1
|
Pakpahan ND, Kyawsoewin M, Manokawinchoke J, Termkwancharoen C, Egusa H, Limraksasin P, Osathanon T. Effects of mechanical loading on matrix homeostasis and differentiation potential of periodontal ligament cells: A scoping review. J Periodontal Res 2024; 59:877-906. [PMID: 38736036 DOI: 10.1111/jre.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Various mechanical loadings, including mechanical stress, orthodontics forces, and masticatory force, affect the functions of periodontal ligament cells. Regulation of periodontal tissue destruction, formation, and differentiation functions are crucial processes for periodontal regeneration therapy. Numerous studies have reported that different types of mechanical loading play a role in maintaining periodontal tissue matrix homeostasis, and osteogenic differentiation of the periodontal ligament cells. This scoping review aims to evaluate the studies regarding the effects of various mechanical loadings on the secretion of extracellular matrix (ECM) components, regulation of the balance between formation and destruction of periodontal tissue matrix, osteogenic differentiation, and multiple differentiation functions of the periodontal ligament. An electronic search for this review has been conducted on two databases; MEDLINE via PubMed and SCOPUS. Study selection criteria included original research written in English that reported the effects of different mechanical loadings on matrix homeostasis and differentiation potential of periodontal ligament cells. The final 204 articles were mainly included in the present scoping review. Mechanical forces of the appropriate magnitude, duration, and pattern have a positive influence on the secretion of ECM components such as collagen, as well as regulate the secretion of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Additionally, these forces regulate a balance between osteoblastic and osteoclast differentiation. Conversely, incorrect mechanical loadings can lead to abnormal formation and destruction of both soft and hard tissue. This review provides additional insight into how mechanical loadings impact ECM homeostasis and multiple differentiation functions of periodontal ligament cells (PDLCs), thus making it valuable for regenerative periodontal treatment. In combination with advancing technologies, the utilization of ECM components, application of different aspects of mechanical force, and differentiation potential of PDLCs could bring potential benefits to future periodontal regeneration therapy.
Collapse
Affiliation(s)
- Novena Dameria Pakpahan
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Maythwe Kyawsoewin
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jeeranan Manokawinchoke
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chutimon Termkwancharoen
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Phoonsuk Limraksasin
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Yildiz O, Yagci A, Hashimli N. Effect of applying intermittent force with and without vibration on orthodontic tooth movement. J Orofac Orthop 2024; 85:127-136. [PMID: 37672128 DOI: 10.1007/s00056-023-00488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 06/05/2023] [Indexed: 09/07/2023]
Abstract
PURPOSE This study aimed to determine whether orthodontic tooth movement could be accelerated by applying an intermittent force protocol. It also examined the effect of applying additional vibrational forces on orthodontic tooth movement and root resorption rates. METHODS This study included 24 patients (16 males and 8 females) who underwent orthodontic treatment involving first premolar extraction and distal movement of the canines in the maxilla. A Hycon device (Adenta GmbH, Gilching, Germany) was used for canine distalization in all patients. The patients were randomly divided into two groups: one group received 20 min of vibration per day using the AcceleDent device (OrthoAccel Technologies, Inc., Bellaire, TX, USA), while the other group received no vibration. In addition, a split-mouth design was used: an activation-only force protocol was applied on one side, and an intermittent activation-deactivation-activation (ADA) protocol was applied on the other. The duration required for complete canine tooth distalization on each side was calculated. In addition, the effect of vibration on the orthodontically induced root resorption was examined. RESULTS The intermittent ADA protocol significantly accelerated orthodontic tooth movement compared to the activation-only protocol (p < 0.05). The application of additional vibration did not affect the orthodontic tooth movement rate (p > 0.05). CONCLUSIONS Using a Hycon device and following an ADA protocol provided significantly faster canine distalization than the activation-only protocol (p < 0.05). This intermittent force method proved very effective in closing the spaces. However, vibration did not significantly affect the orthodontic tooth movement rate (p > 0.05).
Collapse
Affiliation(s)
| | - Ahmet Yagci
- Department of Orthodontics, Faculty of Dentistry, Erciyes University, 38039, Kayseri, Turkey.
| | - Nizami Hashimli
- Department of Orthodontics, Faculty of Dentistry, Erciyes University, 38039, Kayseri, Turkey
| |
Collapse
|
3
|
AlMogbel A, Alshawy ES, Alhusainy A. Efficacy of clear aligner therapy over conventional fixed appliances in controlling orthodontic movement: A systematic review. J Orthod Sci 2024; 13:23. [PMID: 38784075 PMCID: PMC11114459 DOI: 10.4103/jos.jos_176_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/10/2023] [Accepted: 01/03/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE The purpose of the current systematic review was to answer the clinical research question "Is Clear Aligner Therapy (CAT) effective in controlling the orthodontic movement?" by bringing together the most up-to-date information about the available evidence for CAT. METHODOLOGY On January 1, 2023, a search was conducted in PubMed, ERIC, Embase, and CINHAL for any research papers published in the previous 10 years that provided an overview of the PICO questions. Both the titles and abstracts of the selected studies were evaluated independently by two different authors, and if there was any disagreement between the two review authors, a third reviewer was brought in to settle it. RESULTS Among included studies, three were retrospective non-randomized and two studies were prospective randomized clinical trials. Various authors reported better outcome for fixed orthodontic appliances than for clear aligner treatment (CAT) in relation to mandibular incisor proclination. The mean objective grading system score was better for braces (17) than for CAT (12) with no clinically significant difference, while staging had a significant impact on treatment efficacy. CONCLUSION The results of this study suggest that clear aligners may be an effective alternative to traditional braces, but more research is needed to confirm these findings and determine the optimal size of future prospective studies evaluating this treatment.
Collapse
Affiliation(s)
- AbdulMajeed AlMogbel
- Department of Orthodontics and Pediatric Dentistry, College of Dentistry, Qassim University, Buraydah 52571, Saudi Arabia
| | - Ebrahim S. Alshawy
- Department of Orthodontics and Pediatric Dentistry, College of Dentistry, Qassim University, Buraydah 52571, Saudi Arabia
| | - Abdulmageed Alhusainy
- Department of Conservative Dentistry, College of Dentistry, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
4
|
Chen SM, Ho CT, Huang TH, Kao CT. An in vitro evaluation of aligner force decay in artificial saliva. J Dent Sci 2023; 18:1347-1353. [PMID: 37404637 PMCID: PMC10316483 DOI: 10.1016/j.jds.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Indexed: 07/06/2023] Open
Abstract
Background/purpose The present study aimed to compare the force decay of invisible aligners for maxillary anterior teeth with 0.1 mm (D1), 0.2 mm (D2), and 0.3 mm (D3) labial movement within a simulated oral environment over 7 days. Materials and methods The prepared invisible aligners were immersed in saliva (S) and subjected to applied force (F) for 7 days. The aligners were set and placed on the maxillary right central incisor with 0.1 mm (D1), 0.2 mm (D2), and 0.3 mm (D3) labial movement. Thin-film pressure sensors were used to measure the aligner force changes. The data were collected and analyzed by statistical methods. Results Significant differences were observed in the initial and first-day force between the D2 and D3 groups under simulated oral environment force (SF) (P < 0.05). There was a significant difference in force decay between Day 1 and Day 7 for all groups (P < 0.05). The SFD1 group showed a significant decrease in force on Day 5 (P < 0.05), while the SFD2 and SFD3 groups showed significant force decay on Day 4 (P < 0.05). The force decay ratio on Day 7 was higher in the SFD3 group than in the SFD1 and SFD2 groups, but no significant difference was observed. Conclusion Larger labial movement of the aligners resulted in higher force decay under artificial saliva environments, and the force decay of invisible aligners was increased by immersion time in artificial saliva.
Collapse
Affiliation(s)
- Shou-Min Chen
- School of Dentistry, College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
- Orthodontic Department, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Te Ho
- School of Dentistry, College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
- Orthodontic Department, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Tsui-Hsein Huang
- School of Dentistry, College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
- Dental Department, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Tze Kao
- Orthodontic Department, Chung Shan Medical University Hospital, Taichung, Taiwan
- Dental Department, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
5
|
Pérez Idarraga A, Yeste Ojeda F, Virto Ruiz L, Lacasa Litner M, Cacho Casado A, Martin C. Randomized clinical trial on the effect of intermittent vibrational force application during orthodontic treatment with aligners on RANKL and OPG concentrations in crevicular fluid. Bioeng Transl Med 2023; 8:e10491. [PMID: 37206229 PMCID: PMC10189425 DOI: 10.1002/btm2.10491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 09/06/2024] Open
Abstract
Application of intermittent forces by vibration is proposed as an easy-to-use accelerator of dental movement. The purpose of this study was to determine the effect of intermittent vibrational force application during orthodontic aligner treatment on receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG) concentrations in crevicular fluid as markers of bone remodeling. This three-arm parallel randomized clinical trial included 45 candidates for malocclusion treatment with aligners, randomly assigned to: Group A (vibrational forces from onset of treatment); Group B (vibrational forces at 6 weeks after treatment onset); or Group C (no vibration). The frequency of aligner adjustment also differed among groups. At different time points, a paper tip was used to draw crevicular fluid samples from a moving lower incisor for RANKL and OPG analysis using ELISA kits. Mixed-model ANOVA found no significant differences in RANKL (A: p = 0.31, B: p = 0.8, C: p = 0.49) or OPG (A: p = 0.24, B: p = 0.58, C: p = 0.59) over time in any group or as a function of the application/non-application of vibration or the frequency of aligner adjustments. Application of this accelerator device did not significantly affect bone remodeling in patients undergoing orthodontic treatment with aligners. However, a nonsignificant improvement in biomarker concentrations was observed when aligners were changed every 7 days and vibration was also applied. Further research is warranted to establish protocols for the application of vibration and the timing of aligner adjustments.
Collapse
Affiliation(s)
- Alicia Pérez Idarraga
- Department of Orthodontics, Faculty of OdontologyUniversity Complutense MadridMadridSpain
| | | | - Leire Virto Ruiz
- ETEP (Etiology and Therapy of Periodontal and Peri‐implant Diseases), Research GroupUniversidad Complutense MadridMadridSpain
| | - Miguel Lacasa Litner
- Department of OrthodonticsCEPUME, Universidad de Alcalá de Henares, MadridMadridSpain
| | - Alberto Cacho Casado
- Department of Orthodontics, Faculty of OdontologyUniversity Complutense MadridMadridSpain
- BIOCRAN (Craniofacial Biology: Orthodontics and Dentofacial Orthopedics), Research GroupUniversity Complutense MadridMadridSpain
| | - Conchita Martin
- Department of Orthodontics, Faculty of OdontologyUniversity Complutense MadridMadridSpain
- BIOCRAN (Craniofacial Biology: Orthodontics and Dentofacial Orthopedics), Research GroupUniversity Complutense MadridMadridSpain
| |
Collapse
|
6
|
Kamran MA, Alnazeh AA, Almagbol M, Almoammar S, Alhaizaey AHA, Alshahrani I. Role of six cytokines and bone metabolism biomarkers in gingival crevicular fluid in patients undergoing fixed orthodontic appliance treatment in comparison with aligners: a clinical study. Angle Orthod 2023; 93:490741. [PMID: 36807401 PMCID: PMC10117209 DOI: 10.2319/091722-649.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/01/2022] [Indexed: 02/22/2023] Open
Abstract
OBJECTIVES The objective of this study was to assess bone biomarkers and cytokines in patients with conventional labial appliances (CLAs) and aligners. MATERIALS AND METHODS Participants were recruited to undergo orthodontic treatment with CLAs and aligners according to predefined inclusion and exclusion criteria. Periodontal examination was accomplished at baseline and 4 weeks using the plaque index (PI), gingival index (GI), and bleeding on probing (BoP). Samples of gingival crevicular fluid (GCF) were collected at baseline (T0) before the start of treatment and at the 1-month follow-up (T1) to assess bone metabolic and inflammatory biomarkers. GCF from participants with CLAs and aligners was evaluated with enzyme-linked immunosorbent assay. Comparison between labial conventional orthodontic treatment and aligners were assessed using an unpaired t-test. The difference between T0 and T1 was measured using a paired t-test. RESULTS BoP, PI, and GI demonstrated no significant difference between participants treated with aligners and subjects with CLAs at baseline and at 4 weeks (P > .05). Bone markers and other biomarkers (tumor necrosis factor α, interleukin [IL]-α, IL-2, IL-6, and IL-8) showed significant differences (P < .05). Also, a significant difference between CLAs and aligners was noted among all biomarkers (P < .05) except IL-β. CONCLUSIONS Aligners and CLAs increase the level of inflammatory and bone metabolic biomarkers after 1 month.
Collapse
|
7
|
Intermittent compressive force regulates human periodontal ligament cell behavior via yes-associated protein. Heliyon 2022; 8:e10845. [PMID: 36247165 PMCID: PMC9561743 DOI: 10.1016/j.heliyon.2022.e10845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
Intermittent compressive force influences human periodontal ligament (PDL) cell behavior that facilitates periodontal tissue regeneration. In response to mechanical stimuli, Yes-associated protein (YAP) has been recognized as a mechanosensitive transcriptional activator that regulates cell proliferation and cell fate decisions. This study aimed to investigate whether compressive forces influence cell proliferation and cell fate decisions of human PDL cells via YAP signaling. YAP expression was silenced by shRNA. The effect of YAP on cell proliferation, adipogenesis and osteogenesis of PDL cells under ICF loading were determined. Adipogenic differentiation bias upon ICF loading was confirmed by fourier-transform infrared spectroscopy (FTIR). The results revealed that ICF-induced YAP promotes osteogenesis, but it inhibits adipogenesis in PDL cells. Depletion of YAP results in PDL cells that are irresponsive to ICF and, therefore, the failure of the PDL cells to undergo osteogenic differentiation. This was shown by a significant reduction in calcium deposited in the CF-derived osteoblasts of the YAP-knockdown (YAP-KD) PDL cells. As to control treatment, reduction of YAP promoted adipogenesis, whereas ICF-induced YAP inhibited this mechanism. However, the adipocyte differentiation in YAP-KD cells was not affected upon ICF treatment as the YAP-KD cells still exhibited a better adipogenic differentiation that was unrelated to the ICF. This study demonstrated that, in response to ICF treatment, YAP could be a crucial mechanosensitive transcriptional activator for the regulation of PDL cell behavior through a mechanobiological process. Our results may provide the possibility of facilitating PDL tissue regeneration by manipulation of the Hippo-YAP signaling pathway. YAP plays role as a mechanosensitive transcriptional activator of human PDL cells in response to ICF. ICF activates YAP and its target genes to promote cell proliferation and osteogenic differentiation of human PDL cells. Loss of YAP enhances adipogenic differentiation of human periodontal ligament cells.
Collapse
|
8
|
Mechanical force regulates root resorption in rats through RANKL and OPG. BMC Oral Health 2022; 22:290. [PMID: 35842599 PMCID: PMC9288690 DOI: 10.1186/s12903-022-02327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background External root resorption is one of common complications of orthodontic treatment, while internal root resorption is rarely observed, and the difference between pulp and periodontal tissues during orthodontic treatment is still unknown. The purpose of this study was to evaluate the effects of orthodontic forces on histological and cellular changes of the dental pulp and periodontal tissues. Methods Orthodontic tooth movement model was established in Forty-eight adult male Wistar rats. The distance of orthodontic tooth movement was quantitatively analyzed. The histological changes of pulp and periodontal tissues were performed by hematoxylin–eosin staining, tartrate-resistant acid phosphate staining was used to analyze the changes of osteoclast number, immunohistochemistry analysis and reverse transcription polymerase chain reaction were used to examine the receptor of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) expression. The width of tertiary dentine was quantitatively analyzed. Tartrate-resistant acid phosphate staining and the erosion area of osteo assay surface plate was used to evaluate osteoclast activity. Results The orthodontic tooth movement distance increased in a force dependent manner, and reached the peak value when orthodontic force is 60 g. Heavy orthodontic force increased the RANKL expression of periodontal ligament srem cells (PDLSCs) which further activated osteoclasts and resulted in external root resorption, while the RANKL expression of dental pulp stem cells (DPSCs) was relatively low to activate osteoclasts and result in internal root resorption, and the dental pulp tend to form tertiary dentine under orthodontic force stimulation. Conclusions Heavy orthodontic forces activated osteoclasts and triggered external root resorption by upregulating RANKL expression in rat periodontal tissues, while there was no significant change of RANKL expression in dental pulp tissue under heavy orthodontic forces, which prevented osteoclast activation and internal root resorption.
Collapse
|
9
|
Menéndez López-Mateos C, Menéndez López-Mateos ML, Aguilar-Salvatierra A, Gómez-Moreno G, Carreño JC, Khaldy H, Menéndez-Núñez M. Salivary Markers of Oxidative Stress in Patients Undergoing Orthodontic Treatment with Clear Aligners versus Self-Ligating Brackets: A Non-Randomized Clinical Trial. J Clin Med 2022; 11:jcm11123531. [PMID: 35743601 PMCID: PMC9225360 DOI: 10.3390/jcm11123531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 01/04/2023] Open
Abstract
The aim of this work was to determine advanced the oxidative protein products (AOPPs), total antioxidant capacity (TAC), and myeloperoxidase activity (MPO) in the saliva of patients undergoing orthodontic treatment with clear removable aligners in comparison with another group in treatment with fixed passive self-ligating brackets applying light forces, before treatment, after 30 days, and after 90 days of treatment. This non-randomized clinical trial recruited patients consecutively, all of which were over 18 years of age and due to undergo orthodontic treatment. They were divided into two groups according to treatment type: Group A, 48 patients treated with clear aligners (Invisalign®); and Group B, 19 patients treated with Damon System® 0.22″ self-ligating brackets applying light forces. Saliva samples were collected by a single clinician following the same protocol and underwent three analyses—AOPPs, TAC, and MPO levels–at baseline before placing the apparatus, after 30 days, and after 90 days treatment. Orthodontic treatment, whether with clear aligners or fixed self-ligating brackets and light forces, increased AOPPs after the first 30 days of treatment. During the initial phases of orthodontic treatment, neither clear aligners nor fixed self-ligating brackets applying light forces showed changes in TAC and MPO. Orthodontic treatment with both clear aligners and fixed apparatus self-ligating brackets applying light forces increases oxidative stress (AOPPs) after the first 30 days of treatment. There are no differences in AOPP levels between treatment with clear aligners and self-ligating brackets during the first 90 days of treatment. The antioxidative capacity of saliva during the initial phases of orthodontic treatment, whether with self-ligating brackets or clear aligners, does not undergo significant changes. With either orthodontic technique, the patients’ salivary antioxidant capacity is similar.
Collapse
Affiliation(s)
- Cristina Menéndez López-Mateos
- Department of Stomatology IV, Faculty of Odontology, Complutense University, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain;
| | - María Luisa Menéndez López-Mateos
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.L.M.L.-M.); (A.A.-S.); (G.G.-M.)
| | - Antonio Aguilar-Salvatierra
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.L.M.L.-M.); (A.A.-S.); (G.G.-M.)
| | - Gerardo Gómez-Moreno
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.L.M.L.-M.); (A.A.-S.); (G.G.-M.)
| | | | - Hoda Khaldy
- Scientific Instrumentation Center, University of Granada, Paseo Professor Juan Osorio s/n, 18071 Granada, Spain;
| | - Mario Menéndez-Núñez
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.L.M.L.-M.); (A.A.-S.); (G.G.-M.)
- Correspondence:
| |
Collapse
|
10
|
Manokawinchoke J, Limraksasin P, Okawa H, Pavasant P, Egusa H, Osathanon T. Intermittent compressive force induces cell cycling and reduces apoptosis in embryoid bodies of mouse induced pluripotent stem cells. Int J Oral Sci 2022; 14:1. [PMID: 34980892 PMCID: PMC8724316 DOI: 10.1038/s41368-021-00151-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023] Open
Abstract
In vitro manipulation of induced pluripotent stem cells (iPSCs) by environmental factors is of great interest for three-dimensional (3D) tissue/organ induction. The effects of mechanical force depend on many factors, including force and cell type. However, information on such effects in iPSCs is lacking. The aim of this study was to identify a molecular mechanism in iPSCs responding to intermittent compressive force (ICF) by analyzing the global gene expression profile. Embryoid bodies of mouse iPSCs, attached on a tissue culture plate in 3D form, were subjected to ICF in serum-free culture medium for 24 h. Gene ontology analyses for RNA sequencing data demonstrated that genes differentially regulated by ICF were mainly associated with metabolic processes, membrane and protein binding. Topology-based analysis demonstrated that ICF induced genes in cell cycle categories and downregulated genes associated with metabolic processes. The Kyoto Encyclopedia of Genes and Genomes database revealed differentially regulated genes related to the p53 signaling pathway and cell cycle. qPCR analysis demonstrated significant upregulation of Ccnd1, Cdk6 and Ccng1. Flow cytometry showed that ICF induced cell cycle and proliferation, while reducing the number of apoptotic cells. ICF also upregulated transforming growth factor β1 (Tgfb1) at both mRNA and protein levels, and pretreatment with a TGF-β inhibitor (SB431542) prior to ICF abolished ICF-induced Ccnd1 and Cdk6 expression. Taken together, these findings show that TGF-β signaling in iPSCs enhances proliferation and decreases apoptosis in response to ICF, that could give rise to an efficient protocol to manipulate iPSCs for organoid fabrication.
Collapse
Affiliation(s)
- Jeeranan Manokawinchoke
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan.,Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Phoonsuk Limraksasin
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan.,Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hiroko Okawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
| | - Prasit Pavasant
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan. .,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan.
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
The force effects of two types of polyethylene terephthalate glyc-olmodified clear aligners immersed in artificial saliva. Sci Rep 2021; 11:10052. [PMID: 33980889 PMCID: PMC8115163 DOI: 10.1038/s41598-021-89425-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/20/2021] [Indexed: 11/08/2022] Open
Abstract
Numerous factors can influence the force exerted by clear aligners on teeth. This study aimed to investigate the stability of the force delivered by two different material appliances. 90 clear aligners with 2 materials and three different activations were designed and fabricated. Then, a device was employed to measure the force generated by the two types of PET-G material appliances immersed in artificial saliva for 0, 3, 7, 10, 14 days. Scanning electron microscopy was applied to observe the morphologic alterations on the aligner surfaces, respectively. The forces generated by different activation appliance exhibited differently, 0.0 mm < 0.1 mm < 0.2 mm. In addition, increasing the immersion times and the orthodontic force also decreased, but the forces decreased differently. Compared with the forces of conventional PETG appliances with 0.20 mm activation, the modified PETG appliances with the same activation exhibited significantly higher mean force. When comparing the mean force for modified PETG appliances after 10 and 14 days with conventional PETG appliances, the delivery forces exhibited significant differences (P < 0.05). The force delivered by both materials decreased obviously following artificial saliva immersion, and the force generated by modified aligners exhibited better stability than conventional aligners.
Collapse
|
12
|
Li Y, Jacox LA, Coats S, Kwon J, Xue P, Tang N, Rui Z, Wang X, Kim YI, Wu TJ, Lee YT, Wong SW, Chien CH, Cheng CW, Gross R, Lin FC, Tseng H, Martinez J, Ko CC. Roles of autophagy in orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2021; 159:582-593. [PMID: 33771430 PMCID: PMC10911631 DOI: 10.1016/j.ajodo.2020.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Orthodontic tooth movement (OTM) relies on efficient remodeling of alveolar bone. While a well-controlled inflammatory response is essential during OTM, the mechanism regulating inflammation is unknown. Autophagy, a conserved catabolic pathway, has been shown to protect cells from excess inflammation in disease states. We hypothesize that autophagy plays a role in regulating inflammation during OTM. METHODS A split-mouth design was used to force load molars in adult male mice, carrying a GFP-LC3 transgene for in vivo detection of autophagy. Confocal microscopy, Western blot, and quantitative polymerase chain reaction analyses were used to evaluate autophagy activation in tissues of loaded and control molars at time points after force application. Rapamycin, a Food and Drug Administration-approved immunosuppressant, was injected to evaluate induction of autophagy. RESULTS Autophagy activity increases shortly after loading, primarily on the compression side of the tooth, and is closely associated with inflammatory cytokine expression and osteoclast recruitment. Daily administration of rapamycin, an autophagy activator, led to reduced tooth movement and osteoclast recruitment, suggesting that autophagy downregulates the inflammatory response and bone turnover during OTM. CONCLUSIONS This is the first demonstration that shows that autophagy is induced by orthodontic loading and plays a role during OTM, likely via negative regulation of inflammatory response and bone turnover. Exploring roles of autophagy in OTM holds great promise, as aberrant autophagy is associated with periodontal disease and its related systemic inflammatory disorders.
Collapse
Affiliation(s)
- Yina Li
- Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, Nc
| | - Laura Anne Jacox
- Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, Nc
| | - Shannon Coats
- Duke University Medical Center Greenspace, Durham, Nc
| | - Jane Kwon
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, Nc
| | - Peng Xue
- Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, Nc
| | - Na Tang
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, Nc Department of Oral Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zou Rui
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, Nc Department of Orthodontics, Stomatological Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoyu Wang
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, Nc Department of Dentistry, Beijing Tiantan Hospital, Capital Medical University, Beijing, Beijing, China
| | - Yong-Il Kim
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, Nc Department of Orthodontics, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Te Ju Wu
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, Nc Department of Orthodontics, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yan-Ting Lee
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, Nc
| | - Sing Wai Wong
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, Nc
| | - Chia Hui Chien
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, Nc Division of Prosthodontics, Department of Dentistry, Tainan, Taiwan
| | - Chih-Wen Cheng
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, Nc Division of Prosthodontics, Department of Dentistry, Tainan, Taiwan
| | - Ryan Gross
- Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, Nc
| | - Feng-Chang Lin
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Nc
| | - Henry Tseng
- Duke University Medical Center Greenspace and Glaucoma Division, Duke Eye Center, Durham, Nc
| | - Jennifer Martinez
- National Institutes of Health, Bethesda, Ma National Institute of Environmental Health Sciences, Research Triangle Park, Durham, Nc
| | - Ching-Chang Ko
- Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, Nc.
| |
Collapse
|
13
|
Compressive force strengthened the pro-inflammatory effect of zoledronic acid on il-1ß stimulated human periodontal fibroblasts. Clin Oral Investig 2020; 25:3453-3461. [PMID: 33169272 DOI: 10.1007/s00784-020-03667-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The number of patients in dentistry taking bisphosphonates (BP) increases every year. There are only little data about the influence of biomechanical stress due to orthodontic treatment and periodontal inflammation in BP patients. This study focused on the effects of the induced inflammation by IL-1ß in compressed human periodontal ligament fibroblasts (HPdLF) exposed to the nitrogen-containing BP zoledronate in vitro. MATERIALS AND METHODS HPdLF were incubated with 5 μmol/l zoledronate and 10 ng/ml IL-1ß for 48 h. In the last 3 h, cells were exposed to a compressive, centrifugal force of 34.9 g/cm2. Cell viability was analyzed directly after the compressive force by MTT assay. Gene expression of COX-2 and IL-6 was investigated using quantitative qRT-PCR. PGE-2 and IL-6 protein secretion were measured via ELISA. RESULTS The cell viability of HPdLF was not affected. Without inflammatory pre-stimulation, COX-2 expression was increased by compression and zoledronate. IL-6 expression was increased under compression. On secretion level, the combination of compression and zoledronate induced a slightly increase of IL-6 secretion. In contrast, inflammatory pre-stimulation strengthened the compressive upregulation of COX-2, as well as induced a higher PGE-2 secretion. Further addition of zoledronate to pre-stimulated cells additionally strengthened the compression-induced upregulation of COX-2 and IL-6 expression as well as protein secretion compared to all other groups. CONCLUSIONS Biomechanical stress might trigger a pro-inflammatory potential of BP further enhanced in the presence of an inflammatory pre-stimulation. CLINICAL RELEVANCE To prevent excessive host inflammatory responses, occlusal overloading and mechanical stress due to orthodontic treatment should be avoided in BP patients with untreated periodontitis.
Collapse
|
14
|
Benjakul S, Unat B, Thammanichanon P, Leethanakul C. Vibration synergistically enhances IL-1β and TNF-α in compressed human periodontal ligament cells in the frequency-dependent manner. J Oral Biol Craniofac Res 2020; 10:412-416. [PMID: 32775184 DOI: 10.1016/j.jobcr.2020.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/18/2022] Open
Abstract
Objectives To investigate whether mechanical vibration at 30 or 60 Hz combined with compressive force alter IL-1β and TNF-α expression in human periodontal ligament (hPDL) cells. Methods hPDL cells isolated from the roots of first premolar teeth extracted from four independent donors were cultured and exposed to vibration (0.3 g, 20 min per cycle, every 24 h for 3 cycles) at 30 or 60 Hz (V30 or V60), 2.0 g/cm2 compressive force for 2 days (CF), or a combination of compressive force and vibration at 30 Hz or 60 Hz (V30CF or V60CF). Quantitative real-time polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assays (ELISAs) were used to determine IL-1β and TNF-α mRNA and protein, respectively. Results The levels of IL-1β and TNF-α did not alter in groups V30 and V60. While, they were upregulated in groups CF, V30CF and V60CF. In addition, IL-1β mRNA and TNF-α mRNA and protein were expressed at significantly higher levels in group V30CF compared to CF group. However, IL-1β protein levels between V30CF and CF groups did not reach statistical significance. Conclusions 30 Hz vibration had the synergistic effects with compressive force on the upregulation of IL-1β mRNA and TNF-α mRNA and protein in PDL cells, while 60 Hz vibration did not have this synergistic effect.
Collapse
Affiliation(s)
- Sutiwa Benjakul
- Orthodontic Section, Faculty of Dentistry, Thammasat University, Thailand
| | - Boontarika Unat
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Thailand
| | | | - Chidchanok Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Thailand
| |
Collapse
|
15
|
Marciniak J, Lossdörfer S, Knaup I, Bastian A, Craveiro RB, Jäger A, Wolf M. Orthodontic cell stress modifies proinflammatory cytokine expression in human PDL cells and induces immunomodulatory effects via TLR-4 signaling in vitro. Clin Oral Investig 2019; 24:1411-1419. [PMID: 31691860 DOI: 10.1007/s00784-019-03111-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Biomechanical orthodontics loading of the periodontium initiates a cascade of inflammatory signaling events that induce periodontal remodeling and finally facilitate orthodontic tooth movement. Pattern recognition receptors such as toll-like receptors (TLRs) have been well characterized for their ability to induce the activation of inflammatory, immunomodulatory cytokines. Here, we examined whether the cellular response of human periodontal ligament (hPDL) cells to mechanical stress involves TLR-4 signaling in vitro. MATERIALS AND METHODS Confluent hPDL cells were cultured in the presence of 5 μg/ml TLR-4 antibody (TLR-4ab) for 1 h prior to the induction of compressive forces by the use of round glass plates for 24 h. At harvest, interleukin-6 and interleukin-8 (IL-6, IL-8) mRNA and protein expression were analyzed by real-time PCR and ELISA. The immunomodulatory role of mechanical cell stress and TLR-4 signaling was addressed in co-culture experiments of hPDL and THP-1 cells targeting monocyte adhesion and by culturing osteoclastic precursors (RAW 264.7) in the presence of the conditioned medium of hPDL cells that had been mechanically loaded before. RESULTS Basal expression of IL-6 and IL-8 was not affected by TLR-4ab, but increased significantly upon mechanical loading of hPDL cells. When cells were mechanically stressed in the presence of TLR-4ab, the effect seen for loading alone was markedly reduced. Likewise, monocyte adhesion and osteoclastic differentiation were enhanced significantly by mechanical stress of hPDL cells and this effect was partially inhibited by TLR-4ab. CONCLUSIONS The results of the present study indicate a proinflammatory and immunomodulatory influence of mechanical loading on hPDL cells. Intracellular signaling involves a TLR-4-dependent pathway. CLINICAL RELEVANCE These findings hold out the prospect of interfering with the cellular response to mechanical cell stress in order to minimize undesired side effects of orthodontic tooth movement.
Collapse
Affiliation(s)
- Jana Marciniak
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.,Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Stefan Lossdörfer
- Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Isabel Knaup
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Asisa Bastian
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Rogerio B Craveiro
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Andreas Jäger
- Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
16
|
Pais Clemente M, Mendes J, Cerqueira J, Moreira A, Vasconcelos M, Pinhão Ferreira A, Amarante JM. Integrating piezoresistive sensors on the embouchure analysis of the lower lip in single reed instrumentalists: implementation of the lip pressure appliance (LPA). Clin Exp Dent Res 2019; 5:491-496. [PMID: 31687182 PMCID: PMC6820570 DOI: 10.1002/cre2.214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/08/2019] [Indexed: 11/22/2022] Open
Abstract
Background It is essential to understand, characterize, and measure the embouchure mechanism of a wind instrumentalists, where the applied forces on the perioral tissues can usually promote discomfort or pain. Methods The sample consisted of five clarinet players and five saxophone players. The embouchure force measurements at the lower lip area were assessed using a piezoresistive sensor (FlexiForceTM, Tekscan, Boston, USA, 0.07 kgf/cm2) placed on the lower part of the mouthpiece of the single reed instrument. Furthermore, each participant performed three times three different notes at different pitches: high, medium, and low. An intraoral device was manufactured in order to dissipate the existing pressures. Results The piezoresistive sensors applied to the mouthpiece of the five clarinetists presented values between 16 and 226 g of force. In the case of the five saxophonists, the values registered were between 5 and 320 g of force. Conclusions Piezoresistive sensors are a valid option to characterize that single reed instrumentalists apply substantial forces at the lower lip that can be equivalent to medium orthodontic forces. The implementation of the Lip Pressure Appliance can be a valid solution on the prevention of eventual lesions resulting from the embouchure forces.
Collapse
Affiliation(s)
| | - Joaquim Mendes
- INEGI, Labiomep, Faculty of EngineeringUniversity of PortoPortoPortugal
| | | | | | - Mário Vasconcelos
- Department of Dental Biomaterials, Faculty of Dental MedicineUniversity of PortoPortoPortugal
| | | | | |
Collapse
|
17
|
Gujar AN, Baeshen HA, Alhazmi A, Bhandi S, Raj AT, Patil S, Birkhed D. Cytokine levels in gingival crevicular fluid during orthodontic treatment with aligners compared to conventional labial fixed appliances: a 3-week clinical study. Acta Odontol Scand 2019; 77:474-481. [PMID: 31027423 DOI: 10.1080/00016357.2019.1607548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: To test the hypothesis that the levels of IL-1ß and TNF-α increased more and IL-1α, IL-2, IL-6, IL-8 increased less, after 3 weeks of treatment with conventional labial fixed appliance and with aligners. Material and methods: Forty patients who were treated either with labial brackets (n = 20) or aligners (n = 20). Gingival crevicular fluid (GCF) samples were collected at baseline and after 21 days. Cytokine levels were evaluated by enzyme-linked immune sorbent assay (ELISA). Plaque index (PI), gingival index (GI), and bleeding on probing (POB) were also examined. Results: The levels of IL-1α, IL-1ß, IL-2, IL-6, IL-8 and TNF-α in the GCF were significantly increased in both groups. The levels of IL-2, IL-6, IL-8 increased more in patients treated with aligners compared to those treated by labial fixed appliances. There was a statistically significant difference in change of the mean cytokine levels of IL-1α, IL-2, IL-6, IL-8 and TNF-α compared to labial fixed appliances and aligners. Conclusions: The levels of the six studied cytokines in GCF (IL-1α, IL-1ß, IL-2, IL-6, IL-8 and TNF-α) increased after 3 weeks both after treatment with conventional labial fixed appliance and with aligners. IL-1ß and TNF-α showed a prominent increase compared to the other cytokines in the GCF of teeth by both the labial fixed appliance and aligners. However, there were only minor differences in the changes of the cytokine levels from baseline to 3 weeks between the two groups. There were no differences between the groups regarding PI, GI or POB.
Collapse
Affiliation(s)
| | - Hosam Ali Baeshen
- College of Dentistry, King Abdulaziz University and Alfarabi Private College for Dentistry and Nursing, Jeddah, Saudi Arabia
| | - Anwar Alhazmi
- College of Dentistry Jazan University, Jazan, Saudi Arabia
| | - Shilpa Bhandi
- College of Dentistry Jazan University, Jazan, Saudi Arabia
| | - A. Thirumal Raj
- Sri Venkateswara Dental College and Hospital, Chennai, India
| | | | - Dowen Birkhed
- Professor Emeritus at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Ei Hsu Hlaing E, Ishihara Y, Wang Z, Odagaki N, Kamioka H. Role of intracellular Ca 2+-based mechanotransduction of human periodontal ligament fibroblasts. FASEB J 2019; 33:10409-10424. [PMID: 31238000 PMCID: PMC6704454 DOI: 10.1096/fj.201900484r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Human periodontal ligament (hPDL) fibroblasts are thought to receive mechanical stress (MS) produced by orthodontic tooth movement, thereby regulating alveolar bone remodeling. However, the role of intracellular calcium ([Ca2+]i)-based mechanotransduction is not fully understood. We explored the MS-induced [Ca2+]i responses both in isolated hPDL fibroblasts and in intact hPDL tissue and investigated its possible role in alveolar bone remodeling. hPDL fibroblasts were obtained from healthy donors' premolars that had been extracted for orthodontic reasons. The oscillatory [Ca2+]i activity induced by static compressive force was measured by a live-cell Ca2+ imaging system and evaluated by several feature extraction method. The spatial pattern of cell-cell communication was investigated by Moran's I, an index of spatial autocorrelation and the gap junction (GJ) inhibitor. The Ca2+-transporting ionophore A23187 was used to further investigate the role of [Ca2+]i up-regulation in hPDL cell behavior. hPDL fibroblasts displayed autonomous [Ca2+]i responses. Compressive MS activated this autonomous responsive behavior with an increased percentage of responsive cells both in vitro and ex vivo. The integration, variance, maximum amplitude, waveform length, and index J in the [Ca2+]i responses were also significantly increased, whereas the mean power frequency was attenuated in response to MS. The increased Moran's I after MS indicated that MS might affect the pattern of cell-cell communication via GJs. Similar to the findings of MS-mediated regulation, the A23187-mediated [Ca2+]i uptake resulted in the up-regulation of receptor activator of NF-κB ligand (Rankl) and Sost along with increased sclerostin immunoreactivity, suggesting that [Ca2+]i signaling networks may be involved in bone remodeling. In addition, A23187-treated hPDL fibroblasts also showed the suppression of osteogenic differentiation and mineralization. Our findings suggest that augmented MS-mediated [Ca2+]i oscillations in hPDL fibroblasts enhance the production and release of bone regulatory signals via Rankl/Osteoprotegerin and the canonical Wnt/β-catenin pathway as an early process in tooth movement-initiated alveolar bone remodeling.-Ei Hsu Hlaing, E., Ishihara, Y., Wang, Z., Odagaki, N., Kamioka, H. Role of intracellular Ca2+-based mechanotransduction of human periodontal ligament fibroblasts.
Collapse
Affiliation(s)
- Ei Ei Hsu Hlaing
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | - Ziyi Wang
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Japan Society for the Promotion of Science (JSPS DC2), Tokyo, Japan
| | - Naoya Odagaki
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
19
|
Marciniak J, Lossdörfer S, Kirschneck C, Deschner J, Jäger A, Wolf M. Heat shock protein 70 dampens the inflammatory response of human PDL cells to mechanical loading in vitro. J Periodontal Res 2019; 54:481-488. [PMID: 30865286 DOI: 10.1111/jre.12648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVE Previously, we demonstrated an inflammatory response of human PDL (hPDL) cells to mechanical loading. The cellular reaction was dampened by heat pre-treatment suggesting a protective role for heat shock proteins (HSP) during stress-induced ischemia. Here we explored if HSP70, which has already been documented in the pressure zone of tooth movement, might be regulatorily involved in the attenuation of the inflammatory response. MATERIALS AND METHODS Fifth passage hPDL cells were mechanically loaded in the presence of the HSP70 inhibitor VER155008. Cell morphology, HSP70 expression, viability, IL-6 and IL-8 expression were determined by means of microscopy, realtime-PCR and ELISA. The conditioned medium of mechanically loaded and pre-treated hPDL cells was used to culture monocytes to identify a potential impact on adhesion and osteoclastic differentiation capacity. RESULTS Mechanical cell stress resulted in a significant increase of pro-inflammatory parameters. HSP70 inhibition led to a further enhancement of cytokine expression. The conditioned medium of mechanically loaded hPDL cells significantly increased monocyte adhesion and differentiation along the osteoclastic pathway. VER155008 pronounced this effect significantly. CONCLUSION The results indicate a regulatory role for HSP70 in the control of the inflammatory hPDL cell response to mechanical loading and identify HSP70 as a target in the attempt to attenuate tissue damage during orthodontic tooth movement. Furthermore, the present findings point to the risk of increased periodontal destruction when medication targeting HSP70 is applied for severe medical conditions during orthodontic tooth movement.
Collapse
Affiliation(s)
- Jana Marciniak
- Department of Orthodontics, Dental Clinic, University of Aachen, Aachen, Germany.,Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Stefan Lossdörfer
- Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Christian Kirschneck
- Department of Orthodontics, Dental Clinic, University of Regensburg, Regensburg, Germany
| | - James Deschner
- Department of Periodontology and Restorative Dentistry, University of Mainz, Mainz, Germany
| | - Andreas Jäger
- Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, University of Aachen, Aachen, Germany
| |
Collapse
|
20
|
Panchamanon P, Pavasant P, Leethanakul C. Periostin plays role in force-induced stem cell potential by periodontal ligament stem cells. Cell Biol Int 2019; 43:506-515. [PMID: 30761669 DOI: 10.1002/cbin.11116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/10/2019] [Indexed: 01/07/2023]
Abstract
Mechanical stimuli have been shown to play an important role in directing stem cell fate and maintenance of tissue homeostasis. One of the functions of the mechanoresponsive tissue periodontal ligament (PDL) is to withstand the functional forces within the oral cavity. Periodontal ligament stem cells (PDLSCs) derived from periodontal tissue have been demonstrated to be able to respond directly to mechanical forces. However, the mechanisms of action of mechanical force on PDLSCs are not totally understood. The aim of this study was to investigate the mechanisms by which compressive force affects PDLSCs, especially their stemness properties. PDLSCs were established from extracted human third molars; their stem cell characteristics were validated by detecting the expression of stem cell markers and confirming their ability to differentiate into osteogenic and adipogenic lineages. PDLSCs were subjected to various magnitudes of static compressive force (0 [control], 0.5, 1.0, 1.5, or 2 g/cm2 ). Application of 1.0 g/cm2 compressive force significantly upregulated a panel of stem cell marker genes, including NANOG and OCT4. Conversely, higher force magnitudes downregulated these genes. Mechanical loading also upregulated periostin, a matrix protein that plays important roles in tissue morphogenesis. Interestingly, knockdown of periostin using siRNA abolished force-induced stem cell marker expression in PDLSCs. This study suggests a proper magnitude of compressive force could be one important factor involved in the modulation of the pluripotency of PDLSCs through the action of periostin. The precise mechanism by which periostin regulates stemness requires further detailed investigation.
Collapse
Affiliation(s)
- Panita Panchamanon
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Prasit Pavasant
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Henry-Dunant Rd, Pathumwan, Bangkok 10330, Thailand
| | - Chidchanok Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
21
|
Ma Q, Ma Z, Liang M, Luo F, Xu J, Dou C, Dong S. The role of physical forces in osteoclastogenesis. J Cell Physiol 2019; 234:12498-12507. [PMID: 30623443 DOI: 10.1002/jcp.28108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022]
Abstract
The movements of life at every level from organs, tissues, cells to sub-cells, are all conducted in certain physical environments. In the human body, skeletal tissue among all connective tissues is influenced the most by physical forces. Studying the biological behavior of bone cells under different physical environments is helpful in further understanding bone homeostasis and metabolism. Among all bone cells, osteoclast (OC) and OC steered bone remodeling is one of the key points in bone metabolism. In the past few decades, people's understanding of OC was mostly limited to its involvement of bone resorption under physiological and pathological conditions. However, more and more studies started to focus on how physical forces affect the formation and differentiation of OC. This review tries to illustrate the knowledge up to date about how osteoclastogenesis is regulated by physical forces through direct and indirect ways, including fluid shear force, compressive force, and microgravity. The direct way describes the straightforward effects produced by different forces in osteoclastogenesis, whereas the indirect way describes the effects of different forces in osteoclastogenesis through regulation of other bone cells when a certain force is applied. Molecular mechanisms were analyzed and reviewed in both direct and indirect regulation by different forces. Finally, we discussed the status quo and tendency of related research, as well as other unresolved issues, and some future prospects.
Collapse
Affiliation(s)
- Qinyu Ma
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Zaisong Ma
- Department of Orthopedics, General Hospital of Xinjiang Command, Urumqi, Xinjiang, China
| | - Mengmeng Liang
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| |
Collapse
|
22
|
Shi J, Baumert U, Folwaczny M, Wichelhaus A. Influence of static forces on the expression of selected parameters of inflammation in periodontal ligament cells and alveolar bone cells in a co-culture in vitro model. Clin Oral Investig 2018; 23:2617-2628. [PMID: 30324573 DOI: 10.1007/s00784-018-2697-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/02/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Aim of this study was to investigate the impact of human PDL-derived fibroblasts (HPDF) and human alveolar bone-derived osteoblasts (HABO) co-culture on the expression of cytokines involved in tissue remodeling using an in vitro compressive force (CF) model. MATERIALS AND METHODS Static compressive force (CF) of 47.4 g/cm2 was applied on mono- and co-cultured HPDFs and HABOs for 1, 2, or 4 h at 30 °C. TNFA, PTGS2, and IL6 gene expressions were determined by quantitative real-time polymerase chain reaction. TNF, PGE2, and IL6 concentrations were measured using enzyme-linked immunosorbent assay. RESULTS In mono-culture, TNFA, PTGS2, and IL6 gene expressions were upregulated under CF as compared to controls for each time period in both cell types. PGE2 increased at 1 and 2 h in both cell types, and IL6 increased only at 2 and 4 h in HPDFs. Co-culture alleviated the force-induced increase of the expression of TNFA, PTGS2, IL6, PGE2, and IL6 in HPDFs at any time point. In HABOs, co-cultivation decreased the expression of PGE2 after 1 h and 4 h, and that of IL6 after 1 h compared to mono-culture. CONCLUSIONS CF application on co-cultures of HPDFs and HABOs causes significant changes of TNFA, PTGS2, and IL6 gene expressions and PGE2 and IL6 production in comparison to mono-culture indicating intercellular communication. CLINICAL RELEVANCE Mechanical stimulation of HPDFs and HABOs in co-culture induces a different gene expression pattern than stimulation of individual cell types alone. Co-culture might therefore be a relevant method to elucidate periodontal regeneration during orthodontic therapy.
Collapse
Affiliation(s)
- Jianwei Shi
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Guangzhou Medical University, Guangzhou, 510140, China
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany.
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany
| |
Collapse
|
23
|
Wolf M, Marciniak J, Lossdörfer S, Kirschneck C, Brauner I, Götz W, Jäger A. Role of HSP70 protein in human periodontal ligament cell function and physiology. Ann Anat 2018; 221:76-83. [PMID: 30253189 DOI: 10.1016/j.aanat.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/06/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Heat pre-treatment of mechanically loaded human periodontal ligament cells (hPDL) dampens the inflammatory cellular response, as evidenced by a reduced expression of pro-inflammatory cytokines, inhibition of monocyte adhesion and osteoclastic differentiation. These findings imply heat shock proteins (HSP) as cell protective molecules acting in the PDL that are up-regulated upon ischemia caused by mechanical loading. HSP70 and its inhibition by VER155008 as the active agent in several pharmaceuticals are established targets and strategies, respectively, in the treatment of neoproliferative diseases. However, the effect of both players on periodontal remodeling in unknown. Therefore, we analyzed the role of HSP70 and its frequently used inhibitor VER155008 in the regulation of physiological hPDL cell functions and immune cell interaction. MATERIALS AND METHODS Fifth passage hPDL cells were cultured in the presence of 25μm HSP70 inactivating agent VER155008. At harvest, HSP70 expression, cell proliferation, and parameters of cell interaction, colony formation and wound healing were analyzed by means of real-time PCR, immunohistochemistry, Western blot, biochemical MTS assay, microscopy, and functional assays for monocyte adhesion and differentiation. RESULTS Basal HSP70 expression and hPDL cell morphology were not affected by HSP70 inhibitor VER155008. In contrast, cell proliferation, tissue defect healing, and colony formation were reduced significantly following HSP70 inhibition, whereas apoptosis and necrosis, monocyte adhesion and osteoclastic differentiation were markedly increased. CONCLUSIONS The present data indicate a regulatory role for HSP70 protein in hPDL cell biology. CLINICAL RELEVANCE These findings identify HSP70 as a promising target in the attempt to modify periodontal remodeling and point to potential periodontal side effects of HSP70 pharmaceutical usage.
Collapse
Affiliation(s)
- Michael Wolf
- Department of Orthodontics, University Hospital of the RWTH Aachen, Germany.
| | - Jana Marciniak
- Department of Orthodontics, University Hospital of the RWTH Aachen, Germany; Department of Orthodontics, Dental Clinic, University of Bonn, Germany
| | - Stefan Lossdörfer
- Department of Orthodontics, Dental Clinic, University of Bonn, Germany
| | | | - Isabel Brauner
- Department of Orthodontics, University Hospital of the RWTH Aachen, Germany
| | - Werner Götz
- Department of Orthodontics, Dental Clinic, University of Bonn, Germany
| | - Andreas Jäger
- Department of Orthodontics, Dental Clinic, University of Bonn, Germany
| |
Collapse
|
24
|
Expression of biological mediators during orthodontic tooth movement: A systematic review. Arch Oral Biol 2018; 95:170-186. [PMID: 30130671 DOI: 10.1016/j.archoralbio.2018.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/09/2022]
Abstract
OBJECTIVES The aim of the present systematic review was to offer a timeline of the events taking place during orthodontic tooth movement(OTM). MATERIALS AND METHODS Electronic databases PubMed, Web of Science and EMBASE were searched up to November 2017. All studies describing the expression of signaling proteins in the periodontal ligament(PDL) of teeth subjected to OTM or describing the expression of signaling proteins in human cells of the periodontal structures subjected to static mechanical loading were considered eligible for inclusion for respectively the in-vivo or the in-vitro part. Risk of bias assessment was conducted according to the validated SYRCLE's RoB tool for animal studies and guideline for assessing quality of in-vitro studies for in-vitro studies. RESULTS We retrieved 7583 articles in the initial electronic search, from which 79 and 51 were finally analyzed. From the 139 protein investigated, only the inflammatory proteins interleukin(IL)-1β, cyclooxygenase(COX)-2 and prostaglandin(PG)-E2, osteoblast markers osteocalcin and runt-related transcription factor(RUNX)2, receptor activator of nuclear factor kappa-B ligand(RANKL) and osteoprotegerin(OPG) and extracellular signal-regulated kinases(ERK)1/2 are investigated in 10 or more studies. CONCLUSION The investigated proteins were presented in a theoretical model of OTM. We can conclude that the cell activation and differentiation and recruitment of osteoclasts is mediated by osteocytes, osteoblasts and PDL cells, but that the osteogenic differentiation is only seen in stem cell present in the PDL. In addition, the recently discovered Ephrin/Ephs seem to play an role parallel with the thoroughly investigated RANKL/OPG system in mediating bone resorption during OTM.
Collapse
|
25
|
Matsuike R, Tanaka H, Nakai K, Kanda M, Nagasaki M, Murakami F, Shibata C, Mayahara K, Nakajima A, Tanabe N, Kawato T, Maeno M, Shimizu N. Continuous application of compressive force induces fusion of osteoclast-like RAW264.7 cells via upregulation of RANK and downregulation of LGR4. Life Sci 2018; 201:30-36. [PMID: 29572179 DOI: 10.1016/j.lfs.2018.03.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 01/08/2023]
Abstract
AIMS During orthodontic treatment, facilitating osteoclastic bone resorption in the alveolar bone exposed to the compressive force (CF) is an important factor for tooth movement. The present study investigated the effect of CF stimulation on the differentiation of RAW264.7 cells from precursors to mature osteoclasts. MAIN METHODS The cells were continuously stimulated with 0.3, 0.6, or 1.1 g/cm2 CF-which was generated by increasing the volume of culture medium in the wells of a 96-well plate-in the presence or absence of receptor activator of nuclear factor κB (RANK) ligand (RANKL) for 4 days. KEY FINDINGS In the presence of RANKL, the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and the mRNA levels of dendritic cell-specific transmembrane protein (DC-STAMP) and osteoclast-stimulatory transmembrane protein (OC-STAMP) were increased by application of 0.6 and 1.1 g/cm2 CF as compared to 0.3 g/cm2 CF. The mRNA level of RANK was upregulated whereas that of leucine-rich repeat-containing G-protein-coupled receptor (LGR)4-another RANKL receptor was downregulated by 0.6 and 1.1 g/cm2 CF as compared to 0.3 g/cm2 CF in the absence of RANKL. The proportion of cells with nuclear translocation of the nuclear translocation of nuclear factor of activated T cells (NFAT)c1 was increased by 0.6 and 1.1 g/cm2 CF in the presence of RANKL. SIGNIFICANCE Continuous application of CF induced the differentiation of RAW264.7 cells into TRAP-positive multinuclear cells by enhancing the expression of DC- and OC-STAMP and the nuclear translocation of NFATc1. This may result from the CF-induced increase in RANK and decrease in LGR4 expression.
Collapse
Affiliation(s)
- Rieko Matsuike
- Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Hideki Tanaka
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Kumiko Nakai
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Mai Kanda
- Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Maki Nagasaki
- Nihon University Graduate School of Dentistry, Tokyo, Japan
| | | | - Chika Shibata
- Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Kotoe Mayahara
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan; Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Akira Nakajima
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan; Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Natsuko Tanabe
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan; Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Takayuki Kawato
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan.
| | - Masao Maeno
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Noriyoshi Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan; Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
26
|
Intermittent compressive stress regulates Notch target gene expression via transforming growth factor-β signaling in murine pre-osteoblast cell line. Arch Oral Biol 2017; 82:47-54. [DOI: 10.1016/j.archoralbio.2017.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/08/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
|
27
|
Sun C, Liu F, Cen S, Chen L, Wang Y, Sun H, Deng H, Hu R. Tensile strength suppresses the osteogenesis of periodontal ligament cells in inflammatory microenvironments. Mol Med Rep 2017; 16:666-672. [PMID: 28560407 PMCID: PMC5482070 DOI: 10.3892/mmr.2017.6644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/15/2017] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to investigate the role of orthodontic force in osteogenesis differentiation, matrix deposition and mineralization in periodontal ligament cells (PDLCs) cells in inflammatory microenvironments. The mesenchymal origin of PDLCs was confirmed by vimentin and cytokeratin staining. PDLCs were exposed to inflammatory cytokines (5 ng/ml IL‑1β and 10 ng/ml TNF‑α) and/or tensile strength (0.5 Hz, 12% elongation) for 12, 24 or 48 h. Cell proliferation and tensile strength‑induced cytokine expression were assessed by MTT assay and ELISA, respectively. Runt‑related transcription factor 2 (RUNX2) and type I collagen (COL‑I) expression were analysed by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. Additionally, alkaline phosphatase activity was measured, and the mineralization profile was evaluated by alizarin red S staining. PDLCs exposed to tensile strength in inflammatory microenvironments exhibited reduced proliferation and mineralization potential. Treatment with the inflammatory cytokines IL‑1β and TNF‑α increased RUNX2 expression levels; however, decreased COL‑I expression levels, indicating that bone formation and matrix deposition involve different mechanisms in PDL tissues. Notably, RUNX2 and COL‑I expression levels were decreased in PDLCs exposed to a combination of an inflammatory environment and loading strength. The decreased osteogenic potential in an inflammatory microenvironment under tensile strength suggests that orthodontic force may amplify periodontal destruction in orthodontic patients with periodontitis.
Collapse
Affiliation(s)
- Chaofan Sun
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Fen Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Shendan Cen
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Lijiao Chen
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yi Wang
- Faculty of Dentistry, University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Hao Sun
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hui Deng
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Rongdang Hu
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
28
|
Yoshimura Y, Kikuiri T, Hasegawa T, Matsuno M, Minamikawa H, Deyama Y, Suzuki K. How much medium do you use for cell culture? Medium volume influences mineralization and osteoclastogenesis in vitro. Mol Med Rep 2017; 16:429-434. [PMID: 28535008 DOI: 10.3892/mmr.2017.6611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/15/2017] [Indexed: 11/06/2022] Open
Abstract
Bone is maintained by a balance between bone formation and resorption. This remodeling is controlled by a wide variety of systemic and local factors including hormones, cytokines and mechanical stresses. The present in vitro study examined the impact of medium volume, using 0.4, 0.6, 0.8, 1.0, 1.5 and 2.0 ml/well in a 24‑well plate, on the differentiation of osteoblasts and osteoclasts. There were no differences in the alkaline phosphatase activity of osteoblasts amongst the groups; however, the area of mineral deposition was decreased in a media volume‑dependent manner. A co‑culture of osteoblastic cells with bone marrow cells revealed a reduction in the total number of osteoclastic tartrate‑resistant acid phosphatase (TRAP)‑positive multinuclear cells (≥2 nuclei), whereas the formation of large osteoclastic TRAP‑positive multinuclear cells (≥8 nuclei) was increased, in a media volume‑dependent manner. There were also no differences in receptor activator of nuclear factor‑κB ligand mRNA and total osteoprotegerin (OPG) protein expression levels amongst the groups, however the concentration of OPG decreased in a media volume‑dependent manner. In conclusion, the present study demonstrated that the suppression of mineralization in osteoblastic cells and the stimulation of osteoclast fusion are dependent on the medium volume, indicating that media volume is an important factor in in vitro cell culture systems.
Collapse
Affiliation(s)
- Yoshitaka Yoshimura
- Department of Molecular Cell Pharmacology, Hokkaido University Graduate School of Dental Medicine, Kita‑ku, Sapporo, Hokkaido 060‑8586, Japan
| | - Takashi Kikuiri
- Department of Pediatric Dentistry, Hokkaido University Graduate School of Dental Medicine, Kita‑ku, Sapporo, Hokkaido 060‑8586, Japan
| | - Tomokazu Hasegawa
- Department of Pediatric Dentistry, Faculty of Dentistry, Tokushima University, Tokushima, Tokushima 770‑8504, Japan
| | - Mino Matsuno
- Department of Molecular Cell Pharmacology, Hokkaido University Graduate School of Dental Medicine, Kita‑ku, Sapporo, Hokkaido 060‑8586, Japan
| | - Hajime Minamikawa
- Department of Molecular Cell Pharmacology, Hokkaido University Graduate School of Dental Medicine, Kita‑ku, Sapporo, Hokkaido 060‑8586, Japan
| | - Yoshiaki Deyama
- Department of Molecular Cell Pharmacology, Hokkaido University Graduate School of Dental Medicine, Kita‑ku, Sapporo, Hokkaido 060‑8586, Japan
| | - Kuniaki Suzuki
- Department of Molecular Cell Pharmacology, Hokkaido University Graduate School of Dental Medicine, Kita‑ku, Sapporo, Hokkaido 060‑8586, Japan
| |
Collapse
|
29
|
Manokawinchoke J, Sumrejkanchanakij P, Pavasant P, Osathanon T. Notch Signaling Participates in TGF-β-Induced SOST Expression Under Intermittent Compressive Stress. J Cell Physiol 2017; 232:2221-2230. [PMID: 27966788 DOI: 10.1002/jcp.25740] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022]
Abstract
Notch signaling is regulated by mechanical stimuli in various cell types. It has previously been reported that intermittent compressive stimuli enhanced sclerostin (SOST) expression in human periodontal ligament cells (hPDLs) by regulating transforming growth factor-β (TGF-β) expression. The aim of the present study was to determine the involvement of Notch signaling in the TGF-β-induced SOST expression in hPDLs. Cells were treated with intermittent compressive stress in a computer-controlled apparatus for 24 h. The mRNA and protein expression of the cells were determined by real-time polymerase chain reaction and Western blot analysis, respectively. In some experiments, the target signaling pathway was impeded by the addition of a TGF-β receptor kinase inhibitor (SB431542) or a γ-secretase inhibitor (DAPT). The results demonstrated that hPDLs under intermittent compressive stress exhibited significantly higher NOTCH2, NOTCH3, HES1, and HEY1 mRNA expression compared with control, indicating that mechanical stress induced Notch signaling. DAPT pretreatment markedly reduced the intermittent stress-induced SOST expression. The expression of NOTCH2, NOTCH3, HES1, and HEY1 mRNA under compressive stress was significantly reduced after pretreatment with SB431542, coinciding with a reduction in SOST expression. Recombinant human TGF-β1 enhanced SOST, Notch receptor, and target gene expression in hPDLs. Further, DAPT treatment attenuated rhTGF-β1-induced SOST expression. In summary, intermittent compressive stress regulates Notch receptor and target gene expression via the TGF-β signaling pathway. In addition, Notch signaling participates in TGF-β-induced SOST expression in hPDLs. J. Cell. Physiol. 232: 2221-2230, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jeeranan Manokawinchoke
- Mineralized Tissue Research Unit, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Piyamas Sumrejkanchanakij
- Mineralized Tissue Research Unit, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Pavasant
- Mineralized Tissue Research Unit, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Mineralized Tissue Research Unit, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
30
|
Castroflorio T, Gamerro EF, Caviglia GP, Deregibus A. Biochemical markers of bone metabolism during early orthodontic tooth movement with aligners. Angle Orthod 2016; 87:74-81. [PMID: 27409364 DOI: 10.2319/022416-159.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To evaluate the expression of receptor activator of nuclear factor-kappa ligand (RANKL), osteoprotegerin (OPG), osteopontin (OPN), interleukin 1β (IL-1β), and transforming growth factor ß1 (TGF-ß1) in the gingival crevicular fluid (GCF) of teeth subjected to orthodontic forces released by aligners. MATERIALS AND METHODS A total of 10 healthy, adult patients were selected to participate in this split-mouth study. The treatment plan was designed to obtain only one movement with the first aligner: distalization of a second molar. GCF samples were obtained from pressure and tension sites of the test tooth and from the mesiobuccal and distobuccal sites of the control tooth. The GCF sample volumes were measured using a Periotron 8000. Levels of TGF-β, IL-1β, RANKL, OPG, and OPN were measured by enzyme-linked immunosorbent assay. RESULTS IL-1β showed a significant increase at the pressure sites after 1 week and 3 weeks with respect to baseline (P < .05) compared with control sites. The kinetics of TGF-1β and OPN were characterized by a significant increase at the tension sites of the test teeth (P < .05) after 3 weeks from the application of orthodontic force. The RANKL level was significantly increased at pressure and tension sites after 1 hour and after 1 week from the application of the orthodontic forces (P = .023 and P = .043, respectively). CONCLUSIONS An increased concentration of bone modeling and remodeling mediators at the pressure sites (IL-1β, RANKL) and tension sites (TGF-1β, OPN) was observed. These scenarios are compatible with previous in vivo and in vitro studies investigating the biological effects of orthodontic tooth movement.
Collapse
|
31
|
Ueda M, Goto T, Kuroishi KN, Gunjigake KK, Ikeda E, Kataoka S, Nakatomi M, Toyono T, Seta Y, Kawamoto T. Asporin in compressed periodontal ligament cells inhibits bone formation. Arch Oral Biol 2016; 62:86-92. [DOI: 10.1016/j.archoralbio.2015.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/07/2015] [Accepted: 11/17/2015] [Indexed: 01/15/2023]
|
32
|
Han JY. A comparative study of combined periodontal and orthodontic treatment with fixed appliances and clear aligners in patients with periodontitis. J Periodontal Implant Sci 2015; 45:193-204. [PMID: 26734489 PMCID: PMC4698945 DOI: 10.5051/jpis.2015.45.6.193] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/07/2015] [Indexed: 12/19/2022] Open
Abstract
Purpose With the increasing prevalence of orthodontic treatment in adults, clear aligner treatments are becoming more popular. The aim of this study was to evaluate the effect of orthodontic treatment on periodontal tissue and to compare orthodontic treatment with fixed appliances (FA) to clear aligner treatment (CAT) in periodontitis patients. Methods A total of 35 patients who underwent orthodontic treatment in the Department of Periodontology were included in this study. After periodontal treatment with meticulous oral hygiene education, patients underwent treatment with FA or CAT, and this study analyzed patient outcomes depending on the treatment strategy. Clinical parameters were assessed at baseline and after orthodontic treatment, and the duration of treatment was compared between these two groups. Results The overall plaque index, the gingival index, and probing depth improved after orthodontic treatment (P<0.01). The overall bone level also improved (P=0.045). However, the bone level changes in the FA and CAT groups were not significantly different. Significant differences were found between the FA and CAT groups in probing depth, change in probing depth, and duration of treatment (P<0.05). However, no significant differences were found between the FA and CAT groups regarding the plaque index, changes in the plaque index, the gingival index, changes in the gingival index, or changes in the alveolar bone level. The percentage of females in the CAT group (88%) was significantly greater than in the FA group (37%) (P<0.01). Conclusions After orthodontic treatment, clinical parameters were improved in the FA and CAT groups with meticulous oral hygiene education and plaque control. Regarding plaque index and gingival index, no significant differences were found between these two groups. We suggest that combined periodontal and orthodontic treatment can improve patients’ periodontal health irrespective of orthodontic techniques.
Collapse
Affiliation(s)
- Ji-Young Han
- Department of Periodontology, Division of Dentistry, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Short-term heat pre-treatment modulates the release of HMGB1 and pro-inflammatory cytokines in hPDL cells following mechanical loading and affects monocyte behavior. Clin Oral Investig 2015; 20:923-31. [PMID: 26358476 DOI: 10.1007/s00784-015-1580-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 08/26/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Heat shock proteins (HSP) act as cell-protective molecules that are upregulated upon thermal insult, hypoxia, and ischemia. Such ischemic conditions can be found during tissue remodeling associated with orthodontic tooth movement or trauma when compression forces lead to cell necrosis and subsequent clearance of cellular debris by immune competent cells. Host immune overreaction can result in undesired side effects such as tooth root resorption. Here, we analyzed whether heat pre-treatment would affect the initially catabolic host immune response induced by mechanical loading of human periodontal ligament (hPDL) cells, which represent major constituents of the tooth supporting apparatus involved in the regulation of periodontal remodeling. MATERIALS AND METHODS Fifth passage hPDL cells were exposed to an elevated temperature of 43° for 1 h prior to mechanical loading. Cell morphology, high mobility group box protein 1 (HMGB1), interleukin (IL)-6, and IL-8 expression were analyzed microscopically and by ELISA. The physiological relevance for monocyte behavior was tested in monocyte adhesion and osteoclast differentiation assays. RESULTS Short-term heat pre-treatment did not show any visible effect on hPDL cell morphology, but resulted in a significant downregulation of pro-inflammatory cytokines when being additionally loaded mechanically. Supernatants of heat-exposed hPDL cell cultures demonstrated a reduced impact on monocyte adhesion and osteoclastic differentiation. CONCLUSIONS Heat pre-treatment of hPDL cells induces cell-protective mechanisms towards mechanical stress and favors the reduction of cell stress associated effects on monocyte/macrophage physiology. CLINICAL RELEVANCE These data present the induction of heat shock proteins as a promising treatment option to limit undesired side effects of periodontal remodeling.
Collapse
|
34
|
Nettelhoff L, Grimm S, Jacobs C, Walter C, Pabst AM, Goldschmitt J, Wehrbein H. Influence of mechanical compression on human periodontal ligament fibroblasts and osteoblasts. Clin Oral Investig 2015; 20:621-9. [PMID: 26243456 DOI: 10.1007/s00784-015-1542-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/20/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The aim of this study was to investigate and compare the changes in human periodontal ligament fibroblasts (HPdLFs) and osteoblasts (HOBs) after the application of compressive force (CF) at two different strengths in vitro. MATERIALS AND METHODS HPdLF and HOB were exposed to CF with various strengths (5 and 10 %) using a Flexercell Compression Unit for 12 h in vitro. Viability was detected via 3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) and apoptosis rate by transferase dUTP nick end labeling (TUNEL) assay. The gene expression of alkaline phosphatase (ALP), osteocalcin (OCN), osteoprotegerin (OPG), and receptor activator of NF-κB ligand (RANKL) was analyzed using reverse transcriptase polymerase chain reaction (RT-PCR). Osteopontin (OPN), matrix metalloproteinase-8 (MMP-8), and tissue inhibition of metalloproteinase-1 (TIMP-1) were quantified by an ELISA. RESULTS Ten percent CF decreased viability, particularly in HOBs, but did not induce increased apoptosis. ALP gene expression increased the most after 5 % CF in HPdLFs and after 10 % CF in HOB. OCN was not affected by CF in either cell line. The highest RANKL/OPG ratio was measured after 5 % CF in both cell lines. OPN was upregulated in HOB by 5 %. HPdLFs showed an upregulation of MMP-8-synthesis and an increased MMP-8/TIMP-1 ratio. CONCLUSIONS HOBs have a greater effect on bone remodeling through the upregulation of OPN, whereas HPdLFs facilitate orthodontic tooth movement by influencing the extracellular matrix via the MMP-8/TIMP-1 ratio. CLINICAL RELEVANCE High CF in orthodontics should be avoided to prevent tissue damage, whereas moderate CF enables active tissue remodeling and tooth movement.
Collapse
Affiliation(s)
- L Nettelhoff
- Department of Orthodontics, University Medical Center, Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - S Grimm
- Department of Orthodontics, University Medical Center, Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - C Jacobs
- Department of Orthodontics, University Medical Center, Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany.
| | - C Walter
- Department of Oral and Maxillofacial Surgery, University Medical Center, Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - A M Pabst
- Department of Oral and Maxillofacial Surgery, University Medical Center, Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - J Goldschmitt
- Department of Oral and Maxillofacial Surgery, University Medical Center, Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - H Wehrbein
- Department of Orthodontics, University Medical Center, Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany
| |
Collapse
|
35
|
Li ML, Yi J, Yang Y, Zhang X, Zheng W, Li Y, Zhao Z. Compression and hypoxia play independent roles while having combinative effects in the osteoclastogenesis induced by periodontal ligament cells. Angle Orthod 2015; 86:66-73. [PMID: 25844508 DOI: 10.2319/121414.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To investigate the isolated and combined effects of compression and hypoxia on the osteoclastogenesis induced by periodontal ligament cells (PDLCs). MATERIALS AND METHODS A periodontal ligament tissue model (PDLtm) was established by 3-D culturing human PDLCs on a thin sheet of poly lactic-co-glycolic acid scaffold. The PDLtm was treated with hypoxia and/or compression for 6, 24, or 72 hours. After that, a real-time polymerase chain reaction was used for gene expression analysis. The conditioned media were used for the coculture of osteoblast and osteoclast (OC) precursors; tartrate-resistant acid phosphatase staining was done to examine OC formation. RESULTS Either compression or hypoxia alone significantly up-regulated the gene expression of pro-osteoclastogenic cytokines in the PDLtm and enhanced osteoclastogenesis in the cocultures, and the combination of the two had significantly stronger effects than either stimulation alone. In addition, comparing the two stimulants, we found that the osteoclastogenic property of the PDLCs peaked earlier (at 6 hours) in the compression group than in the hypoxia group (at 24 hours). CONCLUSIONS Both compressive force and hypoxia may take part in initiating osteoclastogenesis in orthodontic tooth movement and may have combinatory effects, which could update our concepts of the mechanisms involved in the initiation of bone resorption on the pressure side of the tooth in question.
Collapse
Affiliation(s)
- Mei Le Li
- a PhD Student, Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianru Yi
- a PhD Student, Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Yang
- b Postgraduate Student, Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuan Zhang
- b Postgraduate Student, Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Zheng
- c Lecturer, Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Li
- d Associate Professor, Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- e Professor, Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Son GY, Yang YM, Park WS, Chang I, Shin DM. Hypotonic stress induces RANKL via transient receptor potential melastatin 3 (TRPM3) and vaniloid 4 (TRPV4) in human PDL cells. J Dent Res 2015; 94:473-81. [PMID: 25595364 DOI: 10.1177/0022034514567196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bone remodeling occurs in response to various types of mechanical stress. The periodontal ligament (PDL) plays an important role in mechanical stress-mediated alveolar bone remodeling. However, the underlying mechanism at the cellular level has not been extensively studied. In this study, we investigated the effect of shear stress on the expression of bone remodeling factors, including receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL) and osteoprotegerin (OPG), as well as its upstream signaling pathway in primary human PDL cells. We applied hypotonic stress to reproduce shear stress to PDL cells. Hypotonic stress induced the messenger RNA (mRNA) and protein expression of RANKL but not OPG. It also increased intracellular Ca(2+) concentration ([Ca(2+)]i). Extracellular Ca(2+) depletion and nonspecific plasma membrane Ca(2+) channel blockers completely inhibited the increase in both [Ca(2+)]i and RANKL mRNA expression. We identified the expression and activation of transient receptor potential melastatin 3 (TRPM3) and vaniloid 4 (TRPV4) channels in PDL cells. Pregnenolone sulfate (PS) and 4α-phorbol 12, 13-didecanoate (4α-PDD), which are agonists of TRPM3 and TRPV4, augmented Ca(2+) influx and RANKL mRNA expression. Both pharmacological (2-aminoethoxydiphenyl borate [2-APB], ruthenium red [RR], ononetin [Ono], and HC 067047 [HC]) and genetic (small interfering RNA [siRNA]) inhibitors of TRPM3 and TRPV4 reduced the hypotonic stress-mediated increase in [Ca(2+)]i and RANKL mRNA expression. Our study shows that hypotonic stress induced RANKL mRNA expression via TRPM3- and TRPV4-mediated extracellular Ca(2+) influx and RANKL expression. This signaling pathway in PDL cells may play a critical role in mechanical stress-mediated alveolar bone remodeling.
Collapse
Affiliation(s)
- G Y Son
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Y M Yang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - W S Park
- Department of Advanced General Dentistry, Yonsei University College of Dentistry, Seoul, Korea
| | - I Chang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - D M Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
37
|
Kapoor P, Kharbanda OP, Monga N, Miglani R, Kapila S. Effect of orthodontic forces on cytokine and receptor levels in gingival crevicular fluid: a systematic review. Prog Orthod 2014; 15:65. [PMID: 25487828 PMCID: PMC4259981 DOI: 10.1186/s40510-014-0065-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/11/2014] [Indexed: 12/18/2022] Open
Abstract
This systematic review aimed to generate evidence on role of potent markers of inflammation [cytokines, chemokines, their associated receptors and antagonists] following the application of orthodontic forces. Subsequent to registration with PROSPERO, literature search followed a predetermined search strategy to key databases along with hand search (HS). Seventy-seven articles from PubMed (P), 637 from Scopus (S), 51 from Embase (E), and 3 from hand search (HS) were identified. A total of 39 articles were shortlisted that met strict inclusion and exclusion criteria and quality assessment. Each study was evaluated for participant characteristics, study design, oral hygiene regimen, and gingival crevicular fluid (GCF) handling. Among these studies, biomarkers in the order of frequency were interleukin (IL)-1β (N = 21), tumor necrosis factor (TNF)-α (N = 10), IL-8,IL-6(N=8), receptor activator of nuclear factor kappa-B ligand (RANKL) (N = 7), monocyte chemoattractant protein (MCP)-1 (N = 3), IL-2 (N=4), IL-4, IL-10, RANTES (N = 2), IL-1, IL-5, IL-1α, IP-10, osteopontin (OPN) (N = 1) and receptors and their antagonists in the order of osteoprotegerin (OPG) (N = 8), IL-1RA (N = 5), and RANK (N = 1). Results revealed an immediate release of inflammatory bone-resorptive mediators, IL-1β and TNF-α, where IL-1β increased as early as 1 min to 1 h reaching peak at 24 h while TNF-α increased at 1 h or 1 day. This was accompanied by a fall in bone-protective mediator (OPG) levels at 1 h and 24 h after orthodontic force application. Continuous forces were accompanied by a decrease in mediator levels after attaining peak levels (most commonly at 24 h) while repeated activations in interrupted force upregulated their secretion. Significant correlations of IL-1β levels with pain intensity, rate of orthodontic tooth movement (OTM) and of activity index (AI) (IL-1β/IL-1RA) with velocity of tooth movement and growth status of individuals have also been deduced. A greater AI and RANKL/OPG ratio was seen in juveniles as compared to adults or non-growers that were associated with faster rate of OTM in juveniles. None of the studies addressed the effect of estrous cycle in female subjects. Lack of homogeneity in several parameters calls for a better controlled research on the biology of OTM.
Collapse
Affiliation(s)
| | - Om Prakash Kharbanda
- Division of Orthodontics and Dentofacial Deformities, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi 110029, India.
| | | | | | | |
Collapse
|
38
|
Rossini G, Parrini S, Castroflorio T, Deregibus A, Debernardi CL. Efficacy of clear aligners in controlling orthodontic tooth movement: a systematic review. Angle Orthod 2014; 85:881-9. [PMID: 25412265 DOI: 10.2319/061614-436.1] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To assess the scientific evidence related to the efficacy of clear aligner treatment (CAT) in controlling orthodontic tooth movement. MATERIALS AND METHODS PubMed, PMC, NLM, Embase, Cochrane Central Register of Controlled Clinical Trials, Web of Knowledge, Scopus, Google Scholar, and LILACs were searched from January 2000 to June 2014 to identify all peer-reviewed articles potentially relevant to the review. Methodological shortcomings were highlighted and the quality of the studies was ranked using the Cochrane Tool for Risk of Bias Assessment. RESULTS Eleven relevant articles were selected (two Randomized Clinical Trials (RCT), five prospective non-randomized, four retrospective non-randomized), and the risk of bias was moderate for six studies and unclear for the others. The amount of mean intrusion reported was 0.72 mm. Extrusion was the most difficult movement to control (30% of accuracy), followed by rotation. Upper molar distalization revealed the highest predictability (88%) when a bodily movement of at least 1.5 mm was prescribed. A decrease of the Little's Index (mandibular arch: 5 mm; maxillary arch: 4 mm) was observed in aligning arches. CONCLUSIONS CAT aligns and levels the arches; it is effective in controlling anterior intrusion but not anterior extrusion; it is effective in controlling posterior buccolingual inclination but not anterior buccolingual inclination; it is effective in controlling upper molar bodily movements of about 1.5 mm; and it is not effective in controlling rotation of rounded teeth in particular. However, the results of this review should be interpreted with caution because of the number, quality, and heterogeneity of the studies.
Collapse
Affiliation(s)
- Gabriele Rossini
- a Resident, Department of Orthodontics, Dental School, University of Turin, Turin, Italy
| | - Simone Parrini
- a Resident, Department of Orthodontics, Dental School, University of Turin, Turin, Italy
| | - Tommaso Castroflorio
- b Visiting Professor, Department of Orthodontics, Dental School, University of Turin, Turin, Italy
| | - Andrea Deregibus
- c Adjunct Professor, Department of Orthodontics, Dental School, University of Turin, Turin, Italy
| | - Cesare L Debernardi
- d Professor and Department Chairman, Department of Orthodontics, Dental School, University of Turin, Turin, Italy
| |
Collapse
|
39
|
Liao C, Hua Y. Effect of hydrogen sulphide on the expression of osteoprotegerin and receptor activator of NF-κB ligand in human periodontal ligament cells induced by tension-force stimulation. Arch Oral Biol 2013; 58:1784-90. [DOI: 10.1016/j.archoralbio.2013.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 07/08/2013] [Accepted: 08/05/2013] [Indexed: 01/03/2023]
|
40
|
Niklas A, Proff P, Gosau M, Römer P. The role of hypoxia in orthodontic tooth movement. Int J Dent 2013; 2013:841840. [PMID: 24228034 PMCID: PMC3818850 DOI: 10.1155/2013/841840] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/16/2013] [Indexed: 12/12/2022] Open
Abstract
Orthodontic forces are known to have various effects on the alveolar process, such as cell deformation, inflammation, and circulatory disturbances. Each of these conditions affecting cell differentiation, cell repair, and cell migration, is driven by numerous molecular and inflammatory mediators. As a result, bone remodeling is induced, facilitating orthodontic tooth movement. However, orthodontic forces not only have cellular effects but also induce vascular changes. Orthodontic forces are known to occlude periodontal ligament vessels on the pressure side of the dental root, decreasing the blood perfusion of the tissue. This condition is accompanied by hypoxia, which is known to either affect cell proliferation or induce apoptosis, depending on the oxygen gradient. Because upregulated tissue proliferation rates are often accompanied by angiogenesis, hypoxia may be assumed to fundamentally contribute to bone remodeling processes during orthodontic treatment.
Collapse
Affiliation(s)
- A. Niklas
- Department of Orthodontics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - P. Proff
- Department of Orthodontics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - M. Gosau
- Department of Orthodontics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - P. Römer
- Department of Orthodontics, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
41
|
The adaptive nature of the bone-periodontal ligament-cementum complex in a ligature-induced periodontitis rat model. BIOMED RESEARCH INTERNATIONAL 2013; 2013:876316. [PMID: 23936854 PMCID: PMC3713652 DOI: 10.1155/2013/876316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/18/2013] [Accepted: 03/24/2013] [Indexed: 01/12/2023]
Abstract
The novel aspect of this study involves illustrating significant adaptation of a functionally loaded bone-PDL-cementum complex in a ligature-induced periodontitis rat model. Following 4, 8, and 15 days of ligation, proinflammatory cytokines (TNF-α and RANKL), a mineral resorption indicator (TRAP), and a cell migration and adhesion molecule for tissue regeneration (fibronectin) within the complex were localized and correlated with changes in PDL-space (functional space). At 4 days of ligation, the functional space of the distal complex was widened compared to controls and was positively correlated with an increased expression of TNF-α. At 8 and 15 days, the number of RANKL(+) cells decreased near the mesial alveolar bone crest (ABC) but increased at the distal ABC. TRAP(+) cells on both sides of the complex significantly increased at 8 days. A gradual change in fibronectin expression from the distal PDL-secondary cementum interfaces through precementum layers was observed when compared to increased and abrupt changes at the mesial PDL-cementum and PDL-bone interfaces in ligated and control groups. Based on our results, we hypothesize that compromised strain fields can be created in a diseased periodontium, which in response to prolonged function can significantly alter the original bone and apical cementum formations.
Collapse
|
42
|
Ito M, Arakawa T, Okayama M, Shitara A, Mizoguchi I, Takuma T. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells. ACTA ACUST UNITED AC 2013; 5:266-74. [PMID: 23798356 DOI: 10.1111/jicd.12049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/23/2013] [Indexed: 01/24/2023]
Abstract
AIM The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. METHODS Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. RESULTS Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. CONCLUSION Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement.
Collapse
Affiliation(s)
- Mai Ito
- Department of Biochemistry, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan; Department of Orthodontics, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|
43
|
WU LIZHENG, DUAN DUOMO, LIU YINGFENG, GE XIN, ZHOU ZHIFEI, WANG XIAOJING. Nicotine favors osteoclastogenesis in human periodontal ligament cells co-cultured with CD4+ T cells by upregulating IL-1β. Int J Mol Med 2013; 31:938-42. [DOI: 10.3892/ijmm.2013.1259] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/03/2013] [Indexed: 11/06/2022] Open
|
44
|
Andrade I, Taddei SR, Souza PE. Inflammation and Tooth Movement: The Role of Cytokines, Chemokines, and Growth Factors. Semin Orthod 2012. [DOI: 10.1053/j.sodo.2012.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
45
|
Li Y, Li M, Tan L, Huang S, Zhao L, Tang T, Liu J, Zhao Z. Analysis of time-course gene expression profiles of a periodontal ligament tissue model under compression. Arch Oral Biol 2012; 58:511-22. [PMID: 23116693 DOI: 10.1016/j.archoralbio.2012.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 09/29/2012] [Accepted: 10/07/2012] [Indexed: 12/29/2022]
Abstract
OBJECTIVE We recently reported establishment of a periodontal ligament (PDL) tissue model, which may mimic the biological behaviour of human PDL under static compression in orthodontic tooth movement (OTM). In the present study, we aimed at investigating the time-course gene expression profiles of the PDL tissue model under compression. DESIGN The PDL tissue model was established through 3-D-culturing human PDL cells (PDLCs) in a thin sheet of porous poly lactic-co-glycolic acid (PLGA) scaffolds, which was subjected to 25g/cm(2) static compression for 6, 24 and 72h respectively. After that, its gene expression profiles were investigated using microarray assay, followed by signalling pathway and gene ontology (GO) analysis. Real-time RT-PCR verification was done for 15 identified genes of interest. The cell proliferation alteration was detected through EdU labelling. RESULTS (1) Among the genes identified as differentially expressed, there were numerous osteoclastogenesis inducers (including CCL20, COX-1, COX-2, RANKL, PTHrP, IL-11, IL-8, etc.), osteoclastogenesis inhibitors (including IL-1Ra, NOG, OPG, etc.), and other potential bone remodelling regulators (including STC1, CYR61, FOS, etc.). (2) According to analysis of the microarray data, the most significant pathways included Cytokine-cytokine receptor interaction (containing CCL20, RANKL, IL-11, IL-8, etc.), MAPK (containing FGF7, FOS, MAP3K8, JUN, etc.) and Cell cycle (containing CDK1, CCNA2, etc.); the most significant GOs included Cell-cell signalling (containing CCL20, STC1, FGF7, PTHrP, IL-11, IL-8, etc.), Extracellular space (containing CCL20, IL-1Ra, NOG, PTHrP, IL-11, IL-8, etc.) and Microtubule-based movement (containing KIF11, KIF23, etc.). (3) After prolonged compression, cell proliferation was significantly inhibited. CONCLUSION The present findings have expanded our understandings to the roles that PDL plays under static compression in OTM.
Collapse
Affiliation(s)
- Yu Li
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School and Hospital of Stomatology, Sichuan University, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Qing Hong Z, Meng Tao L, Yi Z, Wei L, Ju Xiang S, Li L. The effect of rotative stress on CAII, FAS, FASL, OSCAR, and TRAP gene expression in osteoclasts. J Cell Biochem 2012; 114:388-97. [PMID: 22949349 DOI: 10.1002/jcb.24372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/22/2012] [Indexed: 11/09/2022]
Abstract
This study was designed to explore the effects of rotative stress on carbonic anhydrase II (CAII), TNF receptor superfamily member 6 (FAS), FAS ligand (FASL), osteoclast-associated receptor (OSCAR), and tartrate-resistant acid phosphatase (TRAP) gene expression in osteoclasts. Osteoclasts were induced from RAW264.7 cells cultured in medium containing recombinant murine soluble receptor activator of NF-Kβ ligand (sRANKL). The mRNA and protein expression of CAII, FAS, FASL, OSCAR, and TRAP genes in osteoclasts was detected by RT-PCR and Western blot, respectively, after osteoclasts were loaded at various rotative stress strengths and times. No significant differences in mRNA and protein expression were observed between any of the control groups (P > 0.05). Importantly, rotative stress had a significant effect on the mRNA and protein expression of these genes (P < 0.05). We found a negative relationship between rotative stress strength and prolonged loading time and the expression of FAS/FASL genes in osteoclasts. In addition, there was a positive relationship between rotative stress strength and prolonged loading time and the expression of CAII, OSCAR, or TRAP genes in osteoclasts. Based on these results, rotative stress has a significant effect on CAII, FAS, FASL, OSCAR, and TRAP gene expression in osteoclasts.
Collapse
Affiliation(s)
- Zhang Qing Hong
- Department of Prosthodontics, Stomatology Hospital, College of Medical Sciences, Zhejiang University, No.395 Yan-an Road, Hangzhou 310006, China
| | | | | | | | | | | |
Collapse
|
47
|
Salla JT, Taddei SRDA, Queiroz-Junior CM, Andrade Junior I, Teixeira MM, Silva TA. The effect of IL-1 receptor antagonist on orthodontic tooth movement in mice. Arch Oral Biol 2012; 57:519-24. [DOI: 10.1016/j.archoralbio.2011.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/19/2011] [Accepted: 09/30/2011] [Indexed: 12/30/2022]
|
48
|
Wan Hassan WN, Stephenson PA, Waddington RJ, Sloan AJ. An ex vivo culture model for orthodontically induced root resorption. J Dent 2012; 40:406-15. [PMID: 22342686 DOI: 10.1016/j.jdent.2012.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/30/2012] [Accepted: 02/01/2012] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES Root resorption is a ubiquitous although undesirable sequela to orthodontic treatment. Current methods to investigate the pathophysiology have certain limitations. In pursuit to understand and develop treatment modalities for orthodontically induced root resorption, the ability to manipulate cells within their natural extracellular matrix in a three dimensional organotypic model is invaluable. The study aimed to develop a laboratory-based organotypic model to investigate the effect of orthodontic forces on the periodontium. METHODS Mandibular slices of male Wistar rats were maintained in Trowel-typed cultures at 37°C in 5% carbon dioxide in air for 7 days with test specimens subjected to compressive forces at 50 g and 100g by stainless steel springs. Tissue architecture and cell viability were maintained under culture conditions. RESULTS Osteoclast numbers increased significantly in both test groups whilst odontoclasts increased in the 50 g group. Immunohistochemistry demonstrated increased dentine sialoprotein expression in both test groups, suggesting changes in mineralization-related activity due to mechanical strain. CONCLUSION The study showed initial cellular and molecular changes of key markers that relate to root resorption in response to mechanical loading. CLINICAL SIGNIFICANCE Severe root resorption may occur when forces applied are heavy or transmitted over an extended period and could lead to mobility and tooth loss. This ex vivo model can be used to investigate cellular and molecular processes during orthodontic tooth movement which may advance the clinical management of root resorption.
Collapse
Affiliation(s)
- W N Wan Hassan
- Department of Children's Dentistry and Orthodontics, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
49
|
Pavasant P, Yongchaitrakul T. Role of mechanical stress on the function of periodontal ligament cells. Periodontol 2000 2011; 56:154-65. [PMID: 21501242 DOI: 10.1111/j.1600-0757.2010.00374.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Kook SH, Jang YS, Lee JC. Human periodontal ligament fibroblasts stimulate osteoclastogenesis in response to compression force through TNF-α-mediated activation of CD4+ T cells. J Cell Biochem 2011; 112:2891-901. [DOI: 10.1002/jcb.23205] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|