hand, tooth biomechanical behavior is affected, since tooth strength is reduced proportionally to coronal tissue loss, due to either pre-existent carious/non-carious lesions or cavity acces preparation, besides restorative procedures. The related literature shows the lack of accepted clinical standards and consensus regarding the optimal way of approaching the specific tooth biomechanics following endodontic therapy.
Collapse
Affiliation(s)
- Bogdan Dimitriu
- “Carol Davila” University of Medicine and Pharmacy Bucharest,
Faculty of Dental Medicine, Department of Endodontics
| | - Constantin Vârlan
- “Carol Davila” University of Medicine and Pharmacy Bucharest,
Faculty of Dental Medicine, Department of Operative Dentistry
| | - Ioana Suciu
- “Carol Davila” University of Medicine and Pharmacy Bucharest,
Faculty of Dental Medicine, Department of Endodontics
| | - Virginia Vârlan
- “Carol Davila” University of Medicine and Pharmacy Bucharest,
Faculty of Dental Medicine, Department of Operative Dentistry
| | - Dana Bodnar
- “Carol Davila” University of Medicine and Pharmacy Bucharest,
Faculty of Dental Medicine, Department of Operative Dentistry
| |
Collapse
|
32
|
Erhardt MCG, Osorio R, Toledano M. Dentin treatment with MMPs inhibitors does not alter bond strengths to caries-affected dentin. J Dent 2008; 36:1068-73. [PMID: 18922612 DOI: 10.1016/j.jdent.2008.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 09/04/2008] [Accepted: 09/04/2008] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES This study aimed to investigate if the use of protease inhibitors (EDTA and chlorhexidine) may influence microtensile bond strength (MTBS) of an etch-and-rinse adhesive system to caries-affected human dentin. METHODS Flat middle coronal dentin surfaces with a central region of caries-affected dentin surrounded by sound dentin were bonded with Adper Scotchbond 1 after: (1) etching with 35% H3PO4; (2) etching with 0.1M EDTA and (3) 35% H3PO4-etching followed by 5% chlorhexidine application. Resin composite build-ups were constructed incrementally and trimmed to yield hourglass specimens (0.8mm2 bonded area) that contained sound or caries-affected dentin (confirmed after debonding by microhardness measurements - KHN). Bonded specimens were tensioned at 0.5mm/min. Data were analyzed by ANOVA and multiple comparisons tests (p<0.05). Failure mode analysis was performed by scanning electron microscopy (SEM). RESULTS H(3)PO(4), EDTA and chlorhexidine pre-treatments yielded similar MTBS values, in both dentin substrates. Bond strength to sound dentin was significantly higher than that to caries-affected dentin after H3PO4-etching. Caries-affected dentin exhibited lower KHN than sound dentin. CONCLUSIONS Conditioning of caries-affected dentin with EDTA or a combined use with H3PO4 and chlorhexidine may be proposed as these protease inhibitors do not reduce MTBS to caries-affected dentin if compared to conventional H3PO4 treatment.
Collapse
Affiliation(s)
- Maria Carolina G Erhardt
- Fellow Research, Department of Dental Materials, School of Dentistry. University of Granada, Granada, Spain
| | | | | |
Collapse
|
33
|
Mazzoni A, Pashley DH, Tay FR, Gobbi P, Orsini G, Ruggeri A, Carrilho M, Tjäderhane L, Di Lenarda R, Breschi L. Immunohistochemical identification of MMP‐2 and MMP‐9 in human dentin: Correlative FEI‐SEM/TEM analysis. J Biomed Mater Res A 2008; 88:697-703. [DOI: 10.1002/jbm.a.31920] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Annalisa Mazzoni
- Department of SAU and FAL, University of Bologna, Bologna, Italy
| | - David H. Pashley
- Department of Oral Biology and Maxillofacial Pathology, School of Dentistry, Medical College of Georgia, Augusta, Georgia 30912‐1129
| | - Franklin R. Tay
- Department of Oral Biology and Maxillofacial Pathology, School of Dentistry, Medical College of Georgia, Augusta, Georgia 30912‐1129
| | - Pietro Gobbi
- Institute of Morphological Sciences; University of Urbino “Carlo Bo”, Urbino, Italy
| | - Giovanna Orsini
- Department of Biomorphology, University of Chieti‐Pescara, Chieti, Italy
| | | | - Marcela Carrilho
- Department of Oral Biology and Maxillofacial Pathology, School of Dentistry, Medical College of Georgia, Augusta, Georgia 30912‐1129
- Department of Restorative Dentistry, Dental Materials Area, University of Campinas, Piracicaba School of Dentistry, Piracicaba/SP, Brazil
| | - Leo Tjäderhane
- Institute of Dentistry, University of Helsinki, Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital (HUCH), Helsinki, Finland
| | - Roberto Di Lenarda
- Department of Biomedicine, Unit of Dental Sciences and Biomaterials, University of Trieste, Trieste, Italy
| | - Lorenzo Breschi
- Department of Biomedicine, Unit of Dental Sciences and Biomaterials, University of Trieste, Trieste, Italy
- IGM‐CNR, Unit of Bologna c/o IOR, Bologna, Italy
| |
Collapse
|
34
|
Shibata Y, He L, Kataoka Y, Miyazaki T, Swain M. Micromechanical Property Recovery of Human Carious Dentin Achieved with Colloidal Nano-β-tricalcium Phosphate. J Dent Res 2008; 87:233-7. [DOI: 10.1177/154405910808700315] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Reconstitution of carious dentin has been recognized as difficult, because it progresses by loss of collagen polymerization and by demineralization under acidic conditions. Recently, colloidal alkaline nano-calcium phosphate, prepared by electrical discharge in a buffered physiological saline solution, has been shown to be effective in the formulation of a bone-like biocomposite by simply being mixed with acidic collagen solution. It was hypothesized that colloidal calcium phosphate was suitable for the reconstitution of carious dentin. Natural caries lesions in dentin from permanent teeth were exposed to colloidal hydroxyapatite and β-tricalcium phosphate for 10 days. The micromechanical properties of these tissues were evaluated by nano-indentation. The elastic modulus of human carious dentin improved after samples were immersed in colloidal β-tricalcium phosphate. The mineral density of carious dentin exposed to β-tricalcium phosphate increased more than that immersed in hydroxyapatite. However, since it was not directly proportional to micromechanical recovery, mineral density alone was not a sufficient indicator of mechanical behavior.
Collapse
Affiliation(s)
- Y. Shibata
- Department of Oral Biomaterials and Technology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; and
- Biomaterials Science Research Unit, Faculty of Dentistry, University of Sydney, Sydney Dental Hospital, Surry Hills, NSW 2010, Australia
| | - L.H. He
- Department of Oral Biomaterials and Technology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; and
- Biomaterials Science Research Unit, Faculty of Dentistry, University of Sydney, Sydney Dental Hospital, Surry Hills, NSW 2010, Australia
| | - Y. Kataoka
- Department of Oral Biomaterials and Technology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; and
- Biomaterials Science Research Unit, Faculty of Dentistry, University of Sydney, Sydney Dental Hospital, Surry Hills, NSW 2010, Australia
| | - T. Miyazaki
- Department of Oral Biomaterials and Technology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; and
- Biomaterials Science Research Unit, Faculty of Dentistry, University of Sydney, Sydney Dental Hospital, Surry Hills, NSW 2010, Australia
| | - M.V. Swain
- Department of Oral Biomaterials and Technology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; and
- Biomaterials Science Research Unit, Faculty of Dentistry, University of Sydney, Sydney Dental Hospital, Surry Hills, NSW 2010, Australia
| |
Collapse
|
35
|
Histomorphologic characterization and bond strength evaluation of caries-affected dentin/resin interfaces: effects of long-term water exposure. Dent Mater 2007; 24:786-98. [PMID: 18023859 DOI: 10.1016/j.dental.2007.09.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 09/10/2007] [Accepted: 09/29/2007] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To evaluate the longevity of sound (SD) and caries-affected dentin (CAD) bonds made with etch-and-rinse and self-etching adhesives after a 6-month water-storage period, using bond strength and morphological evaluations. METHODS Extracted human molars with coronal carious lesions were selected. Flat surfaces of CAD surrounded by SD were bonded with etch-and-rinse (Adper Scotchbond 1) or with self-etching (Clearfil Protect Bond and AdheSE) adhesives. Trimmed resin-dentin bonded interfaces (1mm2) were stored in distilled water for 24h or 6 months and subjected to microtensile bond strength (microTBS) evaluation. The quality of the dentin beneath fractured specimens was measured by Knoop microhardness (KHN). ANOVA and multiple comparisons tests were used (P<0.05). Fractographic analysis and interfacial nanoleakage evaluation were performed by scanning electron microscopy (SEM). Resin-dentin bonded sections (10microm thick) were stained with Masson's trichrome and examined using light microscopy. Collagen exposure and adhesive penetration were examined qualitatively. RESULTS microTBS to SD was significantly higher than that to CAD for all bonding agents. Bonds made with AdheSE were weaker than the other adhesives after 6-months storage regardless of the dentin substrate. CAD bonded specimens presented a significant muTBS decrease over time. Lower KHN was recorded in CAD compared to SD. An increase in the exposed collagen zone and a decrease in the quality of the adhesive infiltration were observed in CAD interfaces. SIGNIFICANCE CAD bonded interfaces are more prone to hydrolytic degradation than SD bonds. Additionally, as compared to SD, there were remarkable differences in depth of demineralization, adhesive infiltration and interfacial bond strength with CAD.
Collapse
|
36
|
Yuan Y, Shimada Y, Ichinose S, Tagami J. Effect of dentin depth on hybridization quality using different bonding tactics in vivo. J Dent 2007; 35:664-72. [PMID: 17574319 DOI: 10.1016/j.jdent.2007.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/02/2007] [Accepted: 05/03/2007] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Incomplete resin infiltration and polymerization of adhesive contributed to nanoleakage formation. This study tested the null hypothesis that adoption of different bonding tactics and dentine depth will not affect hybridization quality in vivo. METHODS Class V cavities were prepared on the labial/buccal surface of monkey teeth. They were bonded by Single Bond (a two-step total-etch adhesive), Clearfil SE Bond (a two-step self-etch adhesive), or Clearfil S(3) Bond (an all-in-one self-etch adhesive). Combined nanoleakage analysis and quantitative immunolabeling evaluation were carried out in the hybrid layer formed in both cervical superficial and deep dentine. RESULTS Single Bond showed reticular and spotted nanoleakage while Clearfil SE Bond and Clearfil S(3) Bond presented only a spotted one. While Single Bond showed increased concentration of labeling of type I collagen within the deep part of the hybrid layer, two self-etch adhesives-Clearfil SE Bond and Clearfil S(3) Bond revealed a homogeneous labeling pattern, even if the latter presented a significantly increased labeling index in deep dentine. CONCLUSIONS Different bonding tactics showed different nanoleakage patterns and immunolabeling index, and was influenced by dentine depth at different levels in vivo.
Collapse
Affiliation(s)
- Y Yuan
- Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | | | | | | |
Collapse
|
37
|
Orsini G, Ruggeri A, Mazzoni A, Papa V, Mazzotti G, Di Lenarda R, Breschi L. Immunohistochemical identification of decorin and biglycan in human dentin: a correlative field emission scanning electron microscopy/transmission electron microscopy study. Calcif Tissue Int 2007; 81:39-45. [PMID: 17516017 DOI: 10.1007/s00223-007-9027-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 02/26/2007] [Indexed: 10/23/2022]
Abstract
Decorin and biglycan, two small leucine-rich proteoglycans, have been proposed to play important roles in matrix-mediated formation of mineralized tissues, and their three-dimensional arrangement in human dentin is still not completely understood. The aim of this study was to immunohistochemically analyze the distribution of decorin and biglycan in human predentin/dentin organic matrix under a high-resolution field emission in-lens scanning electron microscope (FEI-SEM) and a transmission electron microscope (TEM). Tooth dentin specimens were submitted to either a preembedding or a postembedding immunolabeling technique using primary antibodies antidecorin and antibiglycan and gold-conjugated secondary antibodies. Correlative FEI-SEM/TEM observations showed that the two antibodies yielded a similar labeling pattern over the processes of odontoblasts and the predentin. Decorin and biglycan were mainly associated with the collagen fibers within the predentin layer, revealing a moderate immunoreaction that was significantly higher compared to the one observed on dentin. Thus, a generally weak labeling for decorin was found in dentin, which, however, was significantly higher on odontoblast processes within dentinal tubules than in intertubular dentin. On the other hand, biglycan immunolocalization on dentin revealed few gold particles rather uniformly distributed, without showing significant differences between tubular and intertubular regions. In conclusion, this study reveals distinct distribution patterns of decorin and biglycan and their relation with collagen. Decorin's and biglycan's precise roles within prematrix and mineralized matrix in human teeth should be further clarified.
Collapse
Affiliation(s)
- G Orsini
- Department of Biomorphology, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Orsini G, Ruggeri A, Mazzoni A, Papa V, Piccirilli M, Falconi M, Di Lenarda R, Breschi L. Immunohistochemical identification of type I and type III collagen and chondroitin sulphate in human pre-dentine: a correlative FEI-SEM/TEM study. Int Endod J 2007; 40:669-78. [PMID: 17608679 DOI: 10.1111/j.1365-2591.2007.01263.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To identify type I- (I-CF) and type III-collagen fibrils (III-CF) and chondroitin 4/6 sulphate (CS) within human pre-dentine by means of a correlative analysis under field emission in-lens-scanning electron microscopy (FEI-SEM) and transmission electron microscopy (TEM). METHODOLOGY Human-extracted teeth were obtained and submitted to either a pre-embedding or a post-embedding immunolabelling procedure using monoclonal primary antibodies anti-I-CF, anti-III-CF and anti-CS. Gold-conjugated secondary antibodies were coupled to primary antibodies to visualize labelling under the electron beam. Correlative labelling patterns were obtained for I-CF and CS under both FEI-SEM and TEM. RESULTS Field emission in lens-SEM analysis revealed an intricate three-dimensional network of I-CF and CS clarifying the intimate relationship between the two main components of the pre-dentine organic matrix. TEM analysis revealed odontoblasts exhibiting intracellular labelling for CS, which became more intense and diffuse over the pre-dentine organic matrix. The same diffuse immunoreaction was revealed for I-CF, whereas a weak immunolocalization of III-CF was found scattered throughout the pre-dentine layer and over the collagen fibrils. CONCLUSIONS Both the pre- and post-embedding immunohistochemical approaches have led to the visualization of CF- and CS-labelling distribution within the pre-dentine layer, adding further knowledge on the elucidation of collagen-proteoglycans interaction in the organic matrix of human dental roots.
Collapse
Affiliation(s)
- G Orsini
- Department of Biomorphology, University of Chieti-Pescara, Chieti-Pescara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ruggeri A, Prati C, Mazzoni A, Nucci C, Di Lenarda R, Mazzotti G, Breschi L. Effects of citric acid and EDTA conditioning on exposed root dentin: An immunohistochemical analysis of collagen and proteoglycans. Arch Oral Biol 2006; 52:1-8. [PMID: 17098210 DOI: 10.1016/j.archoralbio.2006.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 06/30/2006] [Accepted: 07/11/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Preservation of structural and biochemical properties of the root dentin matrix is crucial to favor healing and regenerative periodontal processes. Aim of this study was to evaluate the biochemical characteristics of collagen and chondroitin sulphate of root dentin surfaces exposed by periodontal disease after acid conditioning by means of an immunohistochemical technique. DESIGN Human teeth scheduled for extraction due to periodontal reason were submitted to: (A) scaling and root planning; (B) ultrasonic instrumentation; (C) no instrumentation. Teeth were then exposed to: (1) 10% citric acid; (2) 17% EDTA; (3) no etching. A double immunolabeling technique was performed to identify type-I collagen and proteoglycans and analyzed under FEI-SEM. RESULTS Use of 10% citric acid revealed intense labeling for collagen fibrils and proteoglycans; lower labeling was found after EDTA conditioning. Unetched specimens showed residual smear layer on the dentin surface resulting in no evident surface labeling. CONCLUSIONS This study supports the hypothesis that manual or ultrasonic instrumentation alone is not able to expose the sound dentin matrix, whereas a subsequent acidic conditioning exposes collagen fibrils and associated proteoglycans. The immunohistochemical technique revealed that despite their acidity, both citric acid and EDTA were able to preserve the structural and biochemical properties of the exposed dentin matrix.
Collapse
|