1
|
Nile M, Folwaczny M, Kessler A, Wichelhaus A, Janjic Rankovic M, Baumert U. Development of a Custom Fluid Flow Chamber for Investigating the Effects of Shear Stress on Periodontal Ligament Cells. Cells 2024; 13:1751. [PMID: 39513858 PMCID: PMC11545369 DOI: 10.3390/cells13211751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The periodontal ligament (PDL) is crucial for maintaining the integrity and functionality of tooth-supporting structures. Mechanical forces applied to the tooth during orthodontic tooth movement generate pore pressure gradients, leading to interstitial fluid movement within the PDL. The generated fluid shear stress (FSS) stimulates the remodeling of PDL and alveolar bone. Herein, we present the construction of a parallel fluid-flow apparatus to determine the effect of FSS on PDL cells. The chamber was designed and optimized using computer-aided and computational fluid dynamics software. The chamber was formed by PDMS using a negative molding technique. hPDLCs from two donors were seeded on microscopic slides and exposed to FSS of 6 dyn/cm2 for 1 h. The effect of FSS on gene and protein expression was determined using RT-qPCR and Western blot. FSS upregulated genes responsible for mechanosensing (FOS), tissue formation (RUNX2, VEGFA), and inflammation (PTGS2/COX2, CXCL8/IL8, IL6) in both donors, with donor 2 showing higher gene upregulation. Protein expression of PTGS2/COX2 was higher in donor 2 but not in donor 1. RUNX2 protein was not expressed in either donor after FSS. In summary, FSS is crucial in regulating gene expression linked to PDL remodeling and inflammation, with donor variability potentially affecting outcomes.
Collapse
Affiliation(s)
- Mustafa Nile
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (A.W.); (M.J.R.)
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (M.F.); (A.K.)
| | - Andreas Kessler
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (M.F.); (A.K.)
- Department of Prosthetic Dentistry, Faculty of Medicine, Center for Dental Medicine, Medical Center-University of Freiburg, University of Freiburg, 79106 Freiburg, Germany
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (A.W.); (M.J.R.)
| | - Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (A.W.); (M.J.R.)
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (A.W.); (M.J.R.)
| |
Collapse
|
2
|
Qu F, Zhang YF, Wang YY, Cao XM, Shen YY, Wu ZA, Wu YQ, Xu C. Cyclic stretch-induced exosomes from periodontal ligament cells promote osteoblasts osteogenic differentiation via the miR-181d-5p/TNF signaling pathway. Arch Oral Biol 2024; 157:105843. [PMID: 37939516 DOI: 10.1016/j.archoralbio.2023.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVE To investigate the effects of cyclic stretch-induced periodontal ligament cell (PDLC) exosomes on osteoblast differentiation, and to explore their regulatory role in mechanical force-related periodontal tissue remodeling. DESIGN After applying 20 % cyclic stretch loading to PDLCs, exosomes were extracted from the supernatant and co-cultured with osteoblasts to detect their effects on osteogenic differentiation. Meanwhile, the exosomes were sequenced by high-throughput microRNA sequencing for bioinformatic analysis and validation to explore exosome signaling pathways through miRNAs. RESULTS Cyclic stretch-induced PDLC exosomes could be taken up by osteoblasts and promoted osteogenic differentiation of osteoblasts, as demonstrated by the increased expression levels of osteogenesis-related factors and enhanced alkaline phosphatase (Alp) staining. Among the differentially expressed miRNAs between exosomes from cyclic stretch group and control group, miRNA-181d-5p was up-regulated significantly. The expression levels of osteogenesis-related factors and Alp staining were also increased in osteoblasts transfected with miR-181d-5p, and this effect might be related to the inhibitory role of exosomal miR-181d-5p on tumor necrosis factor (TNF). CONCLUSIONS Cyclic stretch-induced PDLC exosomes exhibited a promoting effect on osteogenic differentiation, which might result from the inhibition of TNF via exosomal miR-181d-5p.
Collapse
Affiliation(s)
- Fang Qu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Yi-Fan Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Ying-Ying Wang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Xi-Meng Cao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Ying-Yi Shen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Zi-Ang Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Ya-Qin Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.
| | - Chun Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.
| |
Collapse
|
3
|
Mishra A, Kai R, Atkuru S, Dai Y, Piccinini F, Preshaw PM, Sriram G. Fluid flow-induced modulation of viability and osteodifferentiation of periodontal ligament stem cell spheroids-on-chip. Biomater Sci 2023; 11:7432-7444. [PMID: 37819086 DOI: 10.1039/d3bm01011b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Developing physiologically relevant in vitro models for studying periodontitis is crucial for understanding its pathogenesis and developing effective therapeutic strategies. In this study, we aimed to integrate the spheroid culture of periodontal ligament stem cells (PDLSCs) within a spheroid-on-chip microfluidic perfusion platform and to investigate the influence of interstitial fluid flow on morphogenesis, cellular viability, and osteogenic differentiation of PDLSC spheroids. PDLSC spheroids were seeded onto the spheroid-on-chip microfluidic device and cultured under static and flow conditions. Computational analysis demonstrated the translation of fluid flow rates of 1.2 μl min-1 (low-flow) and 7.2 μl min-1 (high-flow) to maximum fluid shear stress of 59 μPa and 360 μPa for low and high-flow conditions, respectively. The spheroid-on-chip microfluidic perfusion platform allowed for modulation of flow conditions leading to larger PDLSC spheroids with improved cellular viability under flow compared to static conditions. Modulation of fluid flow enhanced the osteodifferentiation potential of PDLSC spheroids, demonstrated by significantly enhanced alizarin red staining and alkaline phosphatase expression. Additionally, flow conditions, especially high-flow conditions, exhibited extensive calcium staining across both peripheral and central regions of the spheroids, in contrast to the predominantly peripheral staining observed under static conditions. These findings highlight the importance of fluid flow in shaping the morphological and functional properties of PDLSC spheroids. This work paves the way for future investigations exploring the interactions between PDLSC spheroids, microbial pathogens, and biomaterials within a controlled fluidic environment, offering insights for the development of innovative periodontal therapies, tissue engineering strategies, and regenerative approaches.
Collapse
Affiliation(s)
- Apurva Mishra
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Ren Kai
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Srividya Atkuru
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Yichen Dai
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Filippo Piccinini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore.
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
| |
Collapse
|
4
|
Manokawinchoke J, Chareonvit S, Trachoo V, Limraksasin P, Egusa H, Osathanon T. Intermittent compressive force regulates dentin matrix protein 1 expression in human periodontal ligament stem cells. J Dent Sci 2023; 18:105-111. [PMID: 36643268 PMCID: PMC9831825 DOI: 10.1016/j.jds.2022.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/04/2022] [Indexed: 01/18/2023] Open
Abstract
Background/purpose Mechanical force differentially regulates periodontal ligament functions depending on types, magnitudes, and duration of stimulation. Intermittent compressive force (ICF) promotes an in vitro mineralization in human periodontal ligament cells. The present study investigated the effect of ICF on dentin matrix protein-1 (DMP1) expression in human periodontal ligament stem cells (hPDLSCs). Materials and methods Cells were treated with ICF in a serum-free culture medium for 24 h The mRNA and protein expression were examined using real-time polymerase chain reaction, immunofluorescence staining and Western blot analysis, respectively. Results The exposure to ICF in a serum-free condition significantly induced DMP1 expression in both mRNA and protein levels. The effect of ICF-induced DMP1 expression was inhibited by pretreatment with cycloheximide, indicating the requirement of the intermediated molecule(s). Pretreatment with transforming growth factor β (TGF-β) receptor inhibitor (SB431542) or neutralized antibody against TGF-β1 prior to ICF application abolished the effect of ICF-induced DMP1 expression. Further, recombinant TGF-β1 treatment stimulated DMP1 expression. Conclusion The present study illustrated that ICF induces DMP1 expression in hPDLSCs via the regulation of TGF-β signaling pathway.
Collapse
Affiliation(s)
- Jeeranan Manokawinchoke
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Suconta Chareonvit
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorapat Trachoo
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Phoonsuk Limraksasin
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand,Corresponding author. Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
5
|
Li Y, Jacox LA, Coats S, Kwon J, Xue P, Tang N, Rui Z, Wang X, Kim YI, Wu TJ, Lee YT, Wong SW, Chien CH, Cheng CW, Gross R, Lin FC, Tseng H, Martinez J, Ko CC. Roles of autophagy in orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2021; 159:582-593. [PMID: 33771430 PMCID: PMC10911631 DOI: 10.1016/j.ajodo.2020.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Orthodontic tooth movement (OTM) relies on efficient remodeling of alveolar bone. While a well-controlled inflammatory response is essential during OTM, the mechanism regulating inflammation is unknown. Autophagy, a conserved catabolic pathway, has been shown to protect cells from excess inflammation in disease states. We hypothesize that autophagy plays a role in regulating inflammation during OTM. METHODS A split-mouth design was used to force load molars in adult male mice, carrying a GFP-LC3 transgene for in vivo detection of autophagy. Confocal microscopy, Western blot, and quantitative polymerase chain reaction analyses were used to evaluate autophagy activation in tissues of loaded and control molars at time points after force application. Rapamycin, a Food and Drug Administration-approved immunosuppressant, was injected to evaluate induction of autophagy. RESULTS Autophagy activity increases shortly after loading, primarily on the compression side of the tooth, and is closely associated with inflammatory cytokine expression and osteoclast recruitment. Daily administration of rapamycin, an autophagy activator, led to reduced tooth movement and osteoclast recruitment, suggesting that autophagy downregulates the inflammatory response and bone turnover during OTM. CONCLUSIONS This is the first demonstration that shows that autophagy is induced by orthodontic loading and plays a role during OTM, likely via negative regulation of inflammatory response and bone turnover. Exploring roles of autophagy in OTM holds great promise, as aberrant autophagy is associated with periodontal disease and its related systemic inflammatory disorders.
Collapse
Affiliation(s)
- Yina Li
- Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, Nc
| | - Laura Anne Jacox
- Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, Nc
| | - Shannon Coats
- Duke University Medical Center Greenspace, Durham, Nc
| | - Jane Kwon
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, Nc
| | - Peng Xue
- Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, Nc
| | - Na Tang
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, Nc Department of Oral Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zou Rui
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, Nc Department of Orthodontics, Stomatological Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoyu Wang
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, Nc Department of Dentistry, Beijing Tiantan Hospital, Capital Medical University, Beijing, Beijing, China
| | - Yong-Il Kim
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, Nc Department of Orthodontics, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Te Ju Wu
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, Nc Department of Orthodontics, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yan-Ting Lee
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, Nc
| | - Sing Wai Wong
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, Nc
| | - Chia Hui Chien
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, Nc Division of Prosthodontics, Department of Dentistry, Tainan, Taiwan
| | - Chih-Wen Cheng
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, Nc Division of Prosthodontics, Department of Dentistry, Tainan, Taiwan
| | - Ryan Gross
- Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, Nc
| | - Feng-Chang Lin
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Nc
| | - Henry Tseng
- Duke University Medical Center Greenspace and Glaucoma Division, Duke Eye Center, Durham, Nc
| | - Jennifer Martinez
- National Institutes of Health, Bethesda, Ma National Institute of Environmental Health Sciences, Research Triangle Park, Durham, Nc
| | - Ching-Chang Ko
- Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, Nc.
| |
Collapse
|
6
|
Negishi Y, Shima Y, Takeshita T, Morita R. Harmful and beneficial effects of inflammatory response on reproduction: sterile and pathogen-associated inflammation. Immunol Med 2020; 44:98-115. [PMID: 32838688 DOI: 10.1080/25785826.2020.1809951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In reproduction, inflammatory processes play important roles in the development of many pregnancy complications such as preterm labor/birth, recurrent pregnancy loss, recurrent implantation failure, and preeclampsia. Inflammation can be initiated by both microbial and non-microbial causes. Bacterial infection in the feto-maternal interface and uterus can provoke preterm labor/birth, miscarriage, and chronic endometritis. By contrast, inflammation without infection, or 'sterile inflammation,' can also lead to many kinds of complications, such as preterm labor/birth, miscarriage, or preeclampsia. Aberrant inflammation is facilitated by immune cells such as macrophages, dendritic cells, natural killer cells, and invariant natural killer T cells. In addition, cytokines, chemokines, and several kinds of inflammatory mediators are involved. On the other hand, appropriate inflammation is required for a successful offspring during the progression of the entire pregnancy. Herein, we discuss the relation between pregnancy and inflammation with immunological alterations. Understanding the role of inflammation in complications during pregnancy may establish new perspectives of the progress of normal pregnancy as well as treatments during pregnancy complications.
Collapse
Affiliation(s)
- Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan.,Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | - Yoshio Shima
- Department of Pediatrics, Nippon Medical School Musashikosugi Hospital, Kanagawa, Japan
| | - Toshiyuki Takeshita
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
7
|
Spitz A, Christovam IO, Marañón-Vásquez GA, Masterson DF, Adesse D, Maia LC, Bolognese AM. Global gene expression profile of periodontal ligament cells submitted to mechanical loading: A systematic review. Arch Oral Biol 2020; 118:104884. [PMID: 32877888 DOI: 10.1016/j.archoralbio.2020.104884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate the evidence reporting gene expression array data of human in vitro cultured periodontal ligament cells (PDLCs) submitted to static mechanical loading compared to a control group. DESIGN Systematic searches were performed in MEDLINE/PubMed, Scopus, Web of Science, Virtual Health Library, The Cochrane Library and the System for Information on Grey Literature in Europe up to June 2019. A narrative synthesis was performed to summarize differentially expressed genes (DEGs). These were grouped according to the culture method (2D or 3D), force type (compression or tension) and observation time. Additionally, gene ontology (GO) analysis was performed using the Database for Annotation Visualization and Integrated Discovery. The risk of bias (RoB) and certainty of evidence (CoE) were assessed using a modified CONSORT checklist and the GRADE tool, respectively. RESULTS Of eight studies included (all rated as having moderate RoB), only two provided the complete list of DEGs and four studies performed GO, gene network or pathways analysis. "Cell proliferation", "cell-cell signaling", "response to hypoxia and to mechanical stimulus" were among the significantly enriched biological processes in 3D-cultured compressed PDLCs (moderate CoE); while "collagen catabolic process", "extracellular matrix organization" and "cell proliferation" were associated with DEGs of 3D-cultured PDLCs submitted to tension (very low CoE). Biological processes significantly enriched in 2D-cultured PDLCs under compression were "extracellular matrix organization", "canonical glycolysis" and "glycolytic process" (very low CoE). CONCLUSION Genes such as NR4A2, NR4A3, NAMPT, PGK1, and REDD1 are suggested as novel biomarkers for orthodontic tooth movement. Limited amount of evidence on the complete gene expression profile and the high heterogeneity in methodologies make it impossible to obtain definite conclusions. New studies following standardized and well-designed in vitro model and reporting complete gene expression datasets are needed.
Collapse
Affiliation(s)
- Alice Spitz
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rua. Prof. Rodolpho Paulo Rocco, 325 - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil.
| | - Ilana Oliveira Christovam
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rua. Prof. Rodolpho Paulo Rocco, 325 - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil.
| | - Guido Artemio Marañón-Vásquez
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rua. Prof. Rodolpho Paulo Rocco, 325 - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil.
| | - Daniele Ferreira Masterson
- Central Library of the Health Science Center, Federal University of Rio de Janeiro, Brazil Avenida Carlos Chagas Filho, Bl L, 373 - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-90, Brazil.
| | - Daniel Adesse
- Laboratory of Structural Biology, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil.
| | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rua. Prof. Rodolpho Paulo Rocco, 325 - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil.
| | - Ana Maria Bolognese
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rua. Prof. Rodolpho Paulo Rocco, 325 - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil.
| |
Collapse
|
8
|
Zhuang J, Wang Y, Qu F, Wu Y, Zhao D, Xu C. Gasdermin-d Played a Critical Role in the Cyclic Stretch-Induced Inflammatory Reaction in Human Periodontal Ligament Cells. Inflammation 2019; 42:548-558. [PMID: 30392072 DOI: 10.1007/s10753-018-0912-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It has been shown that cyclic stretch could induce inflammatory response such as pyroptosis and the release of IL-1β in human periodontal ligament cells, through activating inflammasome and related caspases. Though gasdermin-d (GSDMD) has been reported to be present in some inflammatory diseases and function as a crucial executioner of pyroptosis, the role of GSDMD in the stretch-induced inflammatory response in human periodontal ligament cells (HPDLCs) has not been well clarified. In this study, it was found that GSDMD was activated by cyclic stretch, and its activation affected the pyroptotic rate in HPDLCs, leading to the maturation and secretion of IL-1β and IL-18 ultimately. In addition, GSDMD was found to be regulated by caspase-1 directly. Nevertheless, the exact relationship between inflammasomes and GSDMD in the stretch-induced inflammatory response still needs to be further elucidated.
Collapse
Affiliation(s)
- Jiabao Zhuang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yingying Wang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Fang Qu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yaqin Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Dan Zhao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chun Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China. .,National Clinical Research Center for Oral Diseases, Shanghai, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
9
|
Expression of biological mediators during orthodontic tooth movement: A systematic review. Arch Oral Biol 2018; 95:170-186. [PMID: 30130671 DOI: 10.1016/j.archoralbio.2018.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/09/2022]
Abstract
OBJECTIVES The aim of the present systematic review was to offer a timeline of the events taking place during orthodontic tooth movement(OTM). MATERIALS AND METHODS Electronic databases PubMed, Web of Science and EMBASE were searched up to November 2017. All studies describing the expression of signaling proteins in the periodontal ligament(PDL) of teeth subjected to OTM or describing the expression of signaling proteins in human cells of the periodontal structures subjected to static mechanical loading were considered eligible for inclusion for respectively the in-vivo or the in-vitro part. Risk of bias assessment was conducted according to the validated SYRCLE's RoB tool for animal studies and guideline for assessing quality of in-vitro studies for in-vitro studies. RESULTS We retrieved 7583 articles in the initial electronic search, from which 79 and 51 were finally analyzed. From the 139 protein investigated, only the inflammatory proteins interleukin(IL)-1β, cyclooxygenase(COX)-2 and prostaglandin(PG)-E2, osteoblast markers osteocalcin and runt-related transcription factor(RUNX)2, receptor activator of nuclear factor kappa-B ligand(RANKL) and osteoprotegerin(OPG) and extracellular signal-regulated kinases(ERK)1/2 are investigated in 10 or more studies. CONCLUSION The investigated proteins were presented in a theoretical model of OTM. We can conclude that the cell activation and differentiation and recruitment of osteoclasts is mediated by osteocytes, osteoblasts and PDL cells, but that the osteogenic differentiation is only seen in stem cell present in the PDL. In addition, the recently discovered Ephrin/Ephs seem to play an role parallel with the thoroughly investigated RANKL/OPG system in mediating bone resorption during OTM.
Collapse
|
10
|
Zhao D, Wu Y, Zhuang J, Xu C, Zhang F. Activation of NLRP1 and NLRP3 inflammasomes contributed to cyclic stretch-induced pyroptosis and release of IL-1β in human periodontal ligament cells. Oncotarget 2018; 7:68292-68302. [PMID: 27626170 PMCID: PMC5356555 DOI: 10.18632/oncotarget.11944] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
Abstract
Inflammasomes have been reported to be present in periodontal inflammatory tissue, but the exact role of inflammasomes in periodontal inflammatory reactions especially those related to mechanical stimulations has not been clarified. In this study, it was shown that cyclic stretch activated the nucleotide-binding oligomerization domain-like receptor containing pyrin domain 1 and 3 (NLRP1 and NLRP3) inflammasomes and induced the release of IL-1β and pyroptosis via a caspase-1-related mechanism in human periodontal ligament cells (HPDLCs). This study firstly demonstrated that activation of NLRP inflammasomes contributed to the stretch-induced inflammatory response in HPDLCs. As inflammasomes have been reported to be involved in both programmed cell death and inflammation, further studies are required to elucidate the exact roles and signaling pathway of inflammasomes in stretch-induced periodontal inflammation.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yaqin Wu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiabao Zhuang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chun Xu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Fuqiang Zhang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
11
|
Lima ILDA, Silva JMD, Rodrigues LFD, Madureira DF, Fonseca AC, Garlet GP, Teixeira MM, Russo RC, Fukada SY, Silva TAD. Contribution of atypical chemokine receptor 2/ackr2 in bone remodeling. Bone 2017; 101:113-122. [PMID: 28476575 DOI: 10.1016/j.bone.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Bone remodeling is a tightly regulated process influenced by chemokines. ACKR2 is a decoy receptor for CC chemokines functioning as regulator of inflammatory response. In this study we investigated whether the absence of ACKR2 would affect bone phenotype and remodeling induced by mechanical loading. METHODS An orthodontic appliance was placed between incisors and first molar of ACKR2 deficient (ACKR2-/-) and C57BL6/J (wild-type/WT) mice. Microtomography, histology and qPCR were performed to evaluate bone parameters, orthodontic tooth movement (OTM), bone cells counts and the expression of ACKR2, bone remodeling markers, CC chemokines and chemokines receptors. Bone marrow cells (BMC) from WT and ACKR2-/- mice were differentiated in osteoclasts and osteoblasts for analysis of activity and expression of specific markers. RESULTS Mechanical stimulus induced ACKR2 production in periodontium. The expression of ACKR2 in vitro was mostly detected in mature osteoclasts and early-differentiated osteoblasts. Although ACKR2-/- mice exhibited regular phenotype in maxillary bone, the amount of OTM, osteoclasts counts and the expression of pro-resorptive markers were increased in this group. In contrast, the number of osteoblasts and related markers were decreased. OTM resulted in augmented expression of CC chemokines and receptors CCR5 and CCR1 in periodontium, which was higher in ACKR2-/- than WT mice. In vitro experiments demonstrated an augmented formation of osteoclasts and diminished differentiation of osteoblasts in ACKR2-/- mice. CONCLUSIONS These data suggests that ACKR2 functions as a regulator of mechanically-induced bone remodeling by affecting the differentiation and activity of bone cells and the availability of CC chemokines at periodontal microenvironment. Therapeutic strategies based on increase of ACKR2 might be useful to hinder bone loss in inflammatory conditions.
Collapse
Affiliation(s)
- Izabella Lucas de Abreu Lima
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, ICB/UFMG, Avenida Presidente Antônio Carlos 6627, 31.270-9010 Belo Horizonte, MG, Brazil
| | - Janine Mayra da Silva
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, ICB/UFMG, Avenida Presidente Antônio Carlos 6627, 31.270-9010 Belo Horizonte, MG, Brazil
| | - Letícia Fernanda Duffles Rodrigues
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos 6627, 31.270-9010 Belo Horizonte, MG, Brazil
| | - Davidson Frois Madureira
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, ICB/UFMG, Avenida Presidente Antônio Carlos 6627, 31.270-9010 Belo Horizonte, MG, Brazil
| | - Angélica Cristina Fonseca
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University, FOB/USP, Al. Octávio Pinheiro Brisola 9-75, CEP 17012-901 Bauru, SP, Brazil
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University, FOB/USP, Al. Octávio Pinheiro Brisola 9-75, CEP 17012-901 Bauru, SP, Brazil.
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, ICB/UFMG, Avenida Presidente Antônio Carlos 6627, 31.270-9010 Belo Horizonte, MG, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, ICB/UFMG, Avenida Presidente Antônio Carlos 6627, 31.270-9010 Belo Horizonte, MG, Brazil
| | - Sandra Yasuyo Fukada
- Department of Physics and Chemistry, Faculty of Pharmaceutical Science of Ribeirão Preto, São Paulo University, Avenida do Café, s/n, Cidade Universitária, 14040-903 Ribeirao Preto, SP, Brazil.
| | - Tarcília Aparecida da Silva
- Department of Oral Pathology and Surgery, Faculty of Dentistry, Federal University of Minas Gerais, ICB/UFMG, Avenida Presidente Antônio Carlos 6627, 31.270-9010 Belo Horizonte, MG, Brazil.
| |
Collapse
|
12
|
Barcia JM, Portolés S, Portolés L, Urdaneta AC, Ausina V, Pérez-Pastor GMA, Romero FJ, Villar VM. Does Oxidative Stress Induced by Alcohol Consumption Affect Orthodontic Treatment Outcome? Front Physiol 2017; 8:22. [PMID: 28179886 PMCID: PMC5263147 DOI: 10.3389/fphys.2017.00022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
HIGHLIGHTS Ethanol, Periodontal ligament, Extracellular matrix, Orthodontic movement. Alcohol is a legal drug present in several drinks commonly used worldwide (chemically known as ethyl alcohol or ethanol). Alcohol consumption is associated with several disease conditions, ranging from mental disorders to organic alterations. One of the most deleterious effects of ethanol metabolism is related to oxidative stress. This promotes cellular alterations associated with inflammatory processes that eventually lead to cell death or cell cycle arrest, among others. Alcohol intake leads to bone destruction and modifies the expression of interleukins, metalloproteinases and other pro-inflammatory signals involving GSKβ, Rho, and ERK pathways. Orthodontic treatment implicates mechanical forces on teeth. Interestingly, the extra- and intra-cellular responses of periodontal cells to mechanical movement show a suggestive similarity with the effects induced by ethanol metabolism on bone and other cell types. Several clinical traits such as age, presence of systemic diseases or pharmacological treatments, are taken into account when planning orthodontic treatments. However, little is known about the potential role of the oxidative conditions induced by ethanol intake as a possible setback for orthodontic treatment in adults.
Collapse
Affiliation(s)
- Jorge M. Barcia
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Sandra Portolés
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Laura Portolés
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Alba C. Urdaneta
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Verónica Ausina
- Facultad de Ciencias de la Salud, Universidad Europea de ValenciaValencia, Spain
| | - Gema M. A. Pérez-Pastor
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Francisco J. Romero
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
- Facultad de Ciencias de la Salud, Universidad Europea de ValenciaValencia, Spain
| | - Vincent M. Villar
- Department of Biomedical Sciences, Universidad Cardenal Herrera, CEUMoncada, Spain
| |
Collapse
|
13
|
Zheng L, Chen L, Chen Y, Gui J, Li Q, Huang Y, Liu M, Jia X, Song W, Ji J, Gong X, Shi R, Fan Y. The effects of fluid shear stress on proliferation and osteogenesis of human periodontal ligament cells. J Biomech 2016; 49:572-9. [PMID: 26892895 DOI: 10.1016/j.jbiomech.2016.01.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 01/08/2016] [Accepted: 01/28/2016] [Indexed: 01/26/2023]
Abstract
Shear stress is one of the main stress type produced by speech, mastication or tooth movement. The mechano-response of human periodontal ligament (PDL) cells by shear stress and the mechanism are largely unknown. In our study, we investigated the effects of fluid shear stress on proliferation, migration and osteogenic potential of human PDL cells. 6dyn/cm(2) of fluid shear stress was produced in a parallel plate flow chamber. Our results demonstrated that fluid shear stress rearranged the orientation of human PDL cells. In addition, fluid shear stress inhibited human PDL cell proliferation and migration, but increased the osteogenic potential and expression of several growth factors and cytokines. Our study suggested that shear stress is involved in homeostasis regulation in human PDL cells. Inhibiting proliferation and migration potentially induce PDL cells to respond to mechanical stimuli in order to undergo osteogenic differentiation.
Collapse
Affiliation(s)
- Lisha Zheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Luoping Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yuchao Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jinpeng Gui
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qing Li
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, 100081, China
| | - Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Meili Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaolin Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wei Song
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jing Ji
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xianghui Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ruoshi Shi
- University Health Network, Ontario Cancer Institute/Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; National Research Center for Rehabilitation Technical Aids, Beijing 100176, China.
| |
Collapse
|
14
|
Maeda A, Bandow K, Kusuyama J, Kakimoto K, Ohnishi T, Miyawaki S, Matsuguchi T. Induction of CXCL2 and CCL2 by pressure force requires IL-1β-MyD88 axis in osteoblasts. Bone 2015; 74:76-82. [PMID: 25603464 DOI: 10.1016/j.bone.2015.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 11/17/2022]
Abstract
Mechanical stresses including pressure force induce chemokine expressions in osteoblasts resulting in inflammatory reactions and bone remodeling. However, it has not been well elucidated how mechanical stresses induce inflammatory chemokine expressions in osteoblasts. IL-1β has been identified as an important pathogenic factor in bone loss diseases, such as inflammatory arthritis and periodontitis. Myeloid differentiation factor 88 (MyD88) is an essential downstream adaptor molecule of IL-1 receptor signaling. This study was to examine the gene expression profiles of inflammatory chemokines and the role of MyD88 in osteoblasts stimulated by pressure force. Pressure force (10g/cm(2)) induced significant mRNA increases of CXCL2, CCL2, and CCL5, as well as prompt phosphorylation of MAP kinases (ERK, p38 and JNK), in wild-type primary osteoblasts. The CXCL2 and CCL2 mRNA increases and MAP kinase phosphorylation were severely impaired in MyD88(-/-) osteoblasts. Constitutive low-level expression of IL-1β mRNA was similarly observed in both wild-type and MyD88(-/-) osteoblasts, which was not altered by pressure force stimulation. Notably, neutralization of IL-1β with a specific antibody significantly impaired pressure force-induced mRNA increases of CXCL2 and CCL2, as well as MAP kinase phosphorylation, in wild-type osteoblasts. Furthermore, pre-treatment with recombinant IL-1β significantly enhanced MAP kinase phosphorylation and mRNA increases of CXCL2 and CCL2 by pressure force in wild-type but not MyD88(-/-) osteoblasts. These results have suggested that the activation of MyD88 pathway by constitutive low-level IL-1β expression is essential for pressure force-induced CXCL2 and CCL2 expression in osteoblasts. Thus MyD88 signal in osteoblasts may be required for bone resorption by pressure force through chemokine induction.
Collapse
Affiliation(s)
- Aya Maeda
- Department of Orthodontics, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kenjiro Bandow
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kyoko Kakimoto
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Shouichi Miyawaki
- Department of Orthodontics, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| |
Collapse
|
15
|
Yang L, Yang Y, Wang S, Li Y, Zhao Z. In vitro mechanical loading models for periodontal ligament cells: From two-dimensional to three-dimensional models. Arch Oral Biol 2015; 60:416-24. [DOI: 10.1016/j.archoralbio.2014.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 02/08/2023]
|
16
|
Son GY, Yang YM, Park WS, Chang I, Shin DM. Hypotonic stress induces RANKL via transient receptor potential melastatin 3 (TRPM3) and vaniloid 4 (TRPV4) in human PDL cells. J Dent Res 2015; 94:473-81. [PMID: 25595364 DOI: 10.1177/0022034514567196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bone remodeling occurs in response to various types of mechanical stress. The periodontal ligament (PDL) plays an important role in mechanical stress-mediated alveolar bone remodeling. However, the underlying mechanism at the cellular level has not been extensively studied. In this study, we investigated the effect of shear stress on the expression of bone remodeling factors, including receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL) and osteoprotegerin (OPG), as well as its upstream signaling pathway in primary human PDL cells. We applied hypotonic stress to reproduce shear stress to PDL cells. Hypotonic stress induced the messenger RNA (mRNA) and protein expression of RANKL but not OPG. It also increased intracellular Ca(2+) concentration ([Ca(2+)]i). Extracellular Ca(2+) depletion and nonspecific plasma membrane Ca(2+) channel blockers completely inhibited the increase in both [Ca(2+)]i and RANKL mRNA expression. We identified the expression and activation of transient receptor potential melastatin 3 (TRPM3) and vaniloid 4 (TRPV4) channels in PDL cells. Pregnenolone sulfate (PS) and 4α-phorbol 12, 13-didecanoate (4α-PDD), which are agonists of TRPM3 and TRPV4, augmented Ca(2+) influx and RANKL mRNA expression. Both pharmacological (2-aminoethoxydiphenyl borate [2-APB], ruthenium red [RR], ononetin [Ono], and HC 067047 [HC]) and genetic (small interfering RNA [siRNA]) inhibitors of TRPM3 and TRPV4 reduced the hypotonic stress-mediated increase in [Ca(2+)]i and RANKL mRNA expression. Our study shows that hypotonic stress induced RANKL mRNA expression via TRPM3- and TRPV4-mediated extracellular Ca(2+) influx and RANKL expression. This signaling pathway in PDL cells may play a critical role in mechanical stress-mediated alveolar bone remodeling.
Collapse
Affiliation(s)
- G Y Son
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Y M Yang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - W S Park
- Department of Advanced General Dentistry, Yonsei University College of Dentistry, Seoul, Korea
| | - I Chang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - D M Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
17
|
Meeran NA. Biological response at the cellular level within the periodontal ligament on application of orthodontic force - An update. J Orthod Sci 2014; 1:2-10. [PMID: 24987618 PMCID: PMC4072349 DOI: 10.4103/2278-0203.94769] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Orthodontic force elicits a biological response in the tissues surrounding the teeth, resulting in remodeling of the periodontal ligament and the alveolar bone. The force-induced tissue strain result in reorganization of both cellular and extracellular matrix, besides producing changes in the local vascularity. This in turn leads to the synthesis and release of various neurotransmitters, arachidonic acid, growth factors, metabolites, cytokines, colony-stimulating factors, and enzymes like cathepsin K, matrix metalloproteinases, and aspartate aminotransferase. Despite the availability of many studies in the orthodontic and related scientific literature, a concise integration of all data is still lacking. Such a consolidation of the rapidly accumulating scientific information should help in understanding the biological processes that underlie the phenomenon of tooth movement in response to mechanical loading. Therefore, the aim of this review was to describe the biological processes taking place at the molecular level on application of orthodontic force and to provide an update of the current literature.
Collapse
Affiliation(s)
- Nazeer Ahmed Meeran
- Departments of Orthodontics and Dentofacial Orthopedics, Priyadarshini Dental College and Hospital, Tamil Nadu, India
| |
Collapse
|
18
|
Ito M, Arakawa T, Okayama M, Shitara A, Mizoguchi I, Takuma T. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells. ACTA ACUST UNITED AC 2013; 5:266-74. [PMID: 23798356 DOI: 10.1111/jicd.12049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/23/2013] [Indexed: 01/24/2023]
Abstract
AIM The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. METHODS Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. RESULTS Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. CONCLUSION Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement.
Collapse
Affiliation(s)
- Mai Ito
- Department of Biochemistry, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan; Department of Orthodontics, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Nishigaki M, Yamamoto T, Ichioka H, Honjo KI, Yamamoto K, Oseko F, Kita M, Mazda O, Kanamura N. β-cryptoxanthin regulates bone resorption related-cytokine production in human periodontal ligament cells. Arch Oral Biol 2013; 58:880-6. [PMID: 23452546 DOI: 10.1016/j.archoralbio.2013.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE β-cryptoxanthin (β-cry) is a type of carotenoid found in certain fruits and vegetables. Although it has been shown that β-cry inhibits alveolar bone resorption, the molecular mechanisms for this have not yet been clarified. In the present study, we investigated the effects of β-cry on bone resorption related-cytokine production in human periodontal ligament (hPDL) cells. DESIGN hPDL cells were stimulated with β-cry (1×10(-7)mol/l), mechanical stress (1 or 6MPa), and P. gingivalis. The production of interleukin (IL)-1β, IL-6, IL-8, tumour necrosis factor (TNF)-α, osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B ligand (RANKL) were analyzed by RT-PCR and ELISA. RESULTS The production of IL-1β, IL-6, IL-8, and TNF-α was not induced in hPDL cells after stimulation with β-cry, although these cytokines were produced after stimulation with P. gingivalis. On the other hand, IL-6 and IL-8 were produced after exposure to 6MPa of mechanical stress. The production of IL-6 and IL-8 was significantly decreased by the addition of β-cry. Furthermore, β-cry up-regulated the production of OPG, but not RANKL. CONCLUSION β-cry inhibited the production of IL-6 and IL-8 induced by mechanical stress and periodontopathogenic bacteria in hPDL cells. Moreover, β-cry up-regulated OPG production. These results suggest that β-cry may prevent bone resorption in periodontitis.
Collapse
Affiliation(s)
- Masaru Nishigaki
- Department of Dental Medicine, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Grant M, Wilson J, Rock P, Chapple I. Induction of cytokines, MMP9, TIMPs, RANKL and OPG during orthodontic tooth movement. Eur J Orthod 2012; 35:644-51. [PMID: 22987319 DOI: 10.1093/ejo/cjs057] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This controlled longitudinal intervention study investigated changes in cytokines and biomarkers of bone and tissue metabolism within gingival crevicular fluid (GCF) from patients undergoing orthodontic treatment. GCF was collected on Periopaper™ strips (Oraflow Inc., USA) from 20 volunteers at baseline, before tooth extraction and appliance placement and then at intervals during orthodontic treatment. Samples were taken 10 weeks following first appliance placement: at four hours; 7 days; and 42 days after application of distalising forces to maxillary canine teeth. Cytokines (GM-CSF, interferon-gamma, IL-1beta, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10 and TNFalpha), tissue biomarkers (MMP-9, TIMP-1 & 2) and bone metabolism indicators (RANKL and OPG) were measured in GCF using multiplex assays. Tension sites adjacent to canines showed significant increases in IL-1beta, IL-8, TNFalpha, MMP-9 and TIMPs 1 and 2 across all time points following force application, while compression sites exhibited increases in IL-1beta and IL-8 after 4 hours, MMP-9 after 7 and 42 days and RANKL after 42 days. These data demonstrate that high levels of pro-inflammatory cytokines and biomarkers of tissue and bone metabolism in GCF are associated with orthodontic force application. Elevated levels were evident at 4 hours but continued for periods of up to 6 weeks. The data suggest that GCF biomarker analysis may help optimise orthodontic forces for individual patients.
Collapse
Affiliation(s)
- Melissa Grant
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, UK
| | | | | | | |
Collapse
|
21
|
Fluid shear stress regulates metalloproteinase-1 and 2 in human periodontal ligament cells: Involvement of extracellular signal-regulated kinase (ERK) and P38 signaling pathways. J Biomech 2012; 45:2368-75. [DOI: 10.1016/j.jbiomech.2012.07.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 11/20/2022]
|
22
|
Luo LJ, Liu F, Lin ZK, Xie YF, Xu JL, Tong QC, Shu R. Genistein regulates the IL-1 beta induced activation of MAPKs in human periodontal ligament cells through G protein-coupled receptor 30. Arch Biochem Biophys 2012; 522:9-16. [PMID: 22521737 DOI: 10.1016/j.abb.2012.04.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/01/2012] [Accepted: 04/04/2012] [Indexed: 01/05/2023]
Abstract
Periodontal ligament (PDL) cells are fibroblasts that play key roles in tissue integrity, periodontal inflammation and tissue regeneration in the periodontium. The periodontal tissue destruction in periodontitis is mediated by host tissue-produced inflammatory cytokines, including interleukin-1β (IL-1β). Here, we report the expression of G protein-coupled receptor 30 (GPR30, also known as G protein-coupled estrogen receptor 1 GPER) in human PDL cells and its regulation by IL-1β. IL-1β-induced GPR30 expression in human PDL cells leads to the activation of multiple signaling pathways, including MAPK, NF-κB and PI3K. In contrast, genistein, an estrogen receptor ligand, postpones the activation of MAPKs induced by IL-1β. Moreover, the inhibition of GPR30 by G15, a GPR30-specific antagonist, eliminates this delay. Thus, genistein plays a role in the regulation of MAPK activation via GPR30, and GPR30 represents a novel target regulated by steroid hormones in PDL cells.
Collapse
Affiliation(s)
- Li-Jun Luo
- Department of Stomatology, Shanghai Jiading Central Hospital, and Laboratory of Signal Transduction, Institute of Health Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong, University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Yamamoto K, Yamamoto T, Ichioka H, Akamatsu Y, Oseko F, Mazda O, Imanishi J, Kanamura N, Kita M. Effects of mechanical stress on cytokine production in mandible-derived osteoblasts. Oral Dis 2011; 17:712-9. [DOI: 10.1111/j.1601-0825.2011.01832.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Mechanical stress enhances production of cytokines in human periodontal ligament cells induced by Porphyromonas gingivalis. Arch Oral Biol 2011; 56:251-7. [PMID: 20970115 DOI: 10.1016/j.archoralbio.2010.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/24/2010] [Accepted: 09/19/2010] [Indexed: 02/01/2023]
Abstract
OBJECTIVE We have previously reported that human periodontal ligament (hPDL) cells produced many kinds of cytokines as a result of bacterial stimulation, including stimulation with Porphyromonas gingivalis (P. gingivalis). However, the effects of mechanical stress on cytokine production in hPDL cells stimulated by periodontopathogenic bacteria are not clearly understood. In this study, we investigated the effects of mechanical stress on the production of inflammatory cytokines in hPDL cells induced by stimulation with P. gingivalis. METHODS The hPDL cells were exposed to various levels of mechanical stress (1, 6, 10 and 50MPa) and costimulated with mechanical stress and P. gingivalis for 24h. Cytokine mRNA expressions were determined by RT-PCR. Cytokines in the culture supernatant were assessed by ELISA, and morphologic changes in hPDL cells were observed. RESULTS The expressions of interleukin (IL)-6, IL-8 and tumor necrosis factor-α mRNA were observed in hPDL cells after exposure to mechanical stress. Moreover, the production of IL-6 and IL-8 increased significantly after exposure to mechanical stress ranging from 1 to 10MPa. The amount of IL-8 in the culture supernatants of hPDL cells costimulated with P. gingivalis and mechanical stress was significantly higher than the expected additive amount. The morphology of hPDL cells did not change after exposure to 6MPa, but these cells were partly detached from the Petri dish after exposure to 50MPa. CONCLUSIONS These results suggest that local inflammation of the periodontal ligament may be induced mainly by periodontal bacteria, and mechanical stress may promote local inflammation.
Collapse
|
25
|
Murayama R, Kobayashi M, Takeshita A, Yasui T, Yamamoto M. MAPKs, activator protein-1 and nuclear factor-κB mediate production of interleukin-1β-stimulated cytokines, prostaglandin E₂ and MMP-1 in human periodontal ligament cells. J Periodontal Res 2011; 46:568-75. [PMID: 21615409 DOI: 10.1111/j.1600-0765.2011.01374.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Determination of the interleukin-1 (IL-1) signaling cascades that lead to the production of various inflammatory mediators and catabolic factors may clarify attractive targets for therapeutic intervention for periodontitis. We comprehensively assessed the involvement of MAPKs, activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) in IL-1β-induced production of interleukin-6 (IL-6), interleukin-8 (IL-8), prostaglandin E(2) (PGE(2) ) and MMP-1 in human periodontal ligament cells. MATERIAL AND METHODS Human periodontal ligament cells were pretreated with an inhibitor for each of the MAPKs or NF-κB and subsequently treated with IL-1β. Following treatment, phosphorylation of three types of MAPK (ERK, p38 MAPK and c-Jun N-terminal kinase), IκB kinase (IKK) α/β/γ and IκB-α, as well as the DNA binding activity of AP-1 and NF-κB and the production of IL-6, IL-8, PGE(2) and MMP-1, were determined by western blotting, a gel mobility shift assay and ELISA, respectively. RESULTS The three MAPKs, simultaneously activated by IL-1β, mediated the subsequent DNA binding of AP-1 at various magnitudes, while IKKα/β/γ, IκB-α and NF-κB were also involved in the IL-1 signaling cascade. Furthermore, IL-1β stimulated the production of IL-6, IL-8, PGE(2) and MMP-1 via activation of the three MAPKs and NF-κB, because inhibitors of these significantly suppressed the IL-1β-stimulated production of these factors. CONCLUSION Our results strongly suggest that MAPK, AP-1 and NF-κB mediate the IL-1β-stimulated synthesis of IL-6, IL-8, PGE(2) and MMP-1 in human periodontal ligament cells. Therefore, inhibition of activation of MAPK, AP-1 and/or NF-κB may lead to therapeutic effects on progression of periodontitis.
Collapse
Affiliation(s)
- R Murayama
- Department of Periodontology, Showa University, School of Dentistry, Tokyo, Japan
| | | | | | | | | |
Collapse
|
26
|
Ramos SDP, Ortolan GO, Dos Santos LM, Tobouti PL, Hidalgo MM, Consolaro A, Itano EN. Anti-dentine antibodies with root resorption during orthodontic treatment. Eur J Orthod 2011; 33:584-91. [PMID: 21300727 DOI: 10.1093/ejo/cjq145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to analyse serum IgG levels and salivary secretory IgA (sIgA) levels in human dentine extract (HDE) before (T0) and 6 months after (T6) orthodontic treatment and to correlate anti-HDE autoantibodies to root resorption. Fifty orthodontic patients were selected, 19 males (15.6 ± 8.5 years) and 31 females (21.4 ± 11.2 years), 19 in the mixed dentition (10.3 ± 1.9 years) and 31 in the permanent dentition (24.6 ± 9.9 years). Fifty individuals not undergoing orthodontic treatment matched by gender and age were selected as the controls. Periapical radiographs of the upper central incisors and saliva sampling were obtained of all patients at T0 and T6. Serum samples were collected from the permanent dentition patients (n = 31). Antibody levels were determined by means of immunoenzyme assay. At T6, root resorption was classified as grade 0 (no resorption), grade 1 (slight resorption), and grade 2 (moderate to severe resorption). Differences between antibody levels at T0 and T6 and among different grades of resorption were determined by paired t- and Kruskal-Wallis tests, respectively. Spearman's rank correlation coefficient was applied to detect correlation between sIgA and IgG levels, and logistic regression to determine the association of root resorption grade and the studied variables. Differences were considered significant at P < 0.05. Serum anti-HDE IgG levels decreased (P < 0.01) in grade 2 root resorption patients during treatment and was not correlated to salivary sIgA levels or other variables. Patients who had grade 2 root resorption at T6 showed higher levels of anti-HDE sIgA (P < 0.001). Anti-HDE sIgA levels at T0 and root shape were the main factors associated with the degree of root resorption. The results suggest that variations to systemic and local humoural immune response to dentine antigens may occur during orthodontic treatment. High levels of salivary sIgA before treatment were associated with more advanced lesions after 6 months of treatment.
Collapse
|
27
|
Asano M, Yamaguchi M, Nakajima R, Fujita S, Utsunomiya T, Yamamoto H, Kasai K. IL-8 and MCP-1 induced by excessive orthodontic force mediates odontoclastogenesis in periodontal tissues. Oral Dis 2010; 17:489-98. [PMID: 21496183 DOI: 10.1111/j.1601-0825.2010.01780.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of this study was to investigate how interleukin (IL)-8 (cytokine-induced neutrophil chemoattractant; CINC-1) and monocyte chemotactic protein (MCP)-1/CCL2 contribute to root resorption during orthodontic tooth movement. MATERIALS AND METHODS Forty 6-week-old male Wistar rats were subjected to orthodontic force of 10 or 50 g to induce a mesially tipping movement of the upper first molars for 7 days. We determined the expressions of CINC-1, CXCR2, and MCP-1 proteins in root resorption area using immunohistochemistry. Furthermore, we investigated the effects of compression forces (CF) on IL-8 and MCP-1 production by human periodontal ligament (hPDL) cells. We observed an effect of chemokine treatment on rat odonto/osteoclasts in dentin slices that recapitulated root resorption. RESULTS The immunoreactivity for CINC-1/CXCR2 and MCP-1 was detected in odontoclasts and PDL fibroblasts by the orthodontic force of 50 g on day 7. CF increased the secretion and the expression of mRNA of IL-8 and MCP-1 from PDL cells in a magnitude-dependent manner. Moreover, CINC-1 and MCP-1 stimulated osteoclastogenesis from rat osteoclast precursor cells. CONCLUSION IL-8 (CINC-1) and MCP-1 may therefore facilitate the process of root resorption because of excessive orthodontic force.
Collapse
Affiliation(s)
- M Asano
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Li Y, Zheng W, Liu JS, Wang J, Yang P, Li ML, Zhao ZH. Expression of Osteoclastogenesis Inducers in a Tissue Model of Periodontal Ligament under Compression. J Dent Res 2010; 90:115-20. [PMID: 20940359 DOI: 10.1177/0022034510385237] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
There is increasing interest in the development of new in vitro tissue models. In this study, a tissue model of periodontal ligament (PDL) was established by 3-D-culturing human PDL cells in a thin sheet of porous poly (lactic-co-glycolic acid) scaffold. Growth of the model was evidenced by MTT assay and various microscopies. After being subjected to static compression of 5 ~ 35 g/cm2 for 6 hrs, the RANKL mRNA expression was significantly up-regulated by force ≥ 25 g/cm2 in the model. After being subjected to static compression of 25 g/cm2 for 6 ~ 72 hrs, the mRNA expression of PTHrP, IL-11, IL-8, and FGF-2, potential osteoclastogenesis inducers, was significantly up-regulated in the model, which was further verified by the compression of human PDL in vivo. However, when human gingival fibroblasts were substituted for PDL cells in the model, almost no osteoclastogenesis inducers were up-regulated by compression. This tissue model can serve as an effective tool for the study of PDL mechanoresponse. Abbreviations: periodontal ligament, PDL; periodontal ligament cells, PDLCs; poly (lactic-co-glycolic acid), PLGA; orthodontic tooth movement, OTM; extracellular matrix, ECM.
Collapse
Affiliation(s)
- Y. Li
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, 14#, 3rd Section, Renmin Nan Road, Chengdu 610041, PR China
| | - W. Zheng
- Division of Cleft Lip and Palate Surgery, State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, PR China
| | - J.-S. Liu
- School & Hospital of Stomatology, Whenzhou Medical College, PR China
| | - J. Wang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, 14#, 3rd Section, Renmin Nan Road, Chengdu 610041, PR China
| | - P. Yang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, 14#, 3rd Section, Renmin Nan Road, Chengdu 610041, PR China
| | - M.-L. Li
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, 14#, 3rd Section, Renmin Nan Road, Chengdu 610041, PR China
| | - Z.-H. Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, 14#, 3rd Section, Renmin Nan Road, Chengdu 610041, PR China
| |
Collapse
|
29
|
Yan X, Chen J, Hao Y, Wang Y, Zhu L. Changes of caspase-1 after the application of orthodontic forces in the periodontal tissues of rats. Angle Orthod 2010; 79:1126-32. [PMID: 19852604 DOI: 10.2319/100508-519r.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To investigate the changes of caspase-1 in orthodontic tooth movement and to determine whether the changes are phase-specific. MATERIALS AND METHODS Eighty Wistar rats were included in this study. Sentalloy closed-coil springs were placed to induce a mesial traction force on the lower right first molar. The animals were killed after 1, 3, 7, and 14 days (n = 20 at each time point). The mandibles of 10 rats were sampled for histomorphometric analysis and immunohistochemical assay, and the periodontal tissues of 10 other rats were sampled for detecting caspase-1 mRNA and protein by real-time RT-PCR and by Western blotting, respectively. RESULTS The inflammatory reaction was evident in paraffin sections with hematoxylin-eosin staining. The immunohistochemical assay showed that orthodontic forces significantly increased the number of caspase-1-positive cells in the periodontal ligament (PDL). Mechanical force triggered an increase of caspase-1 mRNA in periodontal tissues. The expression of caspase-1 mRNA increased from day 1, reached the peak on day 3, and then decreased. The results of Western blotting indicated that the levels of both procaspase-1 and P20 subunit significantly increased after the application of orthodontic forces, compared with those in controls (P < .05). CONCLUSION Caspase-1 level increases during orthodontic tooth movement and changes with different phases, which might play a significant role in orthodontic tooth movement.
Collapse
Affiliation(s)
- Xiulin Yan
- Department of Orthodontics, School of Stomatology, China Medical University, Liaoning, China.
| | | | | | | | | |
Collapse
|
30
|
Okamoto A, Ohnishi T, Bandow K, Kakimoto K, Chiba N, Maeda A, Fukunaga T, Miyawaki S, Matsuguchi T. Reduction of orthodontic tooth movement by experimentally induced periodontal inflammation in mice. Eur J Oral Sci 2009; 117:238-47. [PMID: 19583750 DOI: 10.1111/j.1600-0722.2009.00625.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Orthodontic therapy is known to have an aggravating effect on the progression of destructive periodontitis if oral hygiene is not maintained. However, it is largely unknown how active periodontitis affects the velocity of orthodontic tooth movement. In this study, we examined the effect of periodontal inflammation on orthodontic tooth movement using a mouse model. Orthodontic force was applied on the maxillary first molar of mice, with or without ligature wire to induce experimental periodontitis. The distance moved by the first molar was significantly reduced by the ligature-induced experimental periodontitis. Tartrate-resistant acid phosphatase staining revealed that the number of osteoclasts present during orthodontic treatment was lower in the pressure zone of alveolar bone in the presence of periodontal inflammation. Consistently, the expression level of receptor activator of nuclear factor-kappaB ligand (RANKL) in the pressure zone was decreased in the ligature group. By contrast, experimental periodontitis increased the expression of cyclooxygenase-2 mRNA in the periodontal tissues, while in vitro treatment with prostaglandin E(2) decreased extracellular signal-regulated kinase phosphorylation and RANKL expression induced by mechanical stress in osteoblasts. Taken together, these results suggest that the orthodontic force-induced osteoclastogenesis in alveolar bone was inhibited by the accompanying periodontal inflammation, at least partly through prostaglandin E(2), resulting in reduced orthodontic tooth movement.
Collapse
Affiliation(s)
- Atsuko Okamoto
- Department of Orthodontics, Kagoshima University, Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Andrade I, Taddei SRA, Garlet GP, Garlet TP, Teixeira AL, Silva TA, Teixeira MM. CCR5 down-regulates osteoclast function in orthodontic tooth movement. J Dent Res 2009; 88:1037-41. [PMID: 19828893 DOI: 10.1177/0022034509346230] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During orthodontic tooth movement, there is local production of chemokines and an influx of leukocytes into the periodontium. CCL5 plays an important role in osteoclast recruitment and activation. This study aimed to investigate whether the CCR5-receptor influences these events and, consequently, orthodontic tooth movement. An orthodontic appliance was placed in wild-type mice (WT) and CCR5-deficient mice (CCR5(-/-)). The expression of mediators involved in bone remodeling was evaluated in periodontal tissues by Real-time PCR. The number of TRAP-positive osteoclasts and the expression of cathepsin K, RANKL, and MMP13 were significantly higher in CCR5(-/-). Meanwhile, the expression of two osteoblastic differentiation markers, RUNX2 and osteocalcin, and that of bone resorption regulators, IL-10 and OPG, were lower in CCR5(-/-). Analysis of the data also showed that CCR5(-/-) exhibited a greater amount of tooth movement after 7 days of mechanical loading. The results suggested that CCR5 might be a down-regulator of alveolar bone resorption during orthodontic movement.
Collapse
Affiliation(s)
- I Andrade
- Department of Orthodontics, Faculty of Dentistry, Pontifícia Universidade Católica de Minas Gerais, Av. Dom José Gaspar 500, CEP 31.270-901, Belo Horizonte, Minas Gerais, Brazil.
| | | | | | | | | | | | | |
Collapse
|
32
|
Krishnan V, Davidovitch Z. On a Path to Unfolding the Biological Mechanisms of Orthodontic Tooth Movement. J Dent Res 2009; 88:597-608. [DOI: 10.1177/0022034509338914] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Orthodontic forces deform the extracellular matrix and activate cells of the paradental tissues, facilitating tooth movement. Discoveries in mechanobiology have illuminated sequential cellular and molecular events, such as signal generation and transduction, cytoskeletal re-organization, gene expression, differentiation, proliferation, synthesis and secretion of specific products, and apoptosis. Orthodontists work in a unique biological environment, wherein applied forces engender remodeling of both mineralized and non-mineralized paradental tissues, including the associated blood vessels and neural elements. This review aims at identifying events that affect the sequence, timing, and significance of factors that determine the nature of the biological response of each paradental tissue to orthodontic force. The results of this literature review emphasize the fact that mechanoresponses and inflammation are both essential for achieving tooth movement clinically. If both are working in concert, orthodontists might be able to accelerate or decelerate tooth movement by adding adjuvant methods, whether physical, chemical, or surgical.
Collapse
Affiliation(s)
- V. Krishnan
- Department of Orthodontics, Rajas Dental College, Tirunelveli District, Tamilnadu, India; and
- Department of Orthodontics, Case Western Reserve University, Cleveland, OH, USA
| | - Z. Davidovitch
- Department of Orthodontics, Rajas Dental College, Tirunelveli District, Tamilnadu, India; and
- Department of Orthodontics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
33
|
Giannopoulou C, Mombelli A, Tsinidou K, Vasdekis V, Kamma J. Detection of gingival crevicular fluid cytokines in children and adolescents with and without fixed orthodontic appliances. Acta Odontol Scand 2008; 66:169-73. [PMID: 18568476 DOI: 10.1080/00016350802123126] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To study the expression of IL-1beta, IL-4, and IL-8 in the gingival crevicular fluid (GCF) of children, adolescents, and young adults with and without fixed orthodontic appliances. MATERIAL AND METHODS Eighty systemically healthy children and adolescents participated in the study: 56 aged between 8 and 16 years without any orthodontic appliance (Group A) and 24 aged between 10 and 20 years having worn fixed orthodontic appliances for at least 12 months (Group B). Clinical examination included presence or absence of plaque, probing depth, bleeding on probing, and gingival overgrowth. GCF was collected by means of Durapore strips from four randomly selected sites per subject. The contents of interleukin-1 beta (IL-1beta), interleukin-4 (IL-4), and interleukin-8 (IL-8) were detected by ELISA, measured as total amounts (pg/30s) and expressed in log scale. RESULTS Statistically significant differences were noted for the mean log IL-1beta, IL-4, and IL-8 between the two groups: Group B showed significantly higher mean levels in log IL-1beta and log IL-8 compared to Group A. Mean levels of log IL-4 were lower in Group B, although they did not reach statistical significance. Furthermore, mean levels of log IL-1beta and log IL-8 were associated with bleeding sites (p<0.001) and gingival overgrowth, while mean level of log IL-4 was associated with non-bleeding sites and no gingival overgrowth (p<0.001). CONCLUSION Our findings suggest that fixed orthodontic appliances result in an increase in the expression of IL-1beta and IL-8. This may reflect biologic activity in the periodontium during orthodontic tooth movement.
Collapse
|
34
|
Leethanakul C, Kittichaikarn C, Charoemratrote C, Jitpukdeebodintra S. Effects of Continuous and Interrupted Orthodontic Force on Interleukin-1β and Interleukin-8 Secretion in Human Gingival Crevicular Fluid. J Oral Biosci 2008. [DOI: 10.1016/s1349-0079(08)80012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|