1
|
Banduni O, Saini M, Singh N, Nath D, Kumaran SS, Kumar N, Srivastava MVP, Mehndiratta A. Post-Stroke Rehabilitation of Distal Upper Limb with New Perspective Technologies: Virtual Reality and Repetitive Transcranial Magnetic Stimulation-A Mini Review. J Clin Med 2023; 12:2944. [PMID: 37109280 PMCID: PMC10142518 DOI: 10.3390/jcm12082944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Upper extremity motor impairment is the most common sequelae in patients with stroke. Moreover, its continual nature limits the optimal functioning of patients in the activities of daily living. Because of the intrinsic limitations in the conventional form of rehabilitation, the rehabilitation applications have been expanded to technology-driven solutions, such as Virtual Reality and Repetitive Transcranial Magnetic Stimulation (rTMS). The motor relearning processes are influenced by variables, such as task specificity, motivation, and feedback provision, and a VR environment in the form of interactive games could provide novel and motivating customized training solutions for better post-stroke upper limb motor improvement. rTMS being a precise non-invasive brain stimulation method with good control of stimulation parameters, has the potential to facilitate neuroplasticity and hence a good recovery. Although several studies have discussed these forms of approaches and their underlying mechanisms, only a few of them have specifically summarized the synergistic applications of these paradigms. To bridge the gaps, this mini review presents recent research and focuses precisely on the applications of VR and rTMS in distal upper limb rehabilitation. It is anticipated that this article will provide a better representation of the role of VR and rTMS in distal joint upper limb rehabilitation in patients with stroke.
Collapse
Affiliation(s)
- Onika Banduni
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi (IITD), New Delhi 110016, India
| | - Megha Saini
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi (IITD), New Delhi 110016, India
| | - Neha Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi (IITD), New Delhi 110016, India
| | - Debasish Nath
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi (IITD), New Delhi 110016, India
| | - S. Senthil Kumaran
- Department of Nuclear Medicine and Resonance, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Nand Kumar
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - M. V. Padma Srivastava
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Amit Mehndiratta
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi (IITD), New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
2
|
Ofir‐Geva S, Meilijson I, Frenkel‐Toledo S, Soroker N. Use of multi-perturbation Shapley analysis in lesion studies of functional networks: The case of upper limb paresis. Hum Brain Mapp 2023; 44:1320-1343. [PMID: 36206326 PMCID: PMC9921264 DOI: 10.1002/hbm.26105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022] Open
Abstract
Understanding the impact of variation in lesion topography on the expression of functional impairments following stroke is important, as it may pave the way to modeling structure-function relations in statistical terms while pointing to constraints for adaptive remapping and functional recovery. Multi-perturbation Shapley-value analysis (MSA) is a relatively novel game-theoretical approach for multivariate lesion-symptom mapping. In this methodological paper, we provide a comprehensive explanation of MSA. We use synthetic data to assess the method's accuracy and perform parameter optimization. We then demonstrate its application using a cohort of 107 first-event subacute stroke patients, assessed for upper limb (UL) motor impairment (Fugl-Meyer Assessment scale). Under the conditions tested, MSA could correctly detect simulated ground-truth lesion-symptom relationships with a sensitivity of 75% and specificity of ~90%. For real behavioral data, MSA disclosed a strong hemispheric effect in the relative contribution of specific regions-of-interest (ROIs): poststroke UL motor function was mostly contributed by damage to ROIs associated with movement planning (supplementary motor cortex and superior frontal gyrus) following left-hemispheric damage (LHD) and by ROIs associated with movement execution (primary motor and somatosensory cortices and the ventral brainstem) following right-hemispheric damage (RHD). Residual UL motor ability following LHD was found to depend on a wider array of brain structures compared to the residual motor ability of RHD patients. The results demonstrate that MSA can provide a unique insight into the relative importance of different hubs in neural networks, which is difficult to obtain using standard univariate methods.
Collapse
Affiliation(s)
- Shay Ofir‐Geva
- Department of Neurological RehabilitationLoewenstein Rehabilitation Medical CenterRaananaIsrael
- Department of Rehabilitation Medicine, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Isaac Meilijson
- School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
| | | | - Nachum Soroker
- Department of Neurological RehabilitationLoewenstein Rehabilitation Medical CenterRaananaIsrael
- Department of Rehabilitation Medicine, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
3
|
Stewart JC, Baird JF, Lewis AF, Fritz SL, Fridriksson J. Effect of behavioral practice targeted at the motor action selection network after stroke. Eur J Neurosci 2022; 56:4469-4485. [PMID: 35781898 PMCID: PMC9380182 DOI: 10.1111/ejn.15754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 06/11/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
Motor action selection engages a network of frontal and parietal brain regions. After stroke, individuals activate a similar network, however, activation is higher, especially in the contralesional hemisphere. The current study examined the effect of practice on action selection performance and brain activation after stroke. Sixteen individuals with chronic stroke (Upper Extremity Fugl-Meyer motor score range: 18-61) moved a joystick with the more-impaired hand in two conditions: Select (externally cued choice; move right or left based on an abstract rule) and Execute (simple response; move same direction every trial). On Day 1, reaction time (RT) was longer in Select compared to Execute which corresponded to increased activation primarily in regions in the contralesional action selection network including dorsal premotor, supplementary motor, anterior cingulate and parietal cortices. After four days of practice, behavioral performance improved (decreased RT) and only contralesional parietal cortex significantly increased during Select. Higher brain activation on Day 1 in the bilateral action selection network, dorsolateral prefrontal cortex, and contralesional sensory cortex predicted better performance on Day 4. Overall, practice led to improved action selection performance and reduced brain activation. Systematic changes in practice conditions may allow the targeting of specific components of the motor network during rehabilitation after stroke.
Collapse
Affiliation(s)
- Jill Campbell Stewart
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina
| | - Jessica F Baird
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina
| | - Allison F Lewis
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina
| | - Stacy L Fritz
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina
| | - Julius Fridriksson
- Department of Communication Sciences & Disorders, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
4
|
Maenza C, Sainburg RL, Varghese R, Dexheimer B, Demers M, Bishop L, Jayasinghe SAL, Wagstaff DA, Winstein C. Ipsilesional arm training in severe stroke to improve functional independence (IPSI): phase II protocol. BMC Neurol 2022; 22:141. [PMID: 35413856 PMCID: PMC9002228 DOI: 10.1186/s12883-022-02643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously characterized hemisphere-specific motor control deficits in the ipsilesional, less-impaired arm of unilaterally lesioned stroke survivors. Our preliminary data indicate these deficits are substantial and functionally limiting in patients with severe paresis. METHODS We have designed an intervention ("IPSI") to remediate the hemisphere-specific deficits in the ipsilesional arm, using a virtual-reality platform, followed by manipulation training with a variety of real objects, designed to facilitate generalization and transfer to functional behaviors encountered in the natural environment. This is a 2-site (primary site - Penn State College of Medicine, secondary site - University of Southern California), two-group randomized intervention with an experimental group, which receives unilateral training of the ipsilesional arm throughout 3 one-hour sessions per week for 5 weeks, through our Virtual Reality and Manipulation Training (VRMT) protocol. Our control group receives a conventional intervention on the contralesional arm, 3 one-hour sessions per week for 5 weeks, guided by recently released practice guidelines for upper limb rehabilitation in adult stroke. The study aims to include a total of 120 stroke survivors (60 per group) whose stroke was in the territory of the middle cerebral artery (MCA) resulting in severe upper-extremity motor impairments. Outcome measures (Primary: Jebsen-Taylor Hand Function Test, Fugl-Meyer Assessment, Abilhand, Barthel Index) are assessed at five evaluation points: Baseline 1, Baseline 2, immediate post-intervention (primary endpoint), and 3-weeks (short-term retention) and 6-months post-intervention (long-term retention). We hypothesize that both groups will improve performance of the targeted arm, but that the ipsilesional arm remediation group will show greater improvements in functional independence. DISCUSSION The results of this study are expected to inform upper limb evaluation and treatment to consider ipsilesional arm function, as part of a comprehensive physical rehabilitation strategy that includes evaluation and remediation of both arms. TRIAL REGISTRATION This study is registered with ClinicalTrials.gov (Registration ID: NCT03634397 ; date of registration: 08/16/2018).
Collapse
Affiliation(s)
- Candice Maenza
- Department of Neurology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA. .,Department of Kinesiology, Pennsylvania State University, 27 Rec Hall, University Park, PA, 16802, USA.
| | - Robert L Sainburg
- Department of Neurology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.,Department of Kinesiology, Pennsylvania State University, 27 Rec Hall, University Park, PA, 16802, USA
| | - Rini Varghese
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Brooke Dexheimer
- Department of Kinesiology, Pennsylvania State University, 27 Rec Hall, University Park, PA, 16802, USA
| | - Marika Demers
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Lauri Bishop
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Shanie A L Jayasinghe
- Department of Neurology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - David A Wagstaff
- Department of Human Development and Family Studies, Pennsylvania State University, 102 HHD Building, University Park, PA, 16802, USA
| | - Carolee Winstein
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
5
|
Roby-Brami A, Jarrassé N, Parry R. Impairment and Compensation in Dexterous Upper-Limb Function After Stroke. From the Direct Consequences of Pyramidal Tract Lesions to Behavioral Involvement of Both Upper-Limbs in Daily Activities. Front Hum Neurosci 2021; 15:662006. [PMID: 34234659 PMCID: PMC8255798 DOI: 10.3389/fnhum.2021.662006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
Impairments in dexterous upper limb function are a significant cause of disability following stroke. While the physiological basis of movement deficits consequent to a lesion in the pyramidal tract is well demonstrated, specific mechanisms contributing to optimal recovery are less apparent. Various upper limb interventions (motor learning methods, neurostimulation techniques, robotics, virtual reality, and serious games) are associated with improvements in motor performance, but many patients continue to experience significant limitations with object handling in everyday activities. Exactly how we go about consolidating adaptive motor behaviors through the rehabilitation process thus remains a considerable challenge. An important part of this problem is the ability to successfully distinguish the extent to which a given gesture is determined by the neuromotor impairment and that which is determined by a compensatory mechanism. This question is particularly complicated in tasks involving manual dexterity where prehensile movements are contingent upon the task (individual digit movement, grasping, and manipulation…) and its objective (placing, two step actions…), as well as personal factors (motivation, acquired skills, and life habits…) and contextual cues related to the environment (presence of tools or assistive devices…). Presently, there remains a lack of integrative studies which differentiate processes related to structural changes associated with the neurological lesion and those related to behavioral change in response to situational constraints. In this text, we shall question the link between impairments, motor strategies and individual performance in object handling tasks. This scoping review will be based on clinical studies, and discussed in relation to more general findings about hand and upper limb function (manipulation of objects, tool use in daily life activity). We shall discuss how further quantitative studies on human manipulation in ecological contexts may provide greater insight into compensatory motor behavior in patients with a neurological impairment of dexterous upper-limb function.
Collapse
Affiliation(s)
- Agnès Roby-Brami
- ISIR Institute of Intelligent Systems and Robotics, AGATHE Team, CNRS UMR 7222, INSERM U 1150, Sorbonne University, Paris, France
| | - Nathanaël Jarrassé
- ISIR Institute of Intelligent Systems and Robotics, AGATHE Team, CNRS UMR 7222, INSERM U 1150, Sorbonne University, Paris, France
| | - Ross Parry
- ISIR Institute of Intelligent Systems and Robotics, AGATHE Team, CNRS UMR 7222, INSERM U 1150, Sorbonne University, Paris, France.,LINP2-AAPS Laboratoire Interdisciplinaire en Neurosciences, Physiologie et Psychologie: Activité Physique, Santé et Apprentissages, UPL, Paris Nanterre University, Nanterre, France
| |
Collapse
|
6
|
Frenkel-Toledo S, Ofir-Geva S, Mansano L, Granot O, Soroker N. Stroke Lesion Impact on Lower Limb Function. Front Hum Neurosci 2021; 15:592975. [PMID: 33597852 PMCID: PMC7882502 DOI: 10.3389/fnhum.2021.592975] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
The impact of stroke on motor functioning is analyzed at different levels. ‘Impairment’ denotes the loss of basic characteristics of voluntary movement. ‘Activity limitation’ denotes the loss of normal capacity for independent execution of daily activities. Recovery from impairment is accomplished by ‘restitution’ and recovery from activity limitation is accomplished by the combined effect of ‘restitution’ and ‘compensation.’ We aimed to unravel the long-term effects of variation in lesion topography on motor impairment of the hemiparetic lower limb (HLL), and gait capacity as a measure of related activity limitation. Gait was assessed by the 3 m walk test (3MWT) in 67 first-event chronic stroke patients, at their homes. Enduring impairment of the HLL was assessed by the Fugl–Meyer Lower Extremity (FMA-LE) test. The impact of variation in lesion topography on HLL impairment and on walking was analyzed separately for left and right hemispheric damage (LHD, RHD) by voxel-based lesion-symptom mapping (VLSM). In the LHD group, HLL impairment tended to be affected by damage to the posterior limb of the internal capsule (PLIC). Walking capacity tended to be affected by a larger array of structures: PLIC and corona radiata, external capsule and caudate nucleus. In the RHD group, both HLL impairment and walking capacity were sensitive to damage in a much larger number of brain voxels. HLL impairment was affected by damage to the corona radiata, superior longitudinal fasciculus and insula. Walking was affected by damage to the same areas, plus the internal and external capsules, putamen, thalamus and parts of the perisylvian cortex. In both groups, voxel clusters have been found where damage affected FMA-LE and also 3MWT, along with voxels where damage affected only one of the measures (mainly 3MWT). In stroke, enduring ‘activity limitation’ is affected by damage to a much larger array of brain structures and voxels within specific structures, compared to enduring ‘impairment.’ Differences between the effects of left and right hemisphere damage are likely to reflect variation in motor-network organization and post-stroke re-organization related to hemispheric dominance. Further studies with larger sample size are required for the validation of these results.
Collapse
Affiliation(s)
- Silvi Frenkel-Toledo
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel.,Department of Neurological Rehabilitation, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel
| | - Shay Ofir-Geva
- Department of Neurological Rehabilitation, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lihi Mansano
- Department of Neurological Rehabilitation, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Granot
- Department of Neurological Rehabilitation, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nachum Soroker
- Department of Neurological Rehabilitation, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Adans-Dester C, Fasoli SE, Fabara E, Menard N, Fox AB, Severini G, Bonato P. Can kinematic parameters of 3D reach-to-target movements be used as a proxy for clinical outcome measures in chronic stroke rehabilitation? An exploratory study. J Neuroeng Rehabil 2020; 17:106. [PMID: 32771020 PMCID: PMC7414659 DOI: 10.1186/s12984-020-00730-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite numerous trials investigating robot-assisted therapy (RT) effects on upper-extremity (UE) function after stroke, few have explored the relationship between three-dimensional (3D) reach-to-target kinematics and clinical outcomes. The objectives of this study were to 1) investigate the correlation between kinematic parameters of 3D reach-to-target movements and UE clinical outcome measures, and 2) examine the degree to which differences in kinematic parameters across individuals can account for differences in clinical outcomes in response to RT. METHODS Ten chronic stroke survivors participated in a pilot RT intervention (eighteen 1-h sessions) integrating cognitive skills training and a home-action program. Clinical outcome measures and kinematic parameters of 3D reach-to-target movements were collected pre- and post-intervention. The correlation between clinical outcomes and kinematic parameters was investigated both cross-sectionally and longitudinally (i.e., changes in response to the intervention). Changes in clinical outcomes and kinematic parameters were tested for significance in both group and subject-by-subject analyses. Potential associations between individual differences in kinematic parameters and differences in clinical outcomes were examined. RESULTS Moderate-to-strong correlation was found between clinical measures and specific kinematic parameters when examined cross-sectionally. Weaker correlation coefficients were found longitudinally. Group analyses revealed significant changes in clinical outcome measures in response to the intervention; no significant group changes were observed in kinematic parameters. Subject-by-subject analyses revealed changes with moderate-to-large effect size in the kinematics of 3D reach-to-target movements pre- vs. post-intervention. Changes in clinical outcomes and kinematic parameters varied widely across participants. CONCLUSIONS Large variability was observed across subjects in response to the intervention. The correlation between changes in kinematic parameters and clinical outcomes in response to the intervention was variable and not strong across parameters, suggesting no consistent change in UE motor strategies across participants. These results highlight the need to investigate the response to interventions at the individual level. This would enable the identification of clusters of individuals with common patterns of change in response to an intervention, providing an opportunity to use cluster-specific kinematic parameters as a proxy of clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov, NCT02747433 . Registered on April 21st, 2016.
Collapse
Affiliation(s)
- Catherine Adans-Dester
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, 300 First Ave, Charlestown, Boston, MA, 02129, USA
- School of Health & Rehabilitation Sciences, MGH Institute of Health Professions, Boston, MA, USA
| | - Susan E Fasoli
- School of Health & Rehabilitation Sciences, MGH Institute of Health Professions, Boston, MA, USA
| | - Eric Fabara
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, 300 First Ave, Charlestown, Boston, MA, 02129, USA
| | - Nicolas Menard
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Annie B Fox
- School of Health & Rehabilitation Sciences, MGH Institute of Health Professions, Boston, MA, USA
| | - Giacomo Severini
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
- Centre for Biomedical Engineering, University College Dublin, Dublin, Ireland
| | - Paolo Bonato
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, 300 First Ave, Charlestown, Boston, MA, 02129, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
8
|
Frenkel-Toledo S, Ofir-Geva S, Soroker N. Lesion Topography Impact on Shoulder Abduction and Finger Extension Following Left and Right Hemispheric Stroke. Front Hum Neurosci 2020; 14:282. [PMID: 32765245 PMCID: PMC7379861 DOI: 10.3389/fnhum.2020.00282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/23/2020] [Indexed: 11/13/2022] Open
Abstract
The existence of shoulder abduction and finger extension movement capacity shortly after stroke onset is an important prognostic factor, indicating favorable functional outcomes for the hemiparetic upper limb (HUL). Here, we asked whether variation in lesion topography affects these two movements similarly or distinctly and whether lesion impact is similar or distinct for left and right hemisphere damage. Shoulder abduction and finger extension movements were examined in 77 chronic post-stroke patients using relevant items of the Fugl-Meyer test. Lesion effects were analyzed separately for left and right hemispheric damage patient groups, using voxel-based lesion-symptom mapping. In the left hemispheric damage group, shoulder abduction and finger extension were affected only by damage to the corticospinal tract in its passage through the corona radiata. In contrast, following the right hemispheric damage, these two movements were affected not only by corticospinal tract damage but also by damage to white matter association tracts, the putamen, and the insular cortex. In both groups, voxel clusters have been found where damage affected shoulder abduction and also finger extension, along with voxels where damage affected only one of the two movements. The capacity to execute shoulder abduction and finger extension movements following stroke is affected significantly by damage to shared and distinct voxels in the corticospinal tract in left-hemispheric damage patients and by damage to shared and distinct voxels in a larger array of cortical and subcortical regions in right hemispheric damage patients.
Collapse
Affiliation(s)
- Silvi Frenkel-Toledo
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel.,Department of Neurological Rehabilitation, Loewenstein Rehabilitation Hospital, Raanana, Israel
| | - Shay Ofir-Geva
- Department of Neurological Rehabilitation, Loewenstein Rehabilitation Hospital, Raanana, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nachum Soroker
- Department of Neurological Rehabilitation, Loewenstein Rehabilitation Hospital, Raanana, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Kim Y, Jung HT, Park J, Kim Y, Ramasarma N, Bonato P, Choe EK, Lee SI. Towards the Design of a Ring Sensor-based mHealth System to Achieve Optimal Motor Function in Stroke Survivors. ACTA ACUST UNITED AC 2019. [DOI: 10.1145/3369817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Maximizing the motor practice in stroke survivors' living environments may significantly improve the functional recovery of their stroke-affected upper-limb. A wearable system that can continuously monitor upper-limb performance has been considered as an effective clinical solution for its potential to provide patient-centered, data-driven feedback to improve the motor dosage. Towards that end, we investigate a system leveraging a pair of finger-worn, ring-type accelerometers capable of monitoring both gross-arm and fine-hand movements that are clinically relevant to the performance of daily activities. In this work, we conduct a mixed-methods study to (1) quantitatively evaluate the efficacy of finger-worn accelerometers in measuring clinically relevant information regarding stroke survivors' upper-limb performance, and (2) qualitatively investigate design requirements for the self-monitoring system, based on data collected from 25 stroke survivors and seven occupational therapists. Our quantitative findings demonstrate strong face and convergent validity of the finger-worn accelerometers, and its responsiveness to changes in motor behavior. Our qualitative findings provide a detailed account of the current rehabilitation process while highlighting several challenges that therapists and stroke survivors face. This study offers promising directions for the design of a self-monitoring system that can encourage the affected limb use during stroke survivors' daily living.
Collapse
Affiliation(s)
- Yoojung Kim
- Seoul National University, Seoul, Republic of Korea
| | - Hee-Tae Jung
- University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Joonwoo Park
- Smilegreen Child Development Center, Daegu, Republic of Korea
| | - Yangsoo Kim
- Heeyeon Rehabilitation Hospital, Changwon, Republic of Korea
| | | | - Paolo Bonato
- Harvard Medical School, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, United States
| | - Eun Kyoung Choe
- University of Maryland, College Park, College Park, Maryland, United States
| | - Sunghoon Ivan Lee
- University of Massachusetts Amherst, Amherst, Massachusetts, United States
| |
Collapse
|
10
|
Maenza C, Good DC, Winstein CJ, Wagstaff DA, Sainburg RL. Functional Deficits in the Less-Impaired Arm of Stroke Survivors Depend on Hemisphere of Damage and Extent of Paretic Arm Impairment. Neurorehabil Neural Repair 2019; 34:39-50. [PMID: 31538852 DOI: 10.1177/1545968319875951] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Previous research has detailed the hemisphere dependence and specific kinematic deficits observed for the less-affected arm of patients with unilateral stroke. Objective. We now examine whether functional motor deficits in the less-affected arm, measured by standardized clinical measures of motor function, also depend on the hemisphere that was damaged and on the severity of contralesional impairment. Methods. We recruited 48 left-hemisphere-damaged (LHD) participants, 62 right-hemisphere-damaged participants, and 54 age-matched control participants. Measures of motor function included the following: (1) Jebsen-Taylor Hand Function Test (JHFT), (2) Grooved Pegboard Test (GPT), and (3) grip strength. We measured the extent of contralesional arm impairment with the upper-extremity component of the Fugl-Meyer (UEFM) assessment of motor impairment. Results. Ipsilesional limb functional performance deficits (JHFT) varied with both the damaged hemisphere and severity of contralesional arm impairment, with the most severe deficits expressed in LHD participants with severe contralesional impairment (UEFM). GPT and grip strength varied with severity of contralesional impairment but not with hemisphere. Conclusions. Stroke survivors with the most severe paretic arm impairment, who must rely on their ipsilesional arm for performing daily activities, have the greatest motor deficit in the less-affected arm. We recommend remediation of this arm to improve functional independence in this group of stroke patients.
Collapse
Affiliation(s)
- Candice Maenza
- The Pennsylvania State University, University Park, PA, USA
- Pennsylvania State College of Medicine, Hershey, PA, USA
| | - David C Good
- Pennsylvania State College of Medicine, Hershey, PA, USA
| | | | | | - Robert L Sainburg
- The Pennsylvania State University, University Park, PA, USA
- Pennsylvania State College of Medicine, Hershey, PA, USA
| |
Collapse
|
11
|
Frenkel-Toledo S, Fridberg G, Ofir S, Bartur G, Lowenthal-Raz J, Granot O, Handelzalts S, Soroker N. Lesion location impact on functional recovery of the hemiparetic upper limb. PLoS One 2019; 14:e0219738. [PMID: 31323056 PMCID: PMC6641167 DOI: 10.1371/journal.pone.0219738] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/02/2019] [Indexed: 11/18/2022] Open
Abstract
The effect of stroke topography on the recovery of hemiparetic upper limb (HUL) function is unclear due to limitations in previous studies-examination of lesion effects only in one point of time, or grouping together patients with left and right hemispheric damage (LHD, RHD), or disregard to different lesion impact on proximal and distal operations. Here we used voxel-based lesion symptom mapping (VLSM) to investigate the impact of stroke topography on HUL function taking into consideration the effects of (a) assessment time (subacute, chronic phases), (b) side of damaged hemisphere (left, right), (c) HUL part (proximal, distal). HUL function was examined in 3 groups of patients-Subacute (n = 130), Chronic (n = 66), and Delta (n = 49; patients examined both in the subacute and chronic phases)-using the proximal and distal sub-divisions of the Fugl-Meyer (FM) and the Box and Blocks (B&B) tests. HUL function following LHD tended to be affected in the subacute phase mainly by damage to white matter tracts, the putamen and the insula. In the chronic phase, a similar pattern was shown for B&B performance, whereas FM performance was affected by damage only to the white matter tracts. HUL function following RHD was affected in both phases, mainly by damage to the basal ganglia, white matter tracts and the insula, along with a restricted effect of damage to other cortical structures. In the chronic phase HUL function following RHD was affected also by damage to the thalamus. In the small Delta groups the following trends were found: In LHD patients, delayed motor recovery, captured by the B&B test, was affected by damage to the sensory-motor cortex, white matter association fibers and parts of the perisilvian cortex. In the RHD patients of the Delta group, delayed motor recovery was affected by damage to white matter projection fibers. Proximal and distal HUL functions examined in LHD patients (both in the subacute and chronic phases) tended to be affected by similar structures-mainly white matter projection tracts. In RHD patients, a distinction between proximal and distal HUL functions was found in the subacute but not in the chronic phase, with proximal and distal HUL functions affected by similar subcortical and cortical structures, except for an additional impact of damage to the superior temporal cortex and the retro-lenticular internal capsule only on proximal HUL function. The current study suggests the existence of important differences between the functional neuroanatomy underlying motor recovery following left and right hemisphere damage. A trend for different lesion effects was shown for residual proximal and distal HUL motor control. The study corroborates earlier findings showing an effect of the time after stroke onset (subacute, chronic) on the results of VLSM analyses. Further studies with larger sample size are required for the validation of these results.
Collapse
Affiliation(s)
- Silvi Frenkel-Toledo
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
- Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel
| | - Gil Fridberg
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shay Ofir
- Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gadi Bartur
- Department of Physical Therapy, Reuth Rehabilitation Hospital, Tel Aviv, Israel
| | - Justine Lowenthal-Raz
- Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Granot
- Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shirley Handelzalts
- Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel
- Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nachum Soroker
- Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Cogollor JM, Rojo-Lacal J, Hermsdörfer J, Ferre M, Arredondo Waldmeyer MT, Giachritsis C, Armstrong A, Breñosa Martinez JM, Bautista Loza DA, Sebastián JM. Evolution of Cognitive Rehabilitation After Stroke From Traditional Techniques to Smart and Personalized Home-Based Information and Communication Technology Systems: Literature Review. JMIR Rehabil Assist Technol 2018; 5:e4. [PMID: 29581093 PMCID: PMC5891670 DOI: 10.2196/rehab.8548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 01/31/2023] Open
Abstract
Background Neurological patients after stroke usually present cognitive deficits that cause dependencies in their daily living. These deficits mainly affect the performance of some of their daily activities. For that reason, stroke patients need long-term processes for their cognitive rehabilitation. Considering that classical techniques are focused on acting as guides and are dependent on help from therapists, significant efforts are being made to improve current methodologies and to use eHealth and Web-based architectures to implement information and communication technology (ICT) systems that achieve reliable, personalized, and home-based platforms to increase efficiency and level of attractiveness for patients and carers. Objective The goal of this work was to provide an overview of the practices implemented for the assessment of stroke patients and cognitive rehabilitation. This study puts together traditional methods and the most recent personalized platforms based on ICT technologies and Internet of Things. Methods A literature review has been distributed to a multidisciplinary team of researchers from engineering, psychology, and sport science fields. The systematic review has been focused on published scientific research, other European projects, and the most current innovative large-scale initiatives in the area. A total of 3469 results were retrieved from Web of Science, 284 studies from Journal of Medical Internet Research, and 15 European research projects from Community Research and Development Information Service from the last 15 years were reviewed for classification and selection regarding their relevance. Results A total of 7 relevant studies on the screening of stroke patients have been presented with 6 additional methods for the analysis of kinematics and 9 studies on the execution of goal-oriented activities. Meanwhile, the classical methods to provide cognitive rehabilitation have been classified in the 5 main techniques implemented. Finally, the review has been finalized with the selection of 8 different ICT–based approaches found in scientific-technical studies, 9 European projects funded by the European Commission that offer eHealth architectures, and other large-scale activities such as smart houses and the initiative City4Age. Conclusions Stroke is one of the main causes that most negatively affect countries in the socioeconomic aspect. The design of new ICT-based systems should provide 4 main features for an efficient and personalized cognitive rehabilitation: support in the execution of complex daily tasks, automatic error detection, home-based performance, and accessibility. Only 33% of the European projects presented fulfilled those requirements at the same time. For this reason, current and future large-scale initiatives focused on eHealth and smart environments should try to solve this situation by providing more complete and sophisticated platforms.
Collapse
Affiliation(s)
- José M Cogollor
- Centre for Automation and Robotics UPM-CSIC, Universidad Politécnica de Madrid, Madrid, Spain
| | - Javier Rojo-Lacal
- Life Supporting Technologies, Universidad Politécnica de Madrid, Madrid, Spain
| | - Joachim Hermsdörfer
- Institute of Movement Science, Department of Sport and Health Science, Technische Universität München, Munich, Germany
| | - Manuel Ferre
- Centre for Automation and Robotics UPM-CSIC, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | | - Alan Armstrong
- Institute of Movement Science, Department of Sport and Health Science, Technische Universität München, Munich, Germany
| | | | | | - José María Sebastián
- Centre for Automation and Robotics UPM-CSIC, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Floegel M, Kell CA. Functional hemispheric asymmetries during the planning and manual control of virtual avatar movements. PLoS One 2017; 12:e0185152. [PMID: 28957344 PMCID: PMC5619738 DOI: 10.1371/journal.pone.0185152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/07/2017] [Indexed: 11/18/2022] Open
Abstract
Both hemispheres contribute to motor control beyond the innervation of the contralateral alpha motoneurons. The left hemisphere has been associated with higher-order aspects of motor control like sequencing and temporal processing, the right hemisphere with the transformation of visual information to guide movements in space. In the visuomotor context, empirical evidence regarding the latter has been limited though the right hemisphere’s specialization for visuospatial processing is well-documented in perceptual tasks. This study operationalized temporal and spatial processing demands during visuomotor processing and investigated hemispheric asymmetries in neural activation during the unimanual control of a visual cursor by grip force. Functional asymmetries were investigated separately for visuomotor planning and online control during functional magnetic resonance imaging in 19 young, healthy, right-handed participants. The expected cursor movement was coded with different visual trajectories. During planning when spatial processing demands predominated, activity was right-lateralized in a hand-independent manner in the inferior temporal lobe, occipito-parietal border, and ventral premotor cortex. When temporal processing demands overweighed spatial demands, BOLD responses during planning were left-lateralized in the temporo-parietal junction. During online control of the cursor, right lateralization was not observed. Instead, left lateralization occurred in the intraparietal sulcus. Our results identify movement phase and spatiotemporal demands as important determinants of dynamic hemispheric asymmetries during visuomotor processing. We suggest that, within a bilateral visuomotor network, the right hemisphere exhibits a processing preference for planning global spatial movement features whereas the left hemisphere preferentially times local features of visual movement trajectories and adjusts movement online.
Collapse
Affiliation(s)
- Mareike Floegel
- Cognitive Neuroscience Group- Brain Imaging Center and Department of Neurology, Goethe University, Frankfurt, Germany
| | - Christian Alexander Kell
- Cognitive Neuroscience Group- Brain Imaging Center and Department of Neurology, Goethe University, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
14
|
Cunha BP, de Freitas SMSF, de Freitas PB. Assessment of the Ipsilesional Hand Function in Stroke Survivors: The Effect of Lesion Side. J Stroke Cerebrovasc Dis 2017; 26:1615-1621. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/29/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022] Open
|
15
|
de Paiva Silva FP, Freitas SMSF, Banjai RM, Alouche SR. Ipsilesional Arm Aiming Movements After Stroke: Influence of the Degree of Contralesional Impairment. J Mot Behav 2017; 50:104-115. [PMID: 28521636 DOI: 10.1080/00222895.2017.1306479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The authors examined the effects of the degree of impairment of the contralesional upper limb and the side of the hemispheric damage on ipsilesional upper limb performance in chronic stroke individuals. Right- and left-side stroke resulting in mild-to-severe impairment and healthy participants took part in simple and choice reaction time tasks involving aiming movements. The stroke individuals performed the aiming movements with the ipsilesional upper limb using a digitizing tablet to ipsi- or contralateral targets presented in a monitor. The global performance of the group with severe right hemispheric damage was worse than that of the other groups, indicating that the side of hemispheric damage and degree of motor impairment can adversely affect aiming movement performance.
Collapse
Affiliation(s)
- Flavia Priscila de Paiva Silva
- a Master's and Doctoral Program in Physical Therapy , Universidade Cidade de São Paulo , Brazil.,b School of Physical Therapy , Universidade do Vale do Sapucaí , São Paulo , Brazil
| | | | - Renata Morales Banjai
- a Master's and Doctoral Program in Physical Therapy , Universidade Cidade de São Paulo , Brazil.,c School of Physical Therapy , Universidade Santa Cecília , São Paulo , Brazil
| | - Sandra Regina Alouche
- a Master's and Doctoral Program in Physical Therapy , Universidade Cidade de São Paulo , Brazil
| |
Collapse
|
16
|
Abstract
Stroke instigates a dynamic process of repair and remodelling of remaining neural circuits, and this process is shaped by behavioural experiences. The onset of motor disability simultaneously creates a powerful incentive to develop new, compensatory ways of performing daily activities. Compensatory movement strategies that are developed in response to motor impairments can be a dominant force in shaping post-stroke neural remodelling responses and can have mixed effects on functional outcome. The possibility of selectively harnessing the effects of compensatory behaviour on neural reorganization is still an insufficiently explored route for optimizing functional outcome after stroke.
Collapse
Affiliation(s)
- Theresa A Jones
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Texas 78712, USA
| |
Collapse
|
17
|
Gulde P, Hughes CML, Hermsdörfer J. Effects of Stroke on Ipsilesional End-Effector Kinematics in a Multi-Step Activity of Daily Living. Front Hum Neurosci 2017; 11:42. [PMID: 28223927 PMCID: PMC5293874 DOI: 10.3389/fnhum.2017.00042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/19/2017] [Indexed: 11/13/2022] Open
Abstract
Background: Stroke frequently impairs activities of daily living (ADL) and deteriorates the function of the contra- as well as the ipsilesional limbs. In order to analyze alterations of higher motor control unaffected by paresis or sensory loss, the kinematics of ipsilesional upper limb movements in patients with stroke has previously been analyzed during prehensile movements and simple tool use actions. By contrast, motion recording of multi-step ADL is rare and patient-control comparisons for movement kinematics are largely lacking. Especially in clinical research, objective quantification of complex externally valid tasks can improve the assessment of neurological impairments. Methods: In this preliminary study we employed three-dimensional motion recording and applied kinematic analysis in a multi-step ADL (tea-making). The trials were examined with respect to errors and sub-action structure, durations, path lengths (PLs), peak velocities, relative activity (RA) and smoothness. In order to check for specific burdens the sub-actions of the task were extracted and compared. To examine the feasibility of the approach, we determined the behavioral and kinematic metrics of the (ipsilesional) unimanual performance of seven chronic stroke patients (64a ± 11a, 3 with right/4 with left brain damage (LBD), 2 with signs of apraxia, variable severity of paresis) and compared the results with data of 14 neurologically healthy age-matched control participants (70a ± 7a). Results: T-tests revealed that while the quantity and structure of sub-actions of the task were similar. The analysis of end-effector kinematics was able to detect clear group differences in the associated parameters. Specifically, trial duration (TD) was increased (Cohen's d = 1.77); the RA (Cohen's d = 1.72) and the parameters of peak velocities (Cohen's d = 1.49/1.97) were decreased in the patient group. Analysis of the task's sub-actions repeated measures analysis of variance (rmANOVA) revealed no impact of the different demands of the sub-actions on the relative performance of the patient group. Conclusion: The analyses revealed kinematic peculiarities in the performance with the ipsilesional hand. These deficits apparently arose from the cognitive demands like sequencing rather than motor constraints. End-effector kinematics proved as a sensitive method to detect and quantify aspects of disturbed multi-step ADL performance after stroke. If standardized, the examination and the analysis are quick and deliver objective data supporting clinical research.
Collapse
Affiliation(s)
- Philipp Gulde
- Institute of Movement Science, Department of Sport and Health Sciences, Technical University of Munich Munich, Germany
| | | | - Joachim Hermsdörfer
- Institute of Movement Science, Department of Sport and Health Sciences, Technical University of Munich Munich, Germany
| |
Collapse
|
18
|
Improvement in Paretic Arm Reach-to-Grasp following Low Frequency Repetitive Transcranial Magnetic Stimulation Depends on Object Size: A Pilot Study. Stroke Res Treat 2015; 2015:498169. [PMID: 26664827 PMCID: PMC4664821 DOI: 10.1155/2015/498169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 11/17/2022] Open
Abstract
Introduction. Low frequency repetitive transcranial magnetic stimulation (LF-rTMS) delivered to the nonlesioned hemisphere has been shown to improve limited function of the paretic upper extremity (UE) following stroke. The outcome measures have largely included clinical assessments with little investigation on changes in kinematics and coordination. To date, there is no study investigating how the effects of LF-rTMS are modulated by the sizes of an object to be grasped. Objective. To investigate the effect of LF-rTMS on kinematics and coordination of the paretic hand reach-to-grasp (RTG) for two object sizes in chronic stroke. Methods. Nine participants received two TMS conditions: real rTMS and sham rTMS conditions. Before and after the rTMS conditions, cortico-motor excitability (CE) of the nonlesioned hemisphere, RTG kinematics, and coordination was evaluated. Object sizes were 1.2 and 7.2 cm in diameter. Results. Compared to sham rTMS, real rTMS significantly reduced CE of the non-lesioned M1. While rTMS had no effect on RTG action for the larger object, real rTMS significantly improved movement time, aperture opening, and RTG coordination for the smaller object. Conclusions. LF-rTMS improves RTG action for only the smaller object in chronic stroke. The findings suggest a dissociation between effects of rTMS on M1 and task difficulty for this complex skill.
Collapse
|
19
|
Pelton TA, Wing AM, Fraser D, van Vliet P. Differential Effects of Parietal and Cerebellar Stroke in Response to Object Location Perturbation. Front Hum Neurosci 2015; 9:293. [PMID: 26217208 PMCID: PMC4499699 DOI: 10.3389/fnhum.2015.00293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/07/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The differential contributions of the cerebellum and parietal lobe to coordination between hand transport and hand shaping to an object have not been clearly identified. OBJECTIVE To contrast impairments in reach-to-grasp coordination, in response to object location perturbation, in patients with right parietal and cerebellar lesions, in order to further elucidate the role of each area in reach-to-grasp coordination. METHOD A two-factor design with one between subject factor (right parietal stroke; cerebellar stroke; controls) and one within subject factor (presence or absence of object location perturbation) examined correction processes used to maintain coordination between transport-to-grasp in the presence of perturbation. Sixteen chronic stroke participants (eight with right parietal lesions and eight with cerebellar lesions) were matched in age (mean = 61 years; standard deviation = 12) and hand dominance with 16 healthy controls. Hand and arm movements were recorded during unperturbed baseline trials (10) and unpredictable trials (60) in which the target was displaced to the left (10) or right (10) or remained fixed (40). RESULTS Cerebellar patients had a slowed response to perturbation with anticipatory hand opening, an increased number of aperture peaks and disruption to temporal coordination, and greater variability. Parietal participants also exhibited slowed movements, with increased number of aperture peaks, but in addition, increased the number of velocity peaks and had a longer wrist path trajectory due to difficulties planning the new transport goal and thus relying more on feedback control. CONCLUSION Patients with parietal or cerebellar lesions showed some similar and some contrasting deficits. The cerebellum was more dominant in controlling temporal coupling between transport and grasp components, and the parietal area was more concerned with using sensation to relate arm and hand state to target position.
Collapse
Affiliation(s)
- Trudy A. Pelton
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Alan M. Wing
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Dagmar Fraser
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Paulette van Vliet
- School of Health Sciences, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
20
|
Schaefer SY. Preserved motor asymmetry in late adulthood: is measuring chronological age enough? Neuroscience 2015; 294:51-9. [PMID: 25772792 DOI: 10.1016/j.neuroscience.2015.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 02/01/2023]
Abstract
When comparing motor performance of the dominant and nondominant hands, older adults tend to be less asymmetric compared to young adults. This has suggested decreased motor lateralization and functional compensation within the aging brain. The current study further addressed this question by testing whether motor asymmetry was reduced in a sample of 44 healthy right-handed adults ages 65-89. We hypothesized that the older the age, the less the motor asymmetry, and that 'old old' participants (age 80+) would have less motor asymmetry than 'young old' participants (age 65-79). Using two naturalistic tasks that selectively biased the dominant or nondominant hands, we compared asymmetries in performance (measured as a ratio) across chronological age. Results showed preserved motor asymmetry across ages in both tasks, with no difference in asymmetry ratios in the 'old old' compared to the 'young old.' In the context of previous work, our findings suggest that the aging brain may also be characterized by additional measures besides chronological age.
Collapse
Affiliation(s)
- Sydney Y Schaefer
- Emma Eccles Jones College of Education and Human Services, Utah State University, 7000 Old Main Hill, Logan, UT 84322, USA; Department of Physical Therapy, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA; The Center on Aging, University of Utah, 30 North 1900 East, AB193 SOM, Salt Lake City, UT 84132, USA.
| |
Collapse
|
21
|
Tretriluxana J, Runnarong N, Tretriluxana S, Prayoonwiwat N, Vachalathiti R, Winstein C. Feasibility Investigation of the Accelerated Skill Acquisition Program (ASAP): Insights into Reach-to-Grasp Coordination of Individuals with Postacute Stroke. Top Stroke Rehabil 2015; 20:151-60. [DOI: 10.1310/tsr2002-151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Brokaw EB, Black I, Holley RJ, Lum PS. Hand Spring Operated Movement Enhancer (HandSOME): a portable, passive hand exoskeleton for stroke rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2011; 19:391-9. [PMID: 21622079 DOI: 10.1109/tnsre.2011.2157705] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stroke patients often have flexor hypertonia and finger extensor weakness, which makes it difficult to open their affected hand for functional grasp. Because of this impairment, hand rehabilitation after stroke is essential for restoring functional independent lifestyles. The goal of this study is to develop a passive, lightweight, wearable device to assist with hand function during performance of activities of daily living. The device, Hand Spring Operated Movement Enhancer (HandSOME), assists with opening the patient's hand using a series of elastic cords that apply extension torques to the finger joints and compensates for the flexor hypertonia. Device design and calibration are described as well as functional and usability testing with stroke subjects with a wide range of hand impairments. In initial testing with eight stroke subjects with finger flexor hypertonia, use of the HandSOME significantly increased range of motion and functional ability (p=0.002) . There was some decrease in grip strength with the HandSOME device at the subject's ideal setting, however this was not statistically significant (p=0.167) and did not seem to have a significant effect on function. Overall HandSOME shows promise as a training tool to facilitate repetitive task practice for improving hand function in stroke patients. HandSOME can be used as part of a home-based therapy program, or as an orthotic for replacing lost function.
Collapse
|
23
|
Garrison KA, Winstein CJ, Aziz-Zadeh L. The mirror neuron system: a neural substrate for methods in stroke rehabilitation. Neurorehabil Neural Repair 2010; 24:404-12. [PMID: 20207851 PMCID: PMC11692383 DOI: 10.1177/1545968309354536] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mirror neurons found in the premotor and parietal cortex respond not only during action execution, but also during observation of actions being performed by others. Thus, the motor system may be activated without overt movement. Rehabilitation of motor function after stroke is often challenging due to severity of impairment and poor to absent voluntary movement ability. Methods in stroke rehabilitation based on the mirror neuron system--action observation, motor imagery, and imitation--take advantage of this opportunity to rebuild motor function despite impairments, as an alternative or complement to physical therapy. Here the authors review research into each condition of practice, and discuss the relevance of the mirror neuron system to stroke recovery.
Collapse
Affiliation(s)
- Kathleen A Garrison
- Motor Behavior and Neurorehabilitation Laboratory, Division of Biokinesiology and Physical Therapy, Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089-9006, USA.
| | | | | |
Collapse
|