1
|
Michaels JESR, Husami A, Vontell AM, Brugmann SA, Stottmann RW. Genetic Analysis and Functional Assessment of a TGFBR2 Variant in Micrognathia and Cleft Palate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588524. [PMID: 38645005 PMCID: PMC11030355 DOI: 10.1101/2024.04.08.588524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cleft lip and cleft palate are among the most common congenital anomalies and are the result of incomplete fusion of embryonic craniofacial processes or palatal shelves, respectively. We know that genetics play a large role in these anomalies but the list of known causal genes is far from complete. As part of a larger sequencing effort of patients with micrognathia and cleft palate we identified a candidate variant in transforming growth factor beta receptor 2 (TGFBR2) which is rare, changing a highly conserved amino acid, and predicted to be pathogenic by a number of metrics. The family history and population genetics would suggest this specific variant would be incompletely penetrant, but this gene has been convincingly implicated in craniofacial development. In order to test the hypothesis this might be a causal variant, we used genome editing to create the orthologous variant in a new mouse model. Surprisingly, Tgfbr2V387M mice did not exhibit craniofacial anomalies or have reduced survival suggesting this is, in fact, not a causal variant for cleft palate/ micrognathia. The discrepancy between in silico predictions and mouse phenotypes highlights the complexity of translating human genetic findings to mouse models. We expect these findings will aid in interpretation of future variants seen in TGFBR2 from ongoing sequencing of patients with congenital craniofacial anomalies.
Collapse
Affiliation(s)
- JES-Rite Michaels
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Ammar Husami
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45215, USA
| | - Andrew M. Vontell
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Samantha A. Brugmann
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45215, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45215, USA
| | - Rolf W. Stottmann
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, School of Medicine, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
2
|
Zinck NW, McInnis SJL, Franz-Odendaal TA. Intravitreal injection of FGF and TGF-β inhibitors disrupts cranial cartilage development. Differentiation 2023; 133:51-59. [PMID: 37481903 DOI: 10.1016/j.diff.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Cartilage development is a tightly regulated process that requires the interaction of epithelial and mesenchymal tissues layers to initiate the aggregation of mesenchyme in a condensation. Several signaling molecules have been implicated in cartilage formation including FGFs, WNTs, and members of the TGF-β super family. However, little is known about the earliest signals involved in these initial phases of development. Here we aimed to investigate whether direct intravitreal injection of pharmaceutical inhibitors for FGF and TGF-β signaling would perturb cranial cartilages in zebrafish. Via wholemount bone and cartilage staining, we found effects on multiple cranial cartilage elements. We found no effect on scleral cartilage development, however, the epiphyseal bar, basihyal, and basicapsular cartilages were disrupted. Interestingly, the epiphyseal bar arises from the same progenitor pool as the scleral cartilage, namely, the periocular ectomesenchyme. This study adds to the foundational knowledge about condensation induction of cranial cartilage development and provides insight into the timing and signaling involved in the early development of several craniofacial cartilage elements in zebrafish.
Collapse
Affiliation(s)
- Nicholas W Zinck
- Department of Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4R2, Canada; Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, B3M 2J6, Canada
| | - Shea J L McInnis
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, B3M 2J6, Canada; Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, NS, B3H 3C3, Canada
| | - Tamara A Franz-Odendaal
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, B3M 2J6, Canada.
| |
Collapse
|
3
|
Costantini A, Guasto A, Cormier-Daire V. TGF-β and BMP Signaling Pathways in Skeletal Dysplasia with Short and Tall Stature. Annu Rev Genomics Hum Genet 2023; 24:225-253. [PMID: 37624666 DOI: 10.1146/annurev-genom-120922-094107] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
The transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signaling pathways play a pivotal role in bone development and skeletal health. More than 30 different types of skeletal dysplasia are now known to be caused by pathogenic variants in genes that belong to the TGF-β superfamily and/or regulate TGF-β/BMP bioavailability. This review describes the latest advances in skeletal dysplasia that is due to impaired TGF-β/BMP signaling and results in short stature (acromelic dysplasia and cardiospondylocarpofacial syndrome) or tall stature (Marfan syndrome). We thoroughly describe the clinical features of the patients, the underlying genetic findings, and the pathomolecular mechanisms leading to disease, which have been investigated mainly using patient-derived skin fibroblasts and mouse models. Although no pharmacological treatment is yet available for skeletal dysplasia due to impaired TGF-β/BMP signaling, in recent years advances in the use of drugs targeting TGF-β have been made, and we also discuss these advances.
Collapse
Affiliation(s)
- Alice Costantini
- Paris Cité University, INSERM UMR 1163, Institut Imagine, Paris, France; , ,
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alessandra Guasto
- Paris Cité University, INSERM UMR 1163, Institut Imagine, Paris, France; , ,
| | - Valérie Cormier-Daire
- Paris Cité University, INSERM UMR 1163, Institut Imagine, Paris, France; , ,
- Reference Center for Skeletal Dysplasia, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
4
|
Feng G, Zhao J, Peng J, Luo B, Zhang J, Chen L, Xu Z. Circadian clock—A promising scientific target in oral science. Front Physiol 2022; 13:1031519. [PMCID: PMC9708896 DOI: 10.3389/fphys.2022.1031519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
The oral and maxillofacial organs play vital roles in chewing, maintaining facial beauty, and speaking. Almost all physiological processes display circadian rhythms that are driven by the circadian clock, allowing organisms to adapt to the changing environment. In recent years, increasing evidence has shown that the circadian clock system participates in oral and maxillofacial physiological and pathological processes, such as jaw and tooth development, salivary gland function, craniofacial malformations, oral carcinoma and other diseases. However, the roles of the circadian clock in oral science have not yet been comprehensively reviewed. Therefore, This paper provides a systematic and integrated perspective on the function of the circadian clock in the fields of oral science, reviews recent advances in terms of the circadian clock in oral and maxillofacial development and disease, dialectically analyzes the importance of the circadian clock system and circadian rhythm to the activities of oral and maxillofacial tissues, and focuses on analyzing the mechanism of the circadian clock in the maintenance of oral health, affecting the common diseases of the oral and maxillofacial region and the process of oral-related systemic diseases, sums up the chronotherapy and preventive measures for oral-related diseases based on changes in tissue activity circadian rhythms, meanwhile, comes up with a new viewpoint to promote oral health and human health.
Collapse
Affiliation(s)
- Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Beibei Luo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Lili Chen, ; Zhi Xu,
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Lili Chen, ; Zhi Xu,
| |
Collapse
|
5
|
Zhao Y, Xu G, Li H, Chang M, Xiong C, Tao Y, Guan Y, Li Y, Yao S. Genome-wide mRNA profiling identifies the NRF2-regulated lymphocyte oxidative stress status in patients with silicosis. J Occup Med Toxicol 2021; 16:40. [PMID: 34517882 PMCID: PMC8436508 DOI: 10.1186/s12995-021-00332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The immunomodulatory abnormalities of silicosis are related to the lymphocyte oxidative stress state. The potential effect of antioxidant therapy on silicosis may depend on the variation in nuclear factor erythroid 2-related factor 2 (NRF2)-regulated antioxidant genes in peripheral blood mononuclear cells (PBMCs). As NRF2 is a redox-sensitive transcription factor, its possible roles and underlying mechanism in the treatment of silicosis need to be clarified. METHODS Ninety-two male patients with silicosis and 87 male healthy volunteers were randomly selected. PBMCs were isolated from fresh blood from patients with silicosis and healthy controls. The lymphocyte oxidative stress state was investigated by evaluating NRF2 expression and NRF2-dependent antioxidative genes in PBMCs from patients with silicosis. Key differentially expressed genes (DEGs) and signaling pathways were identified utilizing RNA sequencing (RNA-Seq) and bioinformatics technology. Gene set enrichment analysis was used to identify the differences in NRF2 signaling networks between patients with silicosis and healthy controls. RESULTS The number of monocytes was significantly higher in patients with silicosis than that of healthy controls. Furthermore, RNA-Seq findings were confirmed using quantitative polymerase chain reaction and revealed that NRF2-regulated DEGs were associated with glutathione metabolism, transforming growth factor-β, and the extracellular matrix receptor interaction signaling pathway in PBMCs from patients with silicosis. The top 10 hub genes were identified by PPI analysis: SMAD2, MAPK3, THBS1, SMAD3, ITGB3, integrin alpha-V (ITGAV), von Willebrand factor (VWF), BMP4, CD44, and SMAD7. CONCLUSIONS These findings suggest that NRF2 signaling regulates the lymphocyte oxidative stress state and may contribute to fibrogenic responses in human PBMCs. Therefore, NRF2 might serve as a novel preventive and therapeutic candidate for silicosis.
Collapse
Affiliation(s)
- Yingzheng Zhao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, 063009, People's Republic of China.,School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Haibin Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, 063009, People's Republic of China.,School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Meiyu Chang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Cheng Xiong
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yingjun Tao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yi Guan
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, 063009, People's Republic of China
| | - Yuchun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Sanqiao Yao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, 063009, People's Republic of China. .,School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China.
| |
Collapse
|
6
|
Hayakawa K, Snyder EY, Lo EH. Meningeal Multipotent Cells: A Hidden Target for CNS Repair? Neuromolecular Med 2021; 23:339-343. [PMID: 33893971 PMCID: PMC8450679 DOI: 10.1007/s12017-021-08663-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022]
Abstract
Traditionally, the primary role of the meninges is thought to be structural, i.e., to act as a surrounding membrane that contains and cushions the brain with cerebrospinal fluid. During development, the meninges is formed by both mesenchymal and neural crest cells. There is now emerging evidence that subsets of undifferentiated stem cells might persist in the adult meninges. In this mini-review, we survey representative studies of brain-meningeal interactions and discuss the hypothesis that the meninges are not just protective membranes, but instead contain multiplex stem cell subsets that may contribute to central nervous system (CNS) homeostasis. Further investigations into meningeal multipotent cells may reveal a "hidden" target for promoting neurovascular remodeling and repair after CNS injury and disease.
Collapse
Affiliation(s)
- Kazuhide Hayakawa
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Evan Y. Snyder
- Sanford Consortium for Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Eng H. Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
7
|
Zhang H, Zhan Y, Zhang Y, Yuan G, Yang G. Dual roles of TGF-β signaling in the regulation of dental epithelial cell proliferation. J Mol Histol 2020; 52:77-86. [PMID: 33206256 DOI: 10.1007/s10735-020-09925-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
Abstract
The purpose of this study is to investigate the molecular mechanisms and biological function of TGF-β-activated Smad1/5 in dental epithelium. Immunohistochemistry was used to detect the expressions of TGF-β signaling-related gene in mice molar germ. Primary dental epithelial cells were cultured and treated with TGF-β1 at a concentration of 0.5 or 5 ng/mL. Small molecular inhibitors, SB431542 and ML347, was used to inhibite ALK5 and ALK1/2, respectively. Small interfering RNA was used to knock down Smad1/5 or Smad2/3. The proliferation rate of cells was evaluated by EdU assay. In the basal layer of dental epithelial bud TGF-β1 and p-Smad1/5 were highly expressed, and in the interior of the epithelial bud TGF-β1 was lowly expressed, whereas p-Smad2/3 was highly expressed. In primary cultured dental epithelial cells, low concentration of TGF-β1 activated Smad2/3 but not Smad1/5, while high concentration of TGF-β1 was able to activate both Smad2/3 and Smad1/5. SB431542 but not ML347 was able to block the phosphorylation of Smad2/3 by TGF-β1. Either SB431542 or ML347 was able to block the phosphorylation of Smad1/5 by TGF-β1. EdU staining showed that high concentration of TGF-β1 promoted dental epithelial cell proliferation, which was reversed by silencing Smad1/5, whereas low concentration of TGF-β1 inhibited cell proliferation, which was reversed by silencing Smad2/3. In conclusions, TGF-β exhibits dual roles in the regulation of dental epithelial cell proliferation through two pathways. On the one hand, TGF-β activates canonical Smad2/3 signaling through ALK5, inhibiting the proliferation of internal dental epithelial cells. On the other hand, TGF-β activates noncanonical Smad1/5 signaling through ALK1/2-ALK5, promoting the proliferation of basal cells in the dental epithelial bud.
Collapse
Affiliation(s)
- Hao Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Luoyu Road #237, Hongshan District, Wuhan, 430079, Hubei, China
| | - Yunyan Zhan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Luoyu Road #237, Hongshan District, Wuhan, 430079, Hubei, China
| | - Yue Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Luoyu Road #237, Hongshan District, Wuhan, 430079, Hubei, China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Luoyu Road #237, Hongshan District, Wuhan, 430079, Hubei, China
| | - Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Luoyu Road #237, Hongshan District, Wuhan, 430079, Hubei, China.
| |
Collapse
|
8
|
Nagata M, Ono N, Ono W. Unveiling diversity of stem cells in dental pulp and apical papilla using mouse genetic models: a literature review. Cell Tissue Res 2020; 383:603-616. [PMID: 32803323 DOI: 10.1007/s00441-020-03271-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
The dental pulp, a non-mineralized connective tissue uniquely encased within the cavity of the tooth, provides a niche for diverse arrays of dental mesenchymal stem cells. Stem cells in the dental pulp, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs) and stem cells from apical papilla (SCAPs), have been isolated from human tissues with an emphasis on their potential application to regenerative therapies. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitor cells derived from neural crest cells (NCCs) in their native conditions, particularly regarding how they contribute to homeostasis and repair of the dental tissue. The current concept is that at least two distinct niches for stem cells exist in the dental pulp, e.g., the perivascular niche and the perineural niche. The precise identities of these stem cells and their niches are now beginning to be unraveled thanks to sophisticated mouse genetic models, which lead to better understanding of the fundamental properties of stem cells in the dental pulp and the apical papilla in humans. The new knowledge will be highly instrumental for developing more effective stem cell-based regenerative therapies to repair teeth in the future.
Collapse
Affiliation(s)
- Mizuki Nagata
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Noriaki Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Wanida Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
Jani P, Nguyen QC, Almpani K, Keyvanfar C, Mishra R, Liberton D, Orzechowski P, Frischmeyer-Guerrerio PA, Duverger O, Lee JS. Severity of oro-dental anomalies in Loeys-Dietz syndrome segregates by gene mutation. J Med Genet 2020; 57:699-707. [PMID: 32152251 PMCID: PMC7525783 DOI: 10.1136/jmedgenet-2019-106678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
Background Loeys-Dietz syndrome (LDS), an autosomal dominant rare connective tissue disorder, has multisystemic manifestations, characterised by vascular tortuosity, aneurysms and craniofacial manifestations. Based on the associated gene mutations along the transforming growth factor-beta (TGF-β) pathway, LDS is presently classified into six subtypes. Methods We present the oro-dental features of a cohort of 40 patients with LDS from five subtypes. Results The most common oro-dental manifestations were the presence of a high-arched and narrow palate, and enamel defects. Other common characteristics included bifid uvula, submucous cleft palate, malocclusion, dental crowding and delayed eruption of permanent teeth. Both deciduous and permanent teeth had enamel defects in some individuals. We established a grading system to measure the severity of enamel defects, and we determined that the severity of the enamel anomalies in LDS is subtype-dependent. In specific, patients with TGF-β receptor II mutations (LDS2) presented with the most severe enamel defects, followed by patients with TGF-β receptor I mutations (LDS1). LDS2 patients had higher frequency of oro-dental deformities in general. Across all five subtypes, as well as within each subtype, enamel defects exhibited incomplete penetrance and variable expression, which is not associated with the location of the gene mutations. Conclusion This study describes, in detail, the oro-dental manifestations in a cohort of LDS, and we conclude that LDS2 has the most severely affected phenotype. This extensive characterisation, as well as some identified distinguishing features can significantly aid dental and medical care providers in the diagnosis and clinical management of patients with this rare connective tissue disorder.
Collapse
Affiliation(s)
- Priyam Jani
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Quynh C Nguyen
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Konstantinia Almpani
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Cyrus Keyvanfar
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Rashmi Mishra
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Denise Liberton
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Pamela Orzechowski
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | | | - Olivier Duverger
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Janice S Lee
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Bi L, Lwigale P. Transcriptomic analysis of differential gene expression during chick periocular neural crest differentiation into corneal cells. Dev Dyn 2019; 248:583-602. [PMID: 31004457 DOI: 10.1002/dvdy.43] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Multipotent neural crest cells (NCC) contribute to the corneal endothelium and keratocytes during ocular development, but the molecular mechanisms that underlie this process remain poorly understood. We performed RNA-Seq analysis on periocular neural crest (pNC), corneal endothelium, and keratocytes and validated expression of candidate genes by in situ hybridization. RESULTS RNA-Seq profiling revealed enrichment of genes between pNC and neural crest-derived corneal cells, which correspond to pathways involved in focal adhesion, ECM-receptor interaction, cell adhesion, melanogenesis, and MAPK signaling. Comparisons of candidate NCC genes to ocular gene expression revealed that majority of the NCC genes are expressed in the pNC, but they are either differentially expressed or maintained during corneal development. Several genes involved in retinoic acid, transforming growth factor-β, and Wnt signaling pathways and their modulators are also differentially expressed. We identified differentially expressed transcription factors as potential downstream candidates that may instruct expression of genes involved in establishing corneal endothelium and keratocyte identities. CONCLUSION Combined, our data reveal novel changes in gene expression profiles as pNC differentiate into highly specialized corneal endothelial cells and keratocytes. These data serve as platform for further analyses of the molecular networks involved in NCC differentiation into corneal cells and provide insights into genes involved in corneal dysgenesis and adult diseases.
Collapse
Affiliation(s)
- Lian Bi
- BioSciences, Rice University, Houston, Texas
| | | |
Collapse
|
11
|
Zhang Y, Ji D, Li L, Yang S, Zhang H, Duan X. ClC-7 Regulates the Pattern and Early Development of Craniofacial Bone and Tooth. Am J Cancer Res 2019; 9:1387-1400. [PMID: 30867839 PMCID: PMC6401512 DOI: 10.7150/thno.29761] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/09/2019] [Indexed: 11/05/2022] Open
Abstract
Human CLCN7 encodes voltage-gated chloride channel 7 (ClC-7); mutations of CLCN7 lead to osteopetrosis which is characterized by increased bone mass and impaired osteoclast function. In our previous clinical practice, we noticed that osteopetrosis patients with CLCN7 mutations had some special deformities in craniofacial morphology and tooth dysplasia. It is unclear whether these phenotypes are the typical features of CLCN7 involved osteopetrosis and whether ClC-7 could regulate the development of craniofacial bone and tooth in some signaling pathways. Methods: First, we collected 80 osteopetrosis cases from the literature and compared their craniofacial and dental phenotypes. Second, four osteopetrosis pedigrees with CLCN7 mutations were recruited from our clinic for gene testing and clinical analysis of their craniofacial and dental phenotypes. Third, we used a zebrafish model with clcn7 morpholino treatment to detect the effects of ClC-7 deficiency on the development of craniofacial and dental phenotypes. General observation, whole mount alcian blue and alizarin red staining, whole mount in situ hybridization, scanning electron microscope observation, lysoSensor staining, Q-PCR and western blotting were performed to observe the in vivo characteristics of craniofacial bone and tooth changes. Fourth, mouse marrow stromal cells were further primarily cultured to detect ClC-7 related mRNA and protein changes using siRNA, Q-PCR and western blotting. Results: Over 84% of osteopetrosis patients in the literature had some typical craniofacial and tooth phenotypes, including macrocephaly, frontal bossing, and changes in shape and proportions of facial skeleton, and these unique features are more severe and frequent in autosomal recessive osteopetrosis than in autosomal dominant osteopetrosis patients. Our four pedigrees with CLCN7 mutations confirmed the aforementioned clinical features. clcn7 knockdown in zebrafish reproduced the craniofacial cartilage defects and various dental malformations combined the decreased levels of col10a1, sp7, dlx2b, eve1, and cx43. Loss of clcn7 function resulted in lysosomal storage in the brain and jaw as well as downregulated cathepsin K (CTSK). The craniofacial phenotype severity also presented a dose-dependent relationship with the levels of ClC-7 and CTSK. ClC-7/CTSK further altered the balance of TGF-β/BMP signaling pathway, causing elevated TGF-β-like Smad2 signals and reduced BMP-like Smad1/5/8 signals in clcn7 morphants. SB431542 inhibitor of TGF-β pathway partially rescued the aforementioned craniofacial bone and tooth defects of clcn7 morphants. The ClC-7 involved CTSK/BMP and SMAD changes were also confirmed in mouse bone marrow stromal cells. Conclusion: These findings highlighted the vital role of clcn7 in zebrafish craniofacial bone and tooth development and mineralization, revealing novel insights for the causation of osteopetrosis with CLCN7 mutations. The mechanism chain of ClC-7/CTSK/ TGF-β/BMP/SMAD might explain the typical craniofacial bone and tooth changes in osteopetrosis as well as pycnodysostosis patients.
Collapse
|
12
|
Xu X, Zheng L, Yuan Q, Zhen G, Crane JL, Zhou X, Cao X. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res 2018; 6:2. [PMID: 29423331 PMCID: PMC5802812 DOI: 10.1038/s41413-017-0005-4] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/12/2017] [Accepted: 11/15/2017] [Indexed: 02/05/2023] Open
Abstract
TGF-β 1-3 are unique multi-functional growth factors that are only expressed in mammals, and mainly secreted and stored as a latent complex in the extracellular matrix (ECM). The biological functions of TGF-β in adults can only be delivered after ligand activation, mostly in response to environmental perturbations. Although involved in multiple biological and pathological processes of the human body, the exact roles of TGF-β in maintaining stem cells and tissue homeostasis have not been well-documented until recent advances, which delineate their functions in a given context. Our recent findings, along with data reported by others, have clearly shown that temporal and spatial activation of TGF-β is involved in the recruitment of stem/progenitor cell participation in tissue regeneration/remodeling process, whereas sustained abnormalities in TGF-β ligand activation, regardless of genetic or environmental origin, will inevitably disrupt the normal physiology and lead to pathobiology of major diseases. Modulation of TGF-β signaling with different approaches has proven effective pre-clinically in the treatment of multiple pathologies such as sclerosis/fibrosis, tumor metastasis, osteoarthritis, and immune disorders. Thus, further elucidation of the mechanisms by which TGF-β is activated in different tissues/organs and how targeted cells respond in a context-dependent way can likely be translated with clinical benefits in the management of a broad range of diseases with the involvement of TGF-β.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Gehua Zhen
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Janet L. Crane
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xu Cao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
13
|
Ward NJ, Green D, Higgins J, Dalmay T, Münsterberg A, Moxon S, Wheeler GN. microRNAs associated with early neural crest development in Xenopus laevis. BMC Genomics 2018; 19:59. [PMID: 29347911 PMCID: PMC5774138 DOI: 10.1186/s12864-018-4436-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The neural crest (NC) is a class of transitory stem cell-like cells unique to vertebrate embryos. NC cells arise within the dorsal neural tube where they undergo an epithelial to mesenchymal transition in order to migrate and differentiate throughout the developing embryo. The derivative cell types give rise to multiple tissues, including the craniofacial skeleton, peripheral nervous system and skin pigment cells. Several well-studied gene regulatory networks underpin NC development, which when disrupted can lead to various neurocristopathies such as craniofrontonasal dysplasia, DiGeorge syndrome and some forms of cancer. Small RNAs, such as microRNAs (miRNAs) are non-coding RNA molecules important in post-transcriptional gene silencing and critical for cellular regulation of gene expression. RESULTS To uncover novel small RNAs in NC development we used high definition adapters and next generation sequencing of libraries derived from ectodermal explants of Xenopus laevis embryos induced to form neural and NC tissue. Ectodermal and blastula animal pole (blastula) stage tissues were also sequenced. We show that miR-427 is highly abundant in all four tissue types though in an isoform specific manner and we define a set of 11 miRNAs that are enriched in the NC. In addition, we show miR-301a and miR-338 are highly expressed in both the NC and blastula suggesting a role for these miRNAs in maintaining the stem cell-like phenotype of NC cells. CONCLUSION We have characterised the miRNAs expressed in Xenopus embryonic explants treated to form ectoderm, neural or NC tissue. This has identified novel tissue specific miRNAs and highlighted differential expression of miR-427 isoforms.
Collapse
Affiliation(s)
- Nicole J. Ward
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Darrell Green
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Janet Higgins
- Regulatory Genomics, Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Grant N. Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
14
|
Xiao D, Wang R, Hu J, Quan H. Spatial and temporal expression of Smad signaling members during the development of mandibular condylar cartilage. Exp Ther Med 2017; 14:4967-4971. [PMID: 29201201 PMCID: PMC5704254 DOI: 10.3892/etm.2017.5186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/14/2017] [Indexed: 02/05/2023] Open
Abstract
The present study aimed to explore the underlying developmental mechanism of mothers against decapentaplegic homolog (Smad) signaling in the development of mandibular condylar cartilage. To achieve this, the expression levels of Smad2, 3, 4 and 7, and phosphorylated Smad2/3 were investigated at different time points in developing mandibular condylar cartilage. Mandibular condyles from C57BL/6J mice were dissected at the prenatal and postnatal stages. Serial sections were made and the distributions of Smad proteins were examined using immunohistochemical techniques intermittently between day 14.5 of gestation and postnatal day 7. All Smad proteins examined in the present study were expressed in the condylar blastema and during early chondrogenesis. At the postnatal stage, Smad2 and 4 were localized in proliferative and mineralized hypertrophic chondrocytes. Smad3 and 7 were expressed in proliferative and hypertrophic chondrocytes, including pre-hypertrophic and mineralized hypertrophic chondrocytes. Later, positive immunoreactivity of Smad3 reduced at postnatal day 7. A similar expression pattern to Smad3 was observed for p-Smad2/3, but p-Smad2/3 was located in the nuclei of proliferative chondrocytes. These results suggest that Smad signaling members are involved in the development of mandibular condylar cartilage. In addition, the spatial and temporal expression of these Smads indicate that Smad signaling is involved in regulating the differentiation of chondrocytes and endochondral ossification, in order to maintain normal chondrogenesis and morphogenesis of mandibular condylar cartilage.
Collapse
Affiliation(s)
- Di Xiao
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Ru Wang
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Jing Hu
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Huixin Quan
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
15
|
Zebrafish as an Alternative Vertebrate Model for Investigating Developmental Toxicity-The Triadimefon Example. Int J Mol Sci 2017; 18:ijms18040817. [PMID: 28417904 PMCID: PMC5412401 DOI: 10.3390/ijms18040817] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 11/16/2022] Open
Abstract
Triadimefon is a widely used triazole fungicide known to cause severe developmental defects in several model organisms and in humans. The present study evaluated in detail the developmental effects seen in zebrafish embryos exposed to triadimefon, confirmed and expanded upon previous phenotypic findings and compared them to those observed in other traditional animal models. In order to do this, we exposed embryos to 2 and 4 µg/mL triadimefon and evaluated growth until 120 h post-fertilization (hpf) through gross morphology examination. Our analysis revealed significant developmental defects at the highest tested concentration including somite deformities, severe craniofacial defects, a cleft phenotype along the three primary neural divisions, a rigorously hypoplastic or even absent mandible and a hypoplastic morphology of the pharyngeal arches. Interestingly, massive pericardial edemas, abnormal shaped hearts, brachycardia and inhibited or absent blood circulation were also observed. Our results revealed that the presented zebrafish phenotypes are comparable to those seen in other organism models and those derived from human observations as a result of triadimefon exposure. We therefore demonstrated that zebrafish provide an excellent system for study of compounds with toxic significance and can be used as an alternative model for developmental toxicity studies to predict effects in mammals.
Collapse
|
16
|
Alvarado E, Yousefelahiyeh M, Alvarado G, Shang R, Whitman T, Martinez A, Yu Y, Pham A, Bhandari A, Wang B, Nissen RM. Wdr68 Mediates Dorsal and Ventral Patterning Events for Craniofacial Development. PLoS One 2016; 11:e0166984. [PMID: 27880803 PMCID: PMC5120840 DOI: 10.1371/journal.pone.0166984] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022] Open
Abstract
Birth defects are among the leading causes of infant mortality and contribute substantially to illness and long-term disability. Defects in Bone Morphogenetic Protein (BMP) signaling are associated with cleft lip/palate. Many craniofacial syndromes are caused by defects in signaling pathways that pattern the cranial neural crest cells (CNCCs) along the dorsal-ventral axis. For example, auriculocondylar syndrome is caused by impaired Endothelin-1 (Edn1) signaling, and Alagille syndrome is caused by defects in Jagged-Notch signaling. The BMP, Edn1, and Jag1b pathways intersect because BMP signaling is required for ventral edn1 expression that, in turn, restricts jag1b to dorsal CNCC territory. In zebrafish, the scaffolding protein Wdr68 is required for edn1 expression and subsequent formation of the ventral Meckel’s cartilage as well as the dorsal Palatoquadrate. Here we report that wdr68 activity is required between the 17-somites and prim-5 stages, that edn1 functions downstream of wdr68, and that wdr68 activity restricts jag1b, hey1, and grem2 expression from ventral CNCC territory. Expression of dlx1a and dlx2a was also severely reduced in anterior dorsal and ventral 1st arch CNCC territory in wdr68 mutants. We also found that the BMP agonist isoliquiritigenin (ISL) can partially rescue lower jaw formation and edn1 expression in wdr68 mutants. However, we found no significant defects in BMP reporter induction or pSmad1/5 accumulation in wdr68 mutant cells or zebrafish. The Transforming Growth Factor Beta (TGF-β) signaling pathway is also known to be important for craniofacial development and can interfere with BMP signaling. Here we further report that TGF-β interference with BMP signaling was greater in wdr68 mutant cells relative to control cells. To determine whether interference might also act in vivo, we treated wdr68 mutant zebrafish embryos with the TGF-β signaling inhibitor SB431542 and found partial rescue of edn1 expression and craniofacial development. While ISL treatment failed, SB431542 partially rescued dlx2a expression in wdr68 mutants. Together these findings reveal an indirect role for Wdr68 in the BMP-Edn1-Jag1b signaling hierarchy and dorso-anterior expression of dlx1a/2a.
Collapse
Affiliation(s)
- Estibaliz Alvarado
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Mina Yousefelahiyeh
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Greg Alvarado
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Robin Shang
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Taryn Whitman
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Andrew Martinez
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Yang Yu
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Annie Pham
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Anish Bhandari
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Bingyan Wang
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Robert M. Nissen
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Yu T, Volponi AA, Babb R, An Z, Sharpe PT. Stem Cells in Tooth Development, Growth, Repair, and Regeneration. Curr Top Dev Biol 2015; 115:187-212. [PMID: 26589926 DOI: 10.1016/bs.ctdb.2015.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human teeth contain stem cells in all their mesenchymal-derived tissues, which include the pulp, periodontal ligament, and developing roots, in addition to the support tissues such as the alveolar bone. The precise roles of these cells remain poorly understood and most likely involve tissue repair mechanisms but their relative ease of harvesting makes teeth a valuable potential source of mesenchymal stem cells (MSCs) for therapeutic use. These dental MSC populations all appear to have the same developmental origins, being derived from cranial neural crest cells, a population of embryonic stem cells with multipotential properties. In rodents, the incisor teeth grow continuously throughout life, a feature that requires populations of continuously active mesenchymal and epithelial stem cells. The discrete locations of these stem cells in the incisor have rendered them amenable for study and much is being learnt about the general properties of these stem cells for the incisor as a model system. The incisor MSCs appear to be a heterogeneous population consisting of cells from different neural crest-derived tissues. The epithelial stem cells can be traced directly back in development to a Sox10(+) population present at the time of tooth initiation. In this review, we describe the basic biology of dental stem cells, their functions, and potential clinical uses.
Collapse
Affiliation(s)
- Tian Yu
- Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, London, United Kingdom
| | - Ana Angelova Volponi
- Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, London, United Kingdom
| | - Rebecca Babb
- Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, London, United Kingdom
| | - Zhengwen An
- Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, London, United Kingdom
| | - Paul T Sharpe
- Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, London, United Kingdom.
| |
Collapse
|
18
|
Hegarty SV, Sullivan AM, O'Keeffe GW. Zeb2: A multifunctional regulator of nervous system development. Prog Neurobiol 2015; 132:81-95. [PMID: 26193487 DOI: 10.1016/j.pneurobio.2015.07.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022]
Abstract
Zinc finger E-box binding homeobox (Zeb) 2 is a transcription factor, identified due its ability to bind Smad proteins, and consists of multiple functional domains which interact with a variety of transcriptional co-effectors. The complex nature of the Zeb2, both at its genetic and protein levels, underlie its multifunctional properties, with Zeb2 capable of acting individually or as part of a transcriptional complex to repress, and occasionally activate, target gene expression. This review introduces Zeb2 as an essential regulator of nervous system development. Zeb2 is expressed in the nervous system throughout its development, indicating its importance in neurogenic and gliogenic processes. Indeed, mutation of Zeb2 has dramatic neurological consequences both in animal models, and in humans with Mowat-Wilson syndrome, which results from heterozygous ZEB2 mutations. The mechanisms by which Zeb2 regulates the induction of the neuroectoderm (CNS primordium) and the neural crest (PNS primordium) are reviewed herein. We then describe how Zeb2 acts to direct the formation, delamination, migration and specification of neural crest cells. Zeb2 regulation of the development of a number of cerebral regions, including the neocortex and hippocampus, are then described. The diverse molecular mechanisms mediating Zeb2-directed development of various neuronal and glial populations are reviewed. The role of Zeb2 in spinal cord and enteric nervous system development is outlined, while its essential function in CNS myelination is also described. Finally, this review discusses how the neurodevelopmental defects of Zeb2 mutant mice delineate the developmental dysfunctions underpinning the multiple neurological defects observed in Mowat-Wilson syndrome patients.
Collapse
Affiliation(s)
- Shane V Hegarty
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland.
| | - Aideen M Sullivan
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
19
|
Gudbrandsson J, Ahi EP, Franzdottir SR, Kapralova KH, Kristjansson BK, Steinhaeuser SS, Maier VH, Johannesson IM, Snorrason SS, Jonsson ZO, Palsson A. The developmental transcriptome of contrasting Arctic charr (Salvelinus alpinus) morphs. F1000Res 2015; 4:136. [PMID: 27635217 PMCID: PMC5007756 DOI: 10.12688/f1000research.6402.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Species and populations with parallel evolution of specific traits can help illuminate how predictable adaptations and divergence are at the molecular and developmental level. Following the last glacial period, dwarfism and specialized bottom feeding morphology evolved rapidly in several landlocked Arctic charrSalvelinus alpinuspopulations in Iceland. To study the genetic divergence between small benthic morphs and limnetic morphs, we conducted RNA-sequencing charr embryos at four stages in early development. We studied two stocks with contrasting morphologies: the small benthic (SB) charr from Lake Thingvallavatn and Holar aquaculture (AC) charr.The data reveal significant differences in expression of several biological pathways during charr development. There was also an expression difference between SB- and AC-charr in genes involved in energy metabolism and blood coagulation genes. We confirmed differing expression of five genes in whole embryos with qPCR, includinglysozymeandnatterin-likewhich was previously identified as a fish-toxin of a lectin family that may be a putative immunopeptide. We also verified differential expression of 7 genes in the developing head that associated consistently with benthic v.s.limnetic morphology (studied in 4 morphs). Comparison of single nucleotide polymorphism (SNP) frequencies reveals extensive genetic differentiation between the SB and AC-charr (~1300 with more than 50% frequency difference). Curiously, three derived alleles in the otherwise conserved 12s and 16s mitochondrial ribosomal RNA genes are found in benthic charr.The data implicate multiple genes and molecular pathways in divergence of small benthic charr and/or the response of aquaculture charr to domestication. Functional, genetic and population genetic studies on more freshwater and anadromous populations are needed to confirm the specific loci and mutations relating to specific ecological traits in Arctic charr.
Collapse
|
20
|
Gudbrandsson J, Ahi EP, Franzdottir SR, Kapralova KH, Kristjansson BK, Steinhaeuser SS, Maier VH, Johannesson IM, Snorrason SS, Jonsson ZO, Palsson A. The developmental transcriptome of contrasting Arctic charr ( Salvelinus alpinus) morphs. F1000Res 2015; 4:136. [PMID: 27635217 PMCID: PMC5007756 DOI: 10.12688/f1000research.6402.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 12/23/2022] Open
Abstract
Species and populations with parallel evolution of specific traits can help illuminate how predictable adaptations and divergence are at the molecular and developmental level. Following the last glacial period, dwarfism and specialized bottom feeding morphology evolved rapidly in several landlocked Arctic charr
Salvelinus alpinus populations in Iceland. To study the genetic divergence between small benthic morphs and limnetic morphs, we conducted RNA-sequencing charr embryos at four stages in early development. We studied two stocks with contrasting morphologies: the small benthic (SB) charr from Lake Thingvallavatn and Holar aquaculture (AC) charr. The data reveal significant differences in expression of several biological pathways during charr development. There was also an expression difference between SB- and AC-charr in genes involved in energy metabolism and blood coagulation genes. We confirmed differing expression of five genes in whole embryos with qPCR, including
lysozyme and
natterin-like which was previously identified as a fish-toxin of a lectin family that may be a putative immunopeptide. We also verified differential expression of 7 genes in the developing head that associated consistently with benthic v.s.limnetic morphology (studied in 4 morphs). Comparison of single nucleotide polymorphism (SNP) frequencies reveals extensive genetic differentiation between the SB and AC-charr (~1300 with more than 50% frequency difference). Curiously, three derived alleles in the otherwise conserved 12s and 16s mitochondrial ribosomal RNA genes are found in benthic charr. The data implicate multiple genes and molecular pathways in divergence of small benthic charr and/or the response of aquaculture charr to domestication. Functional, genetic and population genetic studies on more freshwater and anadromous populations are needed to confirm the specific loci and mutations relating to specific ecological traits in Arctic charr.
Collapse
Affiliation(s)
- Johannes Gudbrandsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Ehsan P Ahi
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Sigridur R Franzdottir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Kalina H Kapralova
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | | | - S Sophie Steinhaeuser
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Valerie H Maier
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Isak M Johannesson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Sigurdur S Snorrason
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Zophonias O Jonsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Arnar Palsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| |
Collapse
|
21
|
Integration of comprehensive 3D microCT and signaling analysis reveals differential regulatory mechanisms of craniofacial bone development. Dev Biol 2015; 400:180-90. [PMID: 25722190 DOI: 10.1016/j.ydbio.2015.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 12/31/2022]
Abstract
Growth factor signaling regulates tissue-tissue interactions to control organogenesis and tissue homeostasis. Specifically, transforming growth factor beta (TGFβ) signaling plays a crucial role in the development of cranial neural crest (CNC) cell-derived bone, and loss of Tgfbr2 in CNC cells results in craniofacial skeletal malformations. Our recent studies indicate that non-canonical TGFβ signaling is activated whereas canonical TGFβ signaling is compromised in the absence of Tgfbr2 (in Tgfbr2(fl/fl);Wnt1-Cre mice). A haploinsufficiency of Tgfbr1 (aka Alk5) (Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+)) largely rescues craniofacial deformities in Tgfbr2 mutant mice by reducing ectopic non-canonical TGFβ signaling. However, the relative involvement of canonical and non-canonical TGFβ signaling in regulating specific craniofacial bone formation remains unclear. We compared the size and volume of CNC-derived craniofacial bones (frontal bone, premaxilla, maxilla, palatine bone, and mandible) from E18.5 control, Tgfbr2(fl/fl);Wnt1-Cre, and Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+)mice. By analyzing three dimensional (3D) micro-computed tomography (microCT) images, we found that different craniofacial bones were restored to different degrees in Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+) mice. Our study provides comprehensive information on anatomical landmarks and the size and volume of each craniofacial bone, as well as insights into the extent that canonical and non-canonical TGFβ signaling cascades contribute to the formation of each CNC-derived bone. Our data will serve as an important resource for developmental biologists who are interested in craniofacial morphogenesis.
Collapse
|
22
|
Liu X, Xu Z, Zhu L, Liao S, Guo W. Transcriptome analysis of porcine thymus following porcine cytomegalovirus infection. PLoS One 2014; 9:e113921. [PMID: 25423176 PMCID: PMC4244220 DOI: 10.1371/journal.pone.0113921] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 10/31/2014] [Indexed: 11/19/2022] Open
Abstract
Porcine cytomegalovirus (PCMV) is a major immunosuppressive virus that mainly affects the immune function of T lymphocytes and macrophages. Despite being widely distributed around the world, no significantly different PCMV serotypes have been found. Moreover, the molecular immunosuppressive mechanisms of PCMV, along with the host antiviral mechanisms, are still not well characterized. To understand the potential impact of PCMV on the function of immune organs, we examined the transcriptome of PCMV-infected thymuses by microarray analysis. We identified 5,582 genes that were differentially expressed as a result of PCMV infection. Of these, 2,161 were upregulated and 3,421 were downregulated compared with the uninfected group. We confirmed the expression of 13 differentially expressed immune-related genes using quantitative real-time RT-PCR, and further confirmed the expression of six of those cytokines by western blot. Gene ontology, gene interaction networks, and KEGG pathway analysis of our results indicated that PCMV regulates multiple functional pathways, including the immune system, cellular and metabolic processes, networks of cytokine-cytokine receptor interactions, the TGF-β signaling pathway, the lymphocyte receptor signaling pathway, and the TNF-α signaling pathway. Our study is the first comprehensive attempt to explore the host transcriptional response to PCMV infection in the porcine immune system. It provides new insights into the immunosuppressive molecular mechanisms and pathogenesis of PCMV. This previously unrecognized endogenous antiviral mechanism has implications for the development of host-directed strategies for the prevention and treatment of immunosuppressive viral diseases.
Collapse
Affiliation(s)
- Xiao Liu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya' an, China
| | - Zhiwen Xu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya' an, China
- Key Laboratory of Animal Disease and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Ya' an, China
- * E-mail:
| | - Ling Zhu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya' an, China
| | - Shan Liao
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya' an, China
| | - Wanzhu Guo
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya' an, China
| |
Collapse
|
23
|
Ahi EP, Kapralova KH, Pálsson A, Maier VH, Gudbrandsson J, Snorrason SS, Jónsson ZO, Franzdóttir SR. Transcriptional dynamics of a conserved gene expression network associated with craniofacial divergence in Arctic charr. EvoDevo 2014; 5:40. [PMID: 25419450 PMCID: PMC4240837 DOI: 10.1186/2041-9139-5-40] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/17/2014] [Indexed: 12/30/2022] Open
Abstract
Background Understanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial structures. We conducted a gene expression study on candidates from a conserved gene coexpression network, focusing on the development of craniofacial elements in embryos of two contrasting Arctic charr morphotypes (benthic and limnetic). Results Four Arctic charr morphs were studied: one limnetic and two benthic morphs from Lake Thingvallavatn and a limnetic reference aquaculture morph. The presence of morphological differences at developmental stages before the onset of feeding was verified by morphometric analysis. Following up on our previous findings that Mmp2 and Sparc were differentially expressed between morphotypes, we identified a network of genes with conserved coexpression across diverse vertebrate species. A comparative expression study of candidates from this network in developing heads of the four Arctic charr morphs verified the coexpression relationship of these genes and revealed distinct transcriptional dynamics strongly correlated with contrasting craniofacial morphologies (benthic versus limnetic). A literature review and Gene Ontology analysis indicated that a significant proportion of the network genes play a role in extracellular matrix organization and skeletogenesis, and motif enrichment analysis of conserved noncoding regions of network candidates predicted a handful of transcription factors, including Ap1 and Ets2, as potential regulators of the gene network. The expression of Ets2 itself was also found to associate with network gene expression. Genes linked to glucocorticoid signalling were also studied, as both Mmp2 and Sparc are responsive to this pathway. Among those, several transcriptional targets and upstream regulators showed differential expression between the contrasting morphotypes. Interestingly, although selected network genes showed overlapping expression patterns in situ and no morph differences, Timp2 expression patterns differed between morphs. Conclusion Our comparative study of transcriptional dynamics in divergent craniofacial morphologies of Arctic charr revealed a conserved network of coexpressed genes sharing functional roles in structural morphogenesis. We also implicate transcriptional regulators of the network as targets for future functional studies. Electronic supplementary material The online version of this article (doi:10.1186/2041-9139-5-40) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Kalina Hristova Kapralova
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Arnar Pálsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland ; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Valerie Helene Maier
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Jóhannes Gudbrandsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Sigurdur S Snorrason
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Zophonías O Jónsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland ; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Sigrídur Rut Franzdóttir
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| |
Collapse
|
24
|
Hewitt PG, Singh PK, Kumar A, Gnewuch C, Liebisch G, Schmitz G, Borlak J. A rat toxicogenomics study with the calcium sensitizer EMD82571 reveals a pleiotropic cause of teratogenicity. Reprod Toxicol 2014; 47:89-101. [PMID: 24977338 DOI: 10.1016/j.reprotox.2014.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/09/2014] [Accepted: 06/19/2014] [Indexed: 11/16/2022]
Abstract
The calcium sensitizer and PDEIII inhibitor EMD82571 caused exencephaly, micrognathia, agnathia and facial cleft in 58% of fetuses. In pursue of mechanisms and to define adverse outcome pathways pregnant Wistar rats were dosed daily with either EMD82571 (50 or 150mg/kg/day) or retinoic acid (12mg/kg/day) on gestational days 6-11 and 6-17, respectively. Hypothesis driven and whole genome microarray experiments were performed with whole embryo, maternal liver, embryonic liver and malformed bone at gestational days 12 and 20. This revealed regulation of genes critically involved in osteogenesis, odontogenesis, differentiation and development and extracellular matrix. Importantly, repression of osteocalcin and members of TGF-β/BMP signaling hampered osteo- and odontogenesis. Furthermore, EMD82571 impaired neurulation by inhibiting mid hinge point formation to cause neural tube defects. Taken collectively, a molecular rationale for the observed teratogenicity induced by EMD82571 is presented that links molecular initiating events with AOPs.
Collapse
Affiliation(s)
- Philip G Hewitt
- Non-Clinical Safety, Merck Serono, 64283 Darmstadt, Germany.
| | - Prafull Kumar Singh
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| | - Arun Kumar
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| | - Carsten Gnewuch
- Institute for Clinical Chemistry and Laboratory Medicine, Regensburg University Medical Center, 93053 Regensburg, Germany.
| | - Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, Regensburg University Medical Center, 93053 Regensburg, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, Regensburg University Medical Center, 93053 Regensburg, Germany.
| | - Juergen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
25
|
Baek WY, Kim YJ, de Crombrugghe B, Kim JE. Osterix is required for cranial neural crest-derived craniofacial bone formation. Biochem Biophys Res Commun 2013; 432:188-92. [PMID: 23313488 DOI: 10.1016/j.bbrc.2012.12.138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 12/31/2012] [Indexed: 10/27/2022]
Abstract
Osx plays essential roles in regulating osteoblast and chondrocyte differentiation, and bone formation during mouse skeletal development. However, many questions remain regarding the requirement for Osx in different cell lineages. In this study, we asked whether Osx is required for craniofacial bone formation derived from cranial neural crest (CNC) cells. The Osx gene was conditionally inactivated in CNC-derived cells using a Wnt1-Cre recombination system. Neural crest-specific inactivation of Osx resulted in the complete absence of intramembranous skeletal elements derived from the CNC, and CNC-derived endochondral skeletal elements were also affected by Osx inactivation. Interestingly, Osx inactivated CNC-derived cells, which were recapitulated by lacZ expression, occupied the same regions of craniofacial skeletal elements as observed for controls. However, cells lost their osteogenic ability to differentiate into functional osteoblasts by Osx inactivation. These results suggest that Osx is important for craniofacial bone formation by CNC-derived cells. This finding provides novel insights of the regulation of craniofacial development by the gene network and transcription factors, and the understanding of human diseases caused by neural crest developmental abnormalities.
Collapse
Affiliation(s)
- Wook-Young Baek
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Medical Education Program for Human Resources, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | | | | |
Collapse
|
26
|
Wang W, Olson D, Liang G, Franceschi RT, Li C, Wang B, Wang SS, Yang S. Collagen XXIV (Col24α1) promotes osteoblastic differentiation and mineralization through TGF-β/Smads signaling pathway. Int J Biol Sci 2012; 8:1310-22. [PMID: 23139630 PMCID: PMC3492790 DOI: 10.7150/ijbs.5136] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/01/2012] [Indexed: 12/19/2022] Open
Abstract
Collagen XXIV (Col24α1) is a recently discovered fibrillar collagen. It is known that mouse Col24α1 is predominantly expressed in the forming skeleton of the mouse embryo, as well as in the trabecular bone and periosteum of the newborn mouse. However, the role and mechanism of Col24α1 in osteoblast differentiation and mineralization remains unclear. By analyzing the expression pattern of Col24α1, we confirmed that it is primarily expressed in bone tissues, and this expression gradually increased concomitant with the progression of osteoblast differentiation. Through the use of a lentivirus vector-mediated interference system, silencing Col24α1 expression in MC3T3-E1 murine preosteoblastic cells resulted in significant inhibition of alkaline phosphatase (ALP) activity, cell mineralization, and the expression of osteoblast marker genes such as runt-related transcription factor 2 (Runx2), osteocalcin (OCN), ALP, and type I collagen (Col I). Subsequent overexpression not only rescued the deficiency in osteoblast differentiation from Col24α1 silenced cells, but also enhanced osteoblastic differentiation in control cells. We further revealed that Col24α1 interacts with integrin β3, and silencing Col24α1 up-regulated the expression of Smad7 during osteoblast differentiation while at the same time inhibiting the phosphorylation of the Smad2/3 complex. These results suggest that Col24α1 imparts some of its regulatory control on osteoblast differentiation and mineralization at least partially through interaction with integrin β3 and the transforming growth factor beta (TGF-β) /Smads signaling pathway.
Collapse
Affiliation(s)
- Weizhuo Wang
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Iwata JI, Tung L, Urata M, Hacia JG, Pelikan R, Suzuki A, Ramenzoni L, Chaudhry O, Parada C, Sanchez-Lara PA, Chai Y. Fibroblast growth factor 9 (FGF9)-pituitary homeobox 2 (PITX2) pathway mediates transforming growth factor β (TGFβ) signaling to regulate cell proliferation in palatal mesenchyme during mouse palatogenesis. J Biol Chem 2012; 287:2353-63. [PMID: 22123828 PMCID: PMC3268397 DOI: 10.1074/jbc.m111.280974] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/25/2011] [Indexed: 12/29/2022] Open
Abstract
Cleft palate represents one of the most common congenital birth defects. Transforming growth factor β (TGFβ) signaling plays crucial functions in regulating craniofacial development, and loss of TGFβ receptor type II in cranial neural crest cells leads to craniofacial malformations, including cleft palate in mice (Tgfbr2(fl/fl);Wnt1-Cre mice). Here we have identified candidate target genes of TGFβ signaling during palatal formation. These target genes were selected based on combining results from gene expression profiles of embryonic day 14.5 palates from Tgfbr2(fl/fl);Wnt1-Cre mice and previously identified cleft palate phenotypes in genetically engineered mouse models. We found that fibroblast growth factor 9 (Fgf9) and transcription factor pituitary homeobox 2 (Pitx2) expressions are significantly down-regulated in the palate of Tgfbr2(fl/fl);Wnt1-Cre mice, and Fgf9 and Pitx2 loss of function mutations result in cleft palate in mice. Pitx2 expression is down-regulated by siRNA knockdown of Fgf9, suggesting that Fgf9 is upstream of Pitx2. We detected decreased expression of both cyclins D1 and D3 in the palates of Tgfbr2(fl/fl);Wnt1-Cre mice, consistent with the defect in cell proliferation. Significantly, exogenous FGF9 restores expression of cyclins D1 and D3 in a Pitx2-dependent manner and rescues the cell proliferation defect in the palatal mesenchyme of Tgfbr2(fl/fl);Wnt1-Cre mice. Our study indicates that a TGFβ-FGF9-PITX2 signaling cascade regulates cranial neural crest cell proliferation during palate formation.
Collapse
Affiliation(s)
- Jun-ichi Iwata
- From the Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and
| | - Lily Tung
- From the Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and
- Division of Plastic and Reconstruction Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, and
| | - Mark Urata
- From the Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and
- Division of Plastic and Reconstruction Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, and
| | - Joseph G. Hacia
- Department of Biochemistry and Molecular Biology, Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, California 90033
| | - Richard Pelikan
- From the Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and
| | - Akiko Suzuki
- From the Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and
| | - Liza Ramenzoni
- From the Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and
| | - Obaid Chaudhry
- From the Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and
- Division of Plastic and Reconstruction Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, and
| | - Carolina Parada
- From the Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and
| | - Pedro A. Sanchez-Lara
- the Department of Pediatrics and
- the Division of Medical Genetics, Children's Hospital Los Angeles, Los Angeles, California 90027
| | - Yang Chai
- From the Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and
| |
Collapse
|
28
|
Alexander C, Zuniga E, Blitz IL, Wada N, Le Pabic P, Javidan Y, Zhang T, Cho KW, Crump JG, Schilling TF. Combinatorial roles for BMPs and Endothelin 1 in patterning the dorsal-ventral axis of the craniofacial skeleton. Development 2011; 138:5135-46. [PMID: 22031543 DOI: 10.1242/dev.067801] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bone morphogenetic proteins (BMPs) play crucial roles in craniofacial development but little is known about their interactions with other signals, such as Endothelin 1 (Edn1) and Jagged/Notch, which pattern the dorsal-ventral (DV) axis of the pharyngeal arches. Here, we use transgenic zebrafish to monitor and perturb BMP signaling during arch formation. With a BMP-responsive transgene, Tg(Bre:GFP), we show active BMP signaling in neural crest (NC)-derived skeletal precursors of the ventral arches, and in surrounding epithelia. Loss-of-function studies using a heat shock-inducible, dominant-negative BMP receptor 1a [Tg(hs70I:dnBmpr1a-GFP)] to bypass early roles show that BMP signaling is required for ventral arch development just after NC migration, the same stages at which we detect Tg(Bre:GFP). Inhibition of BMP signaling at these stages reduces expression of the ventral signal Edn1, as well as ventral-specific genes such as hand2 and dlx6a in the arches, and expands expression of the dorsal signal jag1b. This results in a loss or reduction of ventral and intermediate skeletal elements and a mis-shapen dorsal arch skeleton. Conversely, ectopic BMP causes dorsal expansion of ventral-specific gene expression and corresponding reductions/transformations of dorsal cartilages. Soon after NC migration, BMP is required to induce Edn1 and overexpression of either signal partially rescues ventral skeletal defects in embryos deficient for the other. However, once arch primordia are established the effects of BMPs become restricted to more ventral and anterior (palate) domains, which do not depend on Edn1. This suggests that BMPs act upstream and in parallel to Edn1 to promote ventral fates in the arches during early DV patterning, but later acquire distinct roles that further subdivide the identities of NC cells to pattern the craniofacial skeleton.
Collapse
Affiliation(s)
- Courtney Alexander
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
John N, Cinelli P, Wegner M, Sommer L. Transforming growth factor β-mediated Sox10 suppression controls mesenchymal progenitor generation in neural crest stem cells. Stem Cells 2011; 29:689-99. [PMID: 21308864 DOI: 10.1002/stem.607] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During vertebrate development, neural crest stem cells (NCSCs) give rise to neural cells of the peripheral nervous system and to a variety of mesenchymal cell types, including smooth muscle, craniofacial chondrocytes, and osteocytes. Consistently, mesenchymal stem cells (MSCs) have recently been shown to derive in part from the neural crest (NC), although the mechanisms underlying MSC generation remains to be identified. Here, we show that transforming growth factor β (TGFβ)-mediated suppression of the NCSC transcription factor Sox10 induces a switch in neural to mesenchymal potential in NCSCs. In vitro and in vivo, TGFβ signal inactivation results in persistent Sox10 expression, decreased cell cycle exit, and perturbed generation of mesenchymal derivatives, which eventually leads to defective morphogenesis. In contrast, TGFβ-mediated downregulation of Sox10 or its genetic inactivation suppresses neural potential, confers mesenchymal potential to NC cells in vitro, and promotes cell cycle exit and precocious mesenchymal differentiation in vivo. Thus, negative regulation of Sox10 by TGFβ signaling promotes the generation of mesenchymal progenitors from NCSCs. Our study might lay the grounds for future applications demanding defined populations of MSCs for regenerative medicine.
Collapse
Affiliation(s)
- Nessy John
- Division of Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
30
|
de Jong E, Barenys M, Hermsen SAB, Verhoef A, Ossendorp BC, Bessems JGM, Piersma AH. Comparison of the mouse Embryonic Stem cell Test, the rat Whole Embryo Culture and the Zebrafish Embryotoxicity Test as alternative methods for developmental toxicity testing of six 1,2,4-triazoles. Toxicol Appl Pharmacol 2011; 253:103-11. [PMID: 21443896 DOI: 10.1016/j.taap.2011.03.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 02/01/2023]
Abstract
The relatively high experimental animal use in developmental toxicity testing has stimulated the search for alternatives that are less animal intensive. Three widely studied alternative assays are the mouse Embryonic Stem cell Test (EST), the Zebrafish Embryotoxicity Test (ZET) and the rat postimplantation Whole Embryo Culture (WEC). The goal of this study was to determine their efficacy in assessing the relative developmental toxicity of six 1,2,4-triazole compounds,(1) flusilazole, hexaconazole, cyproconazole, triadimefon, myclobutanil and triticonazole. For this purpose, we analyzed effects and relative potencies of the compounds in and among the alternative assays and compared the findings to their known in vivo developmental toxicity. Triazoles are antifungal agents used in agriculture and medicine, some of which are known to induce craniofacial and limb abnormalities in rodents. The WEC showed a general pattern of teratogenic effects, typical of exposure to triazoles, mainly consisting of reduction and fusion of the first and second branchial arches, which are in accordance with the craniofacial malformations reported after in vivo exposure. In the EST all triazole compounds inhibited cardiomyocyte differentiation concentration-dependently. Overall, the ZET gave the best correlation with the relative in vivo developmental toxicities of the tested compounds, closely followed by the EST. The relative potencies observed in the WEC showed the lowest correlation with the in vivo developmental toxicity data. These differences in the efficacy between the test systems might be due to differences in compound kinetics, in developmental stages represented and in the relative complexity of the alternative assays.
Collapse
Affiliation(s)
- Esther de Jong
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Cleft palate, a malformation of the secondary palate development, is one of the most common human congenital birth defects. Palate formation is a complex process resulting in the separation of the oral and nasal cavities that involves multiple events, including palatal growth, elevation, and fusion. Recent findings show that transforming growth factor beta (TGF-β) signaling plays crucial roles in regulating palate development in both the palatal epithelium and mesenchyme. Here, we highlight recent advances in our understanding of TGF-β signaling during palate development.
Collapse
Affiliation(s)
- J Iwata
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
32
|
Tran TH, Jarrell A, Zentner GE, Welsh A, Brownell I, Scacheri PC, Atit R. Role of canonical Wnt signaling/ß-catenin via Dermo1 in cranial dermal cell development. Development 2010; 137:3973-84. [PMID: 20980404 DOI: 10.1242/dev.056473] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cranial dermis develops from cephalic mesoderm and neural crest cells, but what signal(s) specifies the dermal lineage is unclear. Using genetic tools to fate map and manipulate a cranial mesenchymal progenitor population in the supraorbital region, we show that the dermal progenitor cells beneath the surface ectoderm process canonical Wnt signaling at the time of specification. We show that Wnt signaling/β-catenin is absolutely required and sufficient for Dermo1 expression and dermal cell identity in the cranium. The absence of the Wnt signaling cue leads to formation of cartilage in craniofacial and ventral trunk regions at the expense of dermal and bone lineages. Dermo1 can be a direct transcription target and may mediate the functional role of Wnt signaling in dermal precursors. This study reveals a lineage-specific role of canonical Wnt signaling/β-catenin in promoting dermal cell fate in distinct precursor populations.
Collapse
Affiliation(s)
- Thu H Tran
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Brown GD, Nazarali AJ. Matrix metalloproteinase-25 has a functional role in mouse secondary palate development and is a downstream target of TGF-β3. BMC DEVELOPMENTAL BIOLOGY 2010; 10:93. [PMID: 20809987 PMCID: PMC2944159 DOI: 10.1186/1471-213x-10-93] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/01/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Development of the secondary palate (SP) is a complex event and abnormalities during SP development can lead to cleft palate, one of the most common birth disorders. Matrix metalloproteinases (MMPs) are required for proper SP development, although a functional role for any one MMP in SP development remains unknown. MMP-25 may have a functional role in SP formation as genetic scans of the DNA of human cleft palate patients indicate a common mutation at a region upstream of the MMP-25 gene. We report on the gene expression profile of MMP-25 in the developing mouse SP and identify its functional role in mouse SP development. RESULTS MMP-25 mRNA and protein are found at all SP developmental stages in mice, with the highest expression at embryonic day (E) 13.5. Immunohistochemistry and in situ hybridization localize MMP-25 protein and mRNA, respectively, to the apical palate shelf epithelial cells and apical mesenchyme. MMP-25 knockdown with siRNA in palatal cultures results in a significant decrease in palate shelf fusion and persistence of the medial edge epithelium. MMP-25 mRNA and protein levels significantly decrease when cultured palate shelves are incubated in growth medium with 5 μg/mL of a TGF-β3-neutralizing antibody. CONCLUSIONS Our findings indicate: (i) MMP-25 gene expression is highest at E12.5 and E13.5, which corresponds with increasing palate shelf growth downward alongside the tongue; (ii) MMP-25 protein and mRNA expression predominantly localize in the apical epithelium of the palate shelves, but are also found in apical areas of the mesenchyme; (iii) knockdown of MMP-25 mRNA expression impairs palate shelf fusion and results in significant medial edge epithelium remaining in contacted areas; and (iv) bio-neutralization of TGF-β3 significantly decreases MMP-25 gene expression. These data suggest a functional role for MMP-25 in mouse SP development and are the first to identify a role for a single MMP in mouse SP development.
Collapse
Affiliation(s)
- Graham D Brown
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | | |
Collapse
|
34
|
Cheah FSH, Winkler C, Jabs EW, Chong SS. Tgfbeta3 regulation of chondrogenesis and osteogenesis in zebrafish is mediated through formation and survival of a subpopulation of the cranial neural crest. Mech Dev 2010; 127:329-44. [PMID: 20406684 DOI: 10.1016/j.mod.2010.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 04/14/2010] [Accepted: 04/15/2010] [Indexed: 11/26/2022]
Abstract
Zebrafish tgfbeta3 is strongly expressed in a subpopulation of the migrating neural crest cells, developing pharyngeal arches and neurocranial cartilages. To study the regulatory role of tgfbeta3 in head skeletal formation, we knocked down tgfbeta3 in zebrafish and found impaired craniofacial chondrogenesis, evident by malformations in selected neurocranial and pharyngeal arch cartilages. Over-expressing tgfbeta3 in embryos resulted in smaller craniofacial cartilages without any gross malformations. These defects suggest that tgfbeta3 is required for normal chondrogenesis. To address the cellular mechanisms that lead to the observed malformations, we analyzed cranial neural crest development in morphant and tgfbeta3 over-expressing fish. We observed reduced pre-migratory and migratory cranial neural crest, the precursors of the neurocranial cartilage and pharyngeal arches, in tgfbeta3 knockdown embryos. In contrast, only the migratory neural crest was reduced in embryos over-expressing tgfbeta3. This raised the possibility that the reduced number of cranial neural crest cells is a result of increased apoptosis. Consistent with this, markedly elevated TUNEL staining in the midbrain and hindbrain, and developing pharyngeal arch region was observed in morphants, while tgfbeta3 over-expressing embryos showed marginally increased apoptosis in the developing pharyngeal arch region. We propose that both Tgfbeta3 suppression and over-expression result in reduced chondrocyte and osteocyte formation, but to different degrees and through different mechanisms. In Tgfbeta3 suppressed embryos, this is due to impaired formation and survival of a subpopulation of cranial neural crest cells through markedly increased apoptosis in regions containing the cranial neural crest cells, while in Tgfbeta3 over-expressing embryos, the milder phenotype is also due to a slightly elevated apoptosis in these regions. Therefore, proper cranial neural crest formation and survival, and ultimately craniofacial chondrogenesis and osteogenesis, are dependent on tight regulation of Tgfbeta3 protein levels in zebrafish.
Collapse
Affiliation(s)
- Felicia S H Cheah
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | |
Collapse
|
35
|
Marotta F, Tiboni GM. Molecular aspects of azoles-induced teratogenesis. Expert Opin Drug Metab Toxicol 2010; 6:461-82. [DOI: 10.1517/17425251003592111] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Iwata JI, Hosokawa R, Sanchez-Lara PA, Urata M, Slavkin H, Chai Y. Transforming growth factor-beta regulates basal transcriptional regulatory machinery to control cell proliferation and differentiation in cranial neural crest-derived osteoprogenitor cells. J Biol Chem 2009; 285:4975-82. [PMID: 19959467 DOI: 10.1074/jbc.m109.035105] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta (Tgf-beta) signaling is crucial for regulating craniofacial development. Loss of Tgf-beta signaling results in defects in cranial neural crest cells (CNCC), but the mechanism by which Tgf-beta signaling regulates bone formation in CNCC-derived osteogenic cells remains largely unknown. In this study, we discovered that Tgf-beta regulates the basal transcriptional regulatory machinery to control intramembranous bone development. Specifically, basal transcription factor Taf4b is down-regulated in the CNCC-derived intramembranous bone in Tgfbr2(fl/fl);Wnt1-Cre mice. Tgf-beta specifically induces Taf4b expression. Moreover, small interfering RNA knockdown of Taf4b results in decreased cell proliferation and altered osteogenic differentiation in primary mouse embryonic maxillary mesenchymal cells, as seen in Tgfbr2 mutant cells. In addition, we show that Taf1 is decreased at the osteogenic initiation stage in the maxilla of Tgfbr2 mutant mice. Furthermore, small interfering RNA knockdown of Taf4b and Taf1 together in primary mouse embryonic maxillary mesenchymal cells results in up-regulated osteogenic initiator Runx2 expression, with decreased cell proliferation and altered osteogenic differentiation. Our results indicate a critical function of Tgf-beta-mediated basal transcriptional factors in regulating osteogenic cell proliferation and differentiation in CNCC-derived osteoprogenitor cells during intramembranous bone formation.
Collapse
Affiliation(s)
- Jun-ichi Iwata
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
37
|
Li C, Zheng Q, Guo X, Quan D, Zhao J. Combined use of RGD-peptide modified PLGA and TGF-beta1 gene transfected MSCs to improve cell biobehaviors in vitro. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2009; 29:592-8. [PMID: 19821092 DOI: 10.1007/s11596-009-0512-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Indexed: 11/29/2022]
Abstract
In order to improve the surface properties of PLGA polymer for a better material/cell interface to modulate the cells behaviors, we prepared a novel three-block copolymer, PLGA-[ASP-PEG], and immobilized an RGD-containing peptide, Gly-Arg-Gly-Asp-Ser-Pro-Cys (GRGDSPC) on the surface of it. Transforming growth factor-beta1 (TGF-beta1) was transfected into bone marrow stromal cells (MSCs) employed as seeded cells. Cell adhesion, spreading, proliferation and differentiation on this material were investigated. The results showed that the cell adhesive ratio on RGD-modified materials was higher than on un-modified materials (P<0.05). The extent of cell spreading was also wider on RGD-modified materials than on un-modified materials. Cell proliferation indices of transfected MSCs were increased as compared with the un-transfected MSCs (P<0.05). The ALP activities in the MSCs cultured with RGD-modified materials were higher than on un-modified materials after 14 days (P<0.05), and those in transfected MSCs were higher than in un-transfected MSCs (P<0.05). It was suggested that the combined use of RGD-modification and TGF-beta gene transfection could improve the interaction of biomaterial and cells.
Collapse
Affiliation(s)
- Changwen Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | | | | | | | | |
Collapse
|
38
|
Di Renzo F, Corsini E, Broccia M, Marinovich M, Galli C, Giavini E, Menegola E. Molecular mechanism of teratogenic effects induced by the fungicide triadimefon: Study of the expression of TGF-β mRNA and TGF-β and CRABPI proteins during rat in vitro development. Toxicol Appl Pharmacol 2009; 234:107-16. [DOI: 10.1016/j.taap.2008.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/29/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
|
39
|
The Role of TGF-β Signaling in Cranial Neural Crest Cells during Mandibular and Tooth Development. J Oral Biosci 2009. [DOI: 10.1016/s1349-0079(09)80022-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Li WY, Dudas M, Kaartinen V. Signaling through Tgf-beta type I receptor Alk5 is required for upper lip fusion. Mech Dev 2008; 125:874-82. [PMID: 18586087 DOI: 10.1016/j.mod.2008.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 04/19/2008] [Accepted: 06/03/2008] [Indexed: 12/29/2022]
Abstract
Cleft lip with or without cleft palate is one of the most common congenital malformations in newborns. While numerous studies on secondary palatogenesis exist, data regarding normal upper lip formation and cleft lip is limited. We previously showed that conditional inactivation of Tgf-beta type I receptor Alk5 in the ectomesenchyme resulted in total facial clefting. While the role of Tgf-beta signaling in palatal fusion is relatively well understood, its role in upper lip fusion remains unknown. In order to investigate a role for Tgf-beta signaling in upper lip formation, we used the Nes-Cre transgenic mouse line to delete the Alk5 gene in developing facial prominences. We show that Alk5/Nes-Cre mutants display incompletely penetrant unilateral or bilateral cleft lip. Increased cell death seen in the medial nasal process and the maxillary process may explain the hypoplastic maxillary process observed in mutants. The resultant reduced contact is insufficient for normal lip fusion leading to cleft lip. These mice also display retarded development of palatal shelves and die at E15. Our findings support a role for Alk5 in normal upper lip formation not previously reported.
Collapse
Affiliation(s)
- Wai-Yee Li
- Developmental Biology Program, The Saban Research Institute of Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | | | | |
Collapse
|
41
|
Oka K, Oka S, Hosokawa R, Bringas P, Brockhoff HC, Nonaka K, Chai Y. TGF-beta mediated Dlx5 signaling plays a crucial role in osteo-chondroprogenitor cell lineage determination during mandible development. Dev Biol 2008; 321:303-9. [PMID: 18684439 DOI: 10.1016/j.ydbio.2008.03.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 03/04/2008] [Accepted: 03/24/2008] [Indexed: 11/17/2022]
Abstract
Transforming growth factor-beta (TGF-beta) signaling is crucial for mandible development. During its development, the majority of the mandible is formed through intramembranous ossification whereas the proximal region of the mandible undergoes endochondral ossification. Our previous work has shown that TGF-beta signaling is required for the proliferation of cranial neural crest (CNC)-derived ectomesenchyme in the mandibular primordium where intramembranous ossification takes place. Here we show that conditional inactivation of Tgfbr2 in CNC cells results in accelerated osteoprogenitor differentiation and perturbed chondrogenesis in the proximal region of the mandible. Specifically, the appearance of chondrocytes in Tgfbr2(fl/fl);Wnt1-Cre mice is delayed and they are smaller in size in the condylar process and completely missing in the angular process. TGF-beta signaling controls Sox9 expression in the proximal region, because Sox9 expression is delayed in condylar processes and missing in angular process in Tgfbr2(fl/fl);Wnt1-Cre mice. Moreover, exogenous TGF-beta can induce Sox9 expression in the mandibular arch. In the angular processes of Tgfbr2(fl/fl);Wnt1-Cre mice, osteoblast differentiation is accelerated and Dlx5 expression is elevated. Significantly, deletion of Dlx5 in Tgfbr2(fl/fl);Wnt1-Cre mice results in the rescue of cartilage formation in the angular processes. Finally, TGF-beta signaling-mediated Scleraxis expression is required for tendonogenesis in the developing skeletal muscle. Thus, CNC-derived cells in the proximal region of mandible have a cell intrinsic requirement for TGF-beta signaling.
Collapse
Affiliation(s)
- Kyoko Oka
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Jaskoll T, Abichaker G, Sedghizadeh PP, Bringas P, Melnick M. Cytomegalovirus induces abnormal chondrogenesis and osteogenesis during embryonic mandibular development. BMC DEVELOPMENTAL BIOLOGY 2008; 8:33. [PMID: 18371224 PMCID: PMC2330031 DOI: 10.1186/1471-213x-8-33] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 03/27/2008] [Indexed: 11/10/2022]
Abstract
Background Human clinical studies and mouse models clearly demonstrate that cytomegalovirus (CMV) disrupts normal organ and tissue development. Although CMV is one of the most common causes of major birth defects in humans, little is presently known about the mechanism(s) underlying CMV-induced congenital malformations. Our prior studies have demonstrated that CMV infection of first branchial arch derivatives (salivary glands and teeth) induced severely abnormal phenotypes and that CMV has a particular tropism for neural crest-derived mesenchyme (NCM). Since early embryos are barely susceptible to CMV infection, and the extant evidence suggests that the differentiation program needs to be well underway for embryonic tissues to be susceptible to viral infection and viral-induced pathology, the aim of this study was to determine if first branchial arch NCM cells are susceptible to mCMV infection prior to differentiation of NCM derivatives. Results E11 mouse mandibular processes (MANs) were infected with mouse CMV (mCMV) for up to 16 days in vitro. mCMV infection of undifferentiated embryonic mouse MANs induced micrognathia consequent to decreased Meckel's cartilage chondrogenesis and mandibular osteogenesis. Specifically, mCMV infection resulted in aberrant stromal cellularity, a smaller, misshapen Meckel's cartilage, and mandibular bone and condylar dysmorphogenesis. Analysis of viral distribution indicates that mCMV primarily infects NCM cells and derivatives. Initial localization studies indicate that mCMV infection changed the cell-specific expression of FN, NF-κB2, RelA, RelB, and Shh and Smad7 proteins. Conclusion Our results indicate that mCMV dysregulation of key signaling pathways in primarily NCM cells and their derivatives severely disrupts mandibular morphogenesis and skeletogenesis. The pathogenesis appears to be centered around the canonical and noncanonical NF-κB pathways, and there is unusual juxtaposition of abnormal stromal cells and surrounding matrix. Moreover, since it is critically important that signaling molecules are expressed in appropriate cell populations during development, the aberrant localization of components of relevant signaling pathways may reveal the pathogenic mechanism underlying mandibular malformations.
Collapse
Affiliation(s)
- Tina Jaskoll
- Laboratory for Developmental Genetics, USC, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
43
|
Pacheco MS, Reis AH, Aguiar DP, Lyons KM, Abreu JG. Dynamic analysis of the expression of the TGFbeta/SMAD2 pathway and CCN2/CTGF during early steps of tooth development. Cells Tissues Organs 2007; 187:199-210. [PMID: 18089935 DOI: 10.1159/000112640] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS CCN2 is present during tooth development. However, the relationship between CCN2 and the transforming growth factor beta (TGFbeta)/SMAD2/3 signaling cascade during early stages of tooth development is unclear. Here, we compare the expression of CCN2 and TGFbeta/SMAD2/3 components during tooth development, and analyze the functioning of TGFbeta/SMAD2/3 in wild-type (WT) and Ccn2 null (Ccn2-/-) mice. METHODS Coronal sections of mice on embryonic day (E)11.5, E12.5, E13.5, E14.5 and E18.5 from WT and Ccn2-/- were immunoreacted to detect CCN2 and components of the TGFbeta signaling pathway and assayed for 5'-bromo-2'-deoxyuridine immunolabeling and proliferating cell nuclear antigen immunostaining. RESULTS CCN2 and TGFbeta signaling components such as TGFbeta1, TGFbeta receptor II, SMADs2/3 and SMAD4 were expressed in inducer tissues during early stages of tooth development. Proliferation analysis in these areas showed that epithelial cells proliferate less than mesenchymal cells from E11.5 to E13.5, while at E14.5 they proliferate more than mesenchymal cells. We did not find a correlation between functioning of the TGFbeta1 cascade and CCN2 expression because Ccn2-/- mice showed neither a reduction in SMAD2 phosphorylation nor a difference in cell proliferation. CONCLUSION CCN2 and the TGFbeta/SMAD2/3 signaling pathway are active in signaling centers of tooth development where proliferation is dynamic, but these mechanisms may act independently.
Collapse
Affiliation(s)
- Marcos S Pacheco
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
44
|
Lombard Z, Tiffin N, Hofmann O, Bajic VB, Hide W, Ramsay M. Computational selection and prioritization of candidate genes for fetal alcohol syndrome. BMC Genomics 2007; 8:389. [PMID: 17961254 PMCID: PMC2194724 DOI: 10.1186/1471-2164-8-389] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 10/25/2007] [Indexed: 01/07/2023] Open
Abstract
Background Fetal alcohol syndrome (FAS) is a serious global health problem and is observed at high frequencies in certain South African communities. Although in utero alcohol exposure is the primary trigger, there is evidence for genetic- and other susceptibility factors in FAS development. No genome-wide association or linkage studies have been performed for FAS, making computational selection and -prioritization of candidate disease genes an attractive approach. Results 10174 Candidate genes were initially selected from the whole genome using a previously described method, which selects candidate genes according to their expression in disease-affected tissues. Hereafter candidates were prioritized for experimental investigation by investigating criteria pertinent to FAS and binary filtering. 29 Criteria were assessed by mining various database sources to populate criteria-specific gene lists. Candidate genes were then prioritized for experimental investigation using a binary system that assessed the criteria gene lists against the candidate list, and candidate genes were scored accordingly. A group of 87 genes was prioritized as candidates and for future experimental validation. The validity of the binary prioritization method was assessed by investigating the protein-protein interactions, functional enrichment and common promoter element binding sites of the top-ranked genes. Conclusion This analysis highlighted a list of strong candidate genes from the TGF-β, MAPK and Hedgehog signalling pathways, which are all integral to fetal development and potential targets for alcohol's teratogenic effect. We conclude that this novel bioinformatics approach effectively prioritizes credible candidate genes for further experimental analysis.
Collapse
Affiliation(s)
- Zané Lombard
- Division of Human Genetics, National Health Laboratory Service & School of Pathology, University of the Witwatersrand, Johannesburg, 2001, South Africa.
| | | | | | | | | | | |
Collapse
|
45
|
Ko SO, Chung IH, Xu X, Oka S, Zhao H, Cho ES, Deng C, Chai Y. Smad4 is required to regulate the fate of cranial neural crest cells. Dev Biol 2007; 312:435-47. [PMID: 17964566 DOI: 10.1016/j.ydbio.2007.09.050] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/12/2007] [Accepted: 09/24/2007] [Indexed: 01/22/2023]
Abstract
Smad4 is the central mediator for TGF-beta/BMP signals, which are involved in regulating cranial neural crest (CNC) cell formation, migration, proliferation and fate determination. It is unclear whether TGF-beta/BMP signals utilize Smad-dependent or -independent pathways to control the development of CNC cells. To investigate the functional significance of Smad4 in regulating CNC cells, we generated mice with neural crest specific inactivation of the Smad4 gene. Our study shows that Smad4 is not required for the migration of CNC cells, but is required in neural crest cells for the development of the cardiac outflow tract. Smad4 is essential in mediating BMP signaling in the CNC-derived ectomesenchyme during early stages of tooth development because conditional inactivation of Smad4 in neural crest derived cells results in incisor and molar development arrested at the dental lamina stage. Furthermore, Smad-mediated TGF-beta/BMP signaling controls the homeobox gene patterning of oral/aboral and proximal/distal domains within the first branchial arch. At the cellular level, a Smad4-mediated downstream target gene(s) is required for the survival of CNC cells in the proximal domain of the first branchial arch. Smad4 mutant mice show underdevelopment of the first branchial arch and midline fusion defects. Taken together, our data show that TGF-beta/BMP signals rely on Smad-dependent pathways in the ectomesenchyme to mediate epithelial-mesenchymal interactions that control craniofacial organogenesis.
Collapse
Affiliation(s)
- Seung O Ko
- Center for Craniofacial Molecular Biology School of Dentistry University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hosokawa R, Urata M, Han J, Zehnaly A, Bringas P, Nonaka K, Chai Y. TGF-beta mediated Msx2 expression controls occipital somites-derived caudal region of skull development. Dev Biol 2007; 310:140-53. [PMID: 17727833 PMCID: PMC3337706 DOI: 10.1016/j.ydbio.2007.07.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 06/30/2007] [Accepted: 07/26/2007] [Indexed: 01/10/2023]
Abstract
Craniofacial development involves cranial neural crest (CNC) and mesoderm-derived cells. TGF-beta signaling plays a critical role in instructing CNC cells to form the craniofacial skeleton. However, it is not known how TGF-beta signaling regulates the fate of mesoderm-derived cells during craniofacial development. In this study, we show that occipital somites contribute to the caudal region of mammalian skull development. Conditional inactivation of Tgfbr2 in mesoderm-derived cells results in defects of the supraoccipital bone with meningoencephalocele and discontinuity of the neural arch of the C1 vertebra. At the cellular level, loss of TGF-beta signaling causes decreased chondrocyte proliferation and premature differentiation of cartilage to bone. Expression of Msx2, a critical factor in the formation of the dorsoventral axis, is diminished in the Tgfbr2 mutant. Significantly, overexpression of Msx2 in Myf5-Cre;Tgfbr2flox/flox mice partially rescues supraoccipital bone development. These results suggest that the TGF-beta/Msx2 signaling cascade is critical for development of the caudal region of the skull.
Collapse
Affiliation(s)
- Ryoichi Hosokawa
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033
| | - Mark Urata
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033
| | - Jun Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033
| | - Armen Zehnaly
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033
| | - Pablo Bringas
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033
| | - Kazuaki Nonaka
- Division of Oral Health, Growth & Development, Kyushu University, School of Dentistry, Kyushu, Japan
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033
- Author for correspondence: Dr. Yang Chai, Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, California 90033, Tel. (323)442-3480, Fax (323)442-2981,
| |
Collapse
|
47
|
Oka K, Oka S, Sasaki T, Ito Y, Bringas P, Nonaka K, Chai Y. The role of TGF-beta signaling in regulating chondrogenesis and osteogenesis during mandibular development. Dev Biol 2006; 303:391-404. [PMID: 17204263 PMCID: PMC2074881 DOI: 10.1016/j.ydbio.2006.11.025] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Revised: 11/12/2006] [Accepted: 11/15/2006] [Indexed: 10/23/2022]
Abstract
During craniofacial development, Meckel's cartilage and the mandible bone derive from the first branchial arch, and their development depends upon the contribution of cranial neural crest (CNC) cells. We previously demonstrated that conditional inactivation of Tgfbr2 in the neural crest of mice (Tgfbr2(fl/fl);Wnt1-Cre) results in severe defects in mandibular development, although the specific cellular and molecular mechanisms by which TGF-beta signaling regulates the fate of CNC cells during mandibular development remain unknown. We show here that loss of Tgfbr2 does not affect the migration of CNC cells during mandibular development. TGF-beta signaling is specifically required for cell proliferation in Meckel's cartilage and the mandibular anlagen and for the formation of the coronoid, condyle and angular processes. TGF-beta-mediated connective tissue growth factor (CTGF) signaling is critical for CNC cell proliferation. Exogenous CTGF rescues the cell proliferation defect in Meckel's cartilage of Tgfbr2(fl/fl);Wnt1-Cre mutants, demonstrating the biological significance of this signaling cascade in chondrogenesis during mandibular development. Furthermore, TGF-beta signaling controls Msx1 expression to regulate mandibular osteogenesis as Msx1 expression is significantly reduced in Tgfbr2(fl/fl);Wnt1-Cre mutants. Collectively, our data suggest that there are differential signal cascades in response to TGF-beta to control chondrogenesis and osteogenesis during mandibular development.
Collapse
Affiliation(s)
- Kyoko Oka
- Center for Craniofacial Molecular Biology School of Dentistry University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, U.S.A
| | - Shoji Oka
- Center for Craniofacial Molecular Biology School of Dentistry University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, U.S.A
| | - Tomoyo Sasaki
- Center for Craniofacial Molecular Biology School of Dentistry University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, U.S.A
| | - Yoshihiro Ito
- Center for Craniofacial Molecular Biology School of Dentistry University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, U.S.A
| | - Pablo Bringas
- Center for Craniofacial Molecular Biology School of Dentistry University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, U.S.A
| | - Kazuaki Nonaka
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Yang Chai
- Center for Craniofacial Molecular Biology School of Dentistry University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, U.S.A
- (*) Corresponding Author: Dr. Yang Chai, Center for Craniofacial Molecular Biology, School of Dentistry University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, California 90033, Tel (323)442-3480, Fax (323)442-2981,
| |
Collapse
|
48
|
Kang P, Svoboda KKH. Epithelial-mesenchymal transformation during craniofacial development. J Dent Res 2006; 84:678-90. [PMID: 16040723 DOI: 10.1177/154405910508400801] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epithelial to mesenchymal phenotype transition is a common phenomenon during embryonic development, wound healing, and tumor metastasis. This transition involves cellular changes in cytoskeleton architecture and protein expression. Specifically, this highly regulated biological event plays several important roles during craniofacial development. This review focuses on the regulation of epithelial-mesenchymal transformation (EMT) during neural crest cell migration, and fusion of the secondary palate and the upper lip.
Collapse
Affiliation(s)
- P Kang
- Graduate Endodontics Department, Texas A&M University System, Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75266, USA
| | | |
Collapse
|
49
|
Xu X, Han J, Ito Y, Bringas P, Urata MM, Chai Y. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion. Dev Biol 2006; 297:238-48. [PMID: 16780827 DOI: 10.1016/j.ydbio.2006.05.014] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 04/28/2006] [Accepted: 05/10/2006] [Indexed: 02/02/2023]
Abstract
Palatal fusion is a complex, multi-step developmental process; the consequence of failure in this process is cleft palate, one of the most common birth defects in humans. Previous studies have shown that regression of the medial edge epithelium (MEE) upon palatal fusion is required for this process, and TGF-beta signaling plays an important role in regulating palatal fusion. However, the fate of the MEE and the mechanisms underlying its disappearance are still unclear. By using the Cre/lox system, we are able to label the MEE genetically and to ablate Tgfbr2 specifically in the palatal epithelial cells. Our results indicate that epithelial-mesenchymal transformation does not occur in the regression of MEE cells. Ablation of Tgfbr2 in the palatal epithelial cells causes soft palate cleft, submucosal cleft and failure of the primary palate to fuse with the secondary palate. Whereas wild-type MEE cells disappear, the mutant MEE cells continue to proliferate and form cysts and epithelial bridges in the midline of the palate. Our study provides for the first time an animal model for soft palate cleft and submucous cleft. At the molecular level, Tgfb3 and Irf6 have similar expression patterns in the MEE. Mutations in IRF6 disrupt orofacial development and cause cleft palate in humans. We show here that Irf6 expression is downregulated in the MEE of the Tgfbr2 mutant. As a recent study shows that heterozygous mutations in TGFBR1 or TGFBR2 cause multiple human congenital malformations, including soft palate cleft, we propose that TGF-beta mediated Irf6 expression plays an important, cell-autonomous role in regulating the fate of MEE cells during palatogenesis in both mice and humans.
Collapse
Affiliation(s)
- Xun Xu
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
50
|
Wang Y, Vachon E, Zhang J, Cherepanov V, Kruger J, Li J, Saito K, Shannon P, Bottini N, Huynh H, Ni H, Yang H, McKerlie C, Quaggin S, Zhao ZJ, Marsden PA, Mustelin T, Siminovitch KA, Downey GP. Tyrosine phosphatase MEG2 modulates murine development and platelet and lymphocyte activation through secretory vesicle function. ACTA ACUST UNITED AC 2006; 202:1587-97. [PMID: 16330817 PMCID: PMC2213338 DOI: 10.1084/jem.20051108] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
MEG2, a protein tyrosine phosphatase with a unique NH2-terminal lipid-binding domain, binds to and is modulated by the polyphosphoinositides PI(4,5)P2 and PI(3,4,5)P3. Recent data implicate MEG2 in vesicle fusion events in leukocytes. Through the genesis of Meg2-deficient mice, we demonstrate that Meg2−/−embryos manifest hemorrhages, neural tube defects including exencephaly and meningomyeloceles, cerebral infarctions, abnormal bone development, and >90% late embryonic lethality. T lymphocytes and platelets isolated from recombination activating gene 2−/− mice transplanted with Meg2−/− embryonic liver–derived hematopoietic progenitor cells showed profound defects in activation that, in T lymphocytes, was attributable to impaired interleukin 2 secretion. Ultrastructural analysis of these lymphocytes revealed near complete absence of mature secretory vesicles. Taken together, these observations suggest that MEG2-mediated modulation of secretory vesicle genesis and function plays an essential role in neural tube, vascular, and bone development as well as activation of mature platelets and lymphocytes.
Collapse
Affiliation(s)
- Yingchun Wang
- Division of Respirology, Department of Medicine, and the McLaughlin Center for Molecular Medicine, University of Toronto and Toronto General Hospital Research Institute of the University Health Network, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|